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Imaging Analysis, Bayesian

William D. Penny*
Wellcome Trust Centre for Neuroimaging, University College, London, UK

Definition

This entry refers to Bayesian methods (Gelman et al. 1995; Bishop 2006) for making inferences
about neural activity from brain imaging data. This includes data from functional magnetic reso-
nance imaging (fMRI) (Huettel et al. 2009), magnetoencephalography (MEG), and electroenceph-
alography (EEG) (Luck 2005). These data are unique in neuroscience in that they allow, through
noninvasive methods, relations to be studied between the large-scale activity of the brain and human
behavior. Statistical aspects of microscopic neural activity can be estimated through Bayesian
inversion of appropriate mathematical models. The methods described below have been applied
to the study of a wide range of human brain functions from low-level sensory processing and
sensorimotor integration to studies of memory, emotion, and decision making (Frackowiak
et al. 2003; Fig. 1).

Detailed Description

In what follows N (x; m, V') denotes a multivariate Gaussian density, with mean m and covariance V,
over the random variable x. Bayesian inference is used to transform prior distributions over
parameters describing neuronal activity, p(6), into posterior distributions, p(0|y), based on neuro-
imaging data y.

Brain Mapping
MEGQG sensors, placed over the head, detect changes in magnetic fields due to changes in underlying
neuronal currents. EEG electrodes, in contact with the scalp, detect voltage differences due to these
same currents. For both MEG and EEG data (MEG/EEG), we can capture the relation between
neuronal sources, 0, and measured signals y as a linear relation y = L0 where L is a lead field matrix
derived from Maxwell’s equations (Baillet et al. 2001).

These observations are assumed to be corrupted with Gaussian noise having covariance V,. This
leads to the statistical model

p(yIH) = NO’§L95 Vy) (1)
p(0) = N(x;0, V)

Because there are many more potential brain sources (thousands) than MEG/EEG sensors (tens or
hundreds), the prior p(6) must provide sufficient constraints so that the sources can be recovered.
MEG/EEG source reconstruction algorithms, such as “minimum norm,” “low-resolution tomogra-
phy (LORETA),” or “multiple sparse priors (MSP),” are differentiated by their priors and estimation
algorithms for approximating the posterior p(0]y) (Wipf and Nagarajan 2009; Litvak et al. 2011).
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fMRI

Fig.1 Brain mapping identifies regions where experimental effect sizes are significantly nonzero (orange), as identified
using the posterior distribution. Brain connectivity then explains activity in a set of regions using differential equation
models with directed connections. For brain mapping, the parameters of interest, 0, are regional activities, and for brain
connectivity, they are directed pathways (blue). Both approaches can be applied to data, y, from fMRI or MEG/EEG. For
fMRI this requires Bayesian inversion of a forward model describing a temporal convolution and for MEG/EEG
a forward model describing a spatial mapping

fMRI detects changes in neuronal activity via changes in hemodynamics and the differential
magnetic properties of oxygenated versus deoxygenated blood. This is known as the blood oxygen
level-dependent (BOLD) effect (Huettel et al. 2009). Given the time courses of experimental
conditions, we can predict the resulting fMRI signals via temporal convolution with canonical
response pro les (Friston et al. 2007b). The result of this convolution step can be captured in a design
matrix X. The fMRI signal is then modeled as

p(Y|0) = HN(y:ﬁX@-m Vy)

p(0) = TIN (01ei0.7}) “

where y, is the fMRI time series at the nth spatial location, 0y, is mean neuronal activity for
experimental condition k at voxel n, and the prior covariance ¥ enforces local spatial smoothness
constraints on the estimate of the kth neuronal response (Woolrich 2012). Inference about neuronal
effect sizes can then be made from the posterior and displayed using posterior probability maps
(PPMs) (Friston et al. 2007b). Bayesian methods also allow one to infer that a region has not
activated (Woolrich 2012).

