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The brain appears to adhere to two fundamental principles of functional

organisation, functional integration and functional specialisation, where

the integration within and among specialised areas is mediated by

effective connectivity. In this paper, we review two different approaches

to modelling effective connectivity from fMRI data, structural equation

models (SEMs) and dynamic causal models (DCMs). In common to both

approaches are model comparison frameworks in which inferences can

be made about effective connectivity per se and about how that

connectivity can be changed by perceptual or cognitive set. Underlying

the two approaches, however, are two very different generative models.

In DCM, a distinction is made between the dneuronal levelT and the

dhemodynamic levelT. Experimental inputs cause changes in effective

connectivity expressed at the level of neurodynamics, which in turn cause

changes in the observed hemodynamics. In SEM, changes in effective

connectivity lead directly to changes in the covariance structure of the

observed hemodynamics. Because changes in effective connectivity in the

brain occur at a neuronal level DCM is the preferred model for fMRI

data. This review focuses on the underlying assumptions and limitations

of eachmodel and demonstrates their application to data from a study of

attention to visual motion.
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Introduction

Human brain mapping has been used extensively to provide

functional maps showing which regions are specialised for specific

functions (Frackowiak et al., 2003). A classic example is the study

by Zeki et al. (1991) who identified V4 and V5 as specialised for

the processing of colour and motion, respectively. More recently,

these analyses have been augmented by functional integration

studies, which describe how functionally specialised areas interact

and how these interactions depend on changes of context.

Early analyses of functional integration used principal

component analysis (PCA) to decompose neuroimaging data
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into a set of modes that are mutually uncorrelated both spatially

and temporally. The modes are ordered according to the amount

of variance they explain. By comparing the temporal expression

of the first few modes with the variation in experimental factors,

a distributed functional system associated with various factors

can be identified (Friston et al., 1993). A more sophisticated use

of PCA occurs in the context of generalised eigenimage analysis

(Friston et al., 1997), where the principal component is found

which is maximally expressed in one experimental condition or

population and minimally expressed in another (e.g., control

versus patient groups). If there are more than two experimental

factors, this approach can be extended using a canonical variates

analysis (CVA) or partial least squares (PLS) (MacIntosh et al.,

1996).

More recently, independent component analysis (ICA) has

been used to identify modes describing activity in a sparsely

distributed network (McKeown et al., 1998). Such PCA/ICA-

based methods are called analyses of functional connectivity as

they are data-driven transform methods, which make no

assumptions about the underlying biology. They are therefore

of greatest practical use when it is not clear which regions are

involved in a given task.

In contrast, analyses of deffective connectivityT (see the

following sections) are based on statistical models that make

anatomically motivated assumptions (e.g., knowledge of structural

connectivity) and restrict their inferences to networks comprising a

number of preselected regions. Effective connectivity analyses are

hypothesis driven rather than data driven and are most applicable

when one can specify the relevant functional areas (e.g., from

analyses of functional specialisation). The presence of connections,

in the model, can be inferred from data obtained by invasive

tracing procedures in primates, assuming homology between

certain areas in the human and monkey brain. New imaging

methodologies such as diffusion tensor imaging also hold the

promise of providing information about anatomical connections for

the human brain directly (Ramnani et al., 2004).

Detailed discussions of functional versus effective connectivity

approaches can be found in chapters 48–53 of (Frackowiak et al.,

2003). In this paper, we review the most widely used method for

making inferences about functional integration from fMRI, namely,

structural equation modelling (SEM). We also review dynamic
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causal modelling (DCM), a new approach that has been designed

specifically for the analysis of fMRI time series.

The paper is structured as follows. The sections Structural

equation models and Dynamic causal models describe the

theoretical foundations of SEM and DCM, and the Attention to

visual motion section presents exemplar analyses on fMRI data.

We conclude with a discussion of the relative merits of the models

in the Discussion section.

Notation

We use uppercase letters to denote matrices and lowercase to

denote vectors. IK denotes the K � K identity matrix, 1K is a 1 � K

vector of 1’s and 0K is a 1 � K vector of zeros. If X is a matrix,

Tr(X) denotes its trace, |X| its determinant, Xij the i, jth element, XT

the matrix transpose, X �1 the matrix inverse, X �T the transpose of

the matrix inverse, vec(X) returns a column vector comprising its

columns and � denotes the Kronecker product. The operator

diag(x) returns a diagonal matrix with leading diagonal elements

given by the vector x. log x denotes the natural logarithm. If p(x) =

N (x; l,R) then the d-dimensional random vector x is drawn from a

multivariate Gaussian distribution with mean l and covariance R.

This is given by

N x; l;Rð Þ ¼ 2pð Þ�d=2jRj�1=2
exp � 1

2
x� lð ÞTR�1 x� lð Þ

��
ð1Þ

Structural equation models

Structural equation models (SEMs) were developed in the field

of econometrics and first applied to imaging data by McIntosh and

Gonzalez-Lima (MacIntosh and Gonzalez-Lima, 1991). They

comprise a set of regions and a set of directed connections.