Brain Connectivity

Interactions among brain regions can be studied using a variety of statistical tools including
structural equation modeling, regression methods, and principal or independent component analysis
(Friston et al. 2007b). Studies of brain connectivity with fMRI that take a dynamical systems
approach typically model time series, y, from a small number of regions (less than ten). These
regions are selected based on previous analyses of imaging data or from knowledge of systems
neuroscience (Kandel et al. 2000; Frackowiak et al. 2003)
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p(]0) = N(y;¢(x,0), 7))

X = (A—FZu,B,-)x—i—Cu 3)
p(0) = N(x;mg, V)

where 0 = {4, B, C, h} are model parameters. Here, x is a vector of neuronal activity in multiple
brain regions, x denotes the time derivative, and u is a vector of experimental stimuli. Connectivity is
characterized by a set of “intrinsic connections,” 4; input connections, C; and modulatory connec-
tions, B. Here B specifies which intrinsic connections can be changed by contextual variables
involving, for example, changes in attentional or instructional set. The overall connectivity pattern
is a scientific hypothesis about the structure of the large-scale neuronal network mediating the
underlying sensorimotor or cognitive function. Such hypotheses can be compared using Bayesian
model selection (Penny et al. 2004).

In the above model, neuronal activity gives rise to fMRI activity by a dynamic process described
by an extended Balloon (Buxton et al. 1998) and BOLD signal model. This takes the place of the
linear convolution models used in mapping studies and has the advantage of accommodating, for
example, nonlinear hemodynamic saturation effects. These models are not routinely used in
mapping studies due to the computational expense of fitting them at large numbers of voxels. The
overall dynamic model involves a set of hemodynamic state variables, state equations, and hemo-
dynamic parameters, /. Together these equations describe a nonlinear process, g(x, 0), that converts
neuronal activity into the BOLD signal.

For MEG/EEG data, dynamical connectivity models are again usually based on activity in a small
number of regions

p(0) = N(y;Lx, V)
x = f(x,u,0) )]
p(0) = N(x;mg,Vy)

where x is a vector of neuronal activity. This activity is driven by experimental perturbations
u according to a differential equation with parameters 0. Models of event-related Fifields/potentials
(Luck 2005) are based on variants of the Jansen-Rit model (David et al. 2006) for describing the
activity of multiple cell populations within a single cortical unit. Multiple cortical units are then
connected together using anatomically realistic connection rules (Felleman and Van Essen 1991) to
form large-scale networks. Priors over model parameters constrain, for example, synaptic time
constants to physiological ranges. Usually, the most interesting components of the posterior
distribution are those that describe changes in the long-range excitatory connections among regions
(Litvak et al. 2011).

Model Inference

Bayesian inference for the above models is based on the standard corpora of approximate inference
methods (Gelman et al. 1995; Bishop 2006). Due to the size of most neuroimaging data sets, with
data at potentially thousands of spatial positions and hundreds of time points, deterministic methods
such as variational Bayes (Bishop 2006; Friston et al. 2007a) are most often used. Methods have
been developed to make inferences about families of models and effects that are consistent over
a group of subjects.
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Related Terms

The fitting of differential equation models to neuroimaging data using Bayesian inference has
become known as dynamic causal modeling (DCM) (Friston et al. 2003). The standard method of
brain mapping based on classical inference is known as statistical parametric mapping (SPM)
(Friston et al. 2007b).
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Author Queries

Query Refs. Details Required

Ql Please check if inserted citation for Fig. 1 is okay.

Q2 Please provide related terms, that is related entry titles, instead of the text “The fitting.. ...
(Friston et al. 2007b)”.

Q3 Please check if inserted volume number for Baillet et al. (2001) is okay.

Q4 Please check if inserted publisher location for Frackowiak et al. (2003), Friston et al. (2007),
Huettel et al. (2009), Luck (2005) is okay.

Q5 Please check if inserted volume number for Litvak et al. (2011).

Page 5 of 5



	Imaging Analysis, Bayesian
	Definition
	Detailed Description
	Brain Mapping
	Brain Connectivity
	Model Inference

	Related Terms
	References