Importantly, a causal semantics is ascribed to these connections

where an arrow from A to B means that A causes B. Causal

relationships are thus not inferred from the data but are assumed a

priori (Pearl, 1998).

An SEM with particular connection strengths implies a

particular set of instantaneous correlations among regions. One

can therefore set the connection strengths so as to minimise the

discrepancy between the observed and implied correlations and

thereby fit a model to data. If, for example, one partitions a

given fMRI data set into those scans obtained under two different

levels of an experimental factor, then one can attribute differ-

ences in the estimated connection strengths to that factor, and so

conclude that a pathway has been activated. To date, SEMs have

been the most widely used model for connectivity analyses in

neuroimaging (Goncalves and Hull, 2003).

Generative model

We consider networks comprising N regions in which the

activity at time t is given by the N � 1 vector yt. If there are T time

points and Y is an N � T data matrix comprising t = 1. . .T, then the
likelihood of the data is given by

p Y jhð Þ ¼ j
T

t¼ 1
p ytjhð Þ ð2Þ

where h are the parameters of an SEM. This is the first SEM

equation and is important as it embodies the key assumption that
network activity is independent from sample to sample. This is

certainly valid for PET data but is, at best, questionable for fMRI

as samples are known to be temporally autocorrelated (Woolrich et

al., 2001). There are however heuristics that allow one to overcome

this problem, as we shall see in the following section.

The second SEM equation specifies the generative model at

time t

p yt jhð Þ ¼ N yt; 0;R hð Þð Þ ð3Þ

which denotes that the activities are zero mean Gaussian variates

with a covariance, R(h), that is, a function of the connectivity

matrix h. The form of this function is specified implicitly by the

regression equation that describes how activity in one area is

related to activity in other areas via a set of path coefficients, M, as

yt ¼ Myt þ et ð4Þ

where et are zero mean Gaussian innovations or errors of

covariance R. Typically, R will be a diagonal matrix and we write

the error variance in region i as r2
i . Regions are connected together

via the N � N path coefficient matrix M where the Mij denotes a

connection from region j to region i. The parameters of an SEM, h,
are the unknown elements of M and R. The above equation is an

unusual regression equation as the dependent variable appears on

both sides of the equality. By subtracting Myt from both sides and

multiplying by (IN � M)�1, where IN is the identity matrix, the

equation can be rearranged as follows

yt ¼ IN �Mð Þ�1
et ð5Þ

This form is particularly useful as it shows us how to generate data

from the model. Firstly, we generate the Gaussian variates et and

then premultiply by (IN � M)�1. This is repeated for each t. This

form also allows us to express the covariance of yt as a function of h

R hð Þ ¼ IN �Mð Þ�1
R IN �Mð Þ�T : ð6Þ

Estimation

Given a set of parameters h, we can compute the likelihood of

a data set from Eqs. 2, 3 and 6. Given a data set one can therefore

find the connectivity matrix that maximises the likelihood using

standard optimisation methods such as Pseudo-Newton algorithms

or simplex methods [9]. However, optimisation of Eq. 2 would

soon run into numerical problems as the probabilities are so small.

It is therefore better to maximise the log-likelihood

L hð Þ ¼ log p Y jhð Þ ð7Þ

¼
XT
t ¼ 1

log p ytjhð Þ ð8Þ

which, being monotically related to the likelihood, has the same

maximum. By plugging in the Gaussian density from Eqs. 1 and 3

we get

L hð Þ ¼ � T

2
logjR hð Þj � NT

2
log 2p � 1

2

XT
t ¼ 1

y T
t R hð Þ�1

yt ð9Þ



W.D. Penny et al. / NeuroImage 23 (2004) S264–S274S266
If we define the sample covariance as

S ¼ 1

T

XT
t¼ 1

yt y
T
t ð11Þ

then, by noting that the last term is a scalar and that the trace of a

scalar is that same scalar value and using the circularity property of

the trace operator [i.e., Tr (AB) = Tr (BA)], we can write

L hð Þ ¼ � T

2
log jR hð Þj � NT

2
log2p � T

2
Tr SR hð Þ�1
� �

: ð12Þ

If we use unbiased estimates of the sample covariance matrix

(which corresponds, for example, to the assumption that S is drawn

from a Wishart distribution—see page 134 in Bollen, 1989) then

we replace T’s in the above equation by T � 1’s. If we now also

drop those terms that are not dependent on the model parameters

we get

L hð Þ ¼ � T � 1

2
log jR hð Þj þ Tr SR hð Þ�1

� �� �
: ð13Þ

Maximum likelihood estimates can therefore be obtained by

maximising the above function.

We close this section with some remarks about identifiability.

A model is identifiable if there is a unique parameter vector, hˆ,
that maximises the likelihood. SEMs without loops (e.g.,

reciprocal connections) are identifiable. They are however

biologically uninteresting and it is difficult to establish sufficient

conditions for the identifiability of SEMs with loops. Because of

this SEM modellers appeal to the concept of dlocal identi-

fiabilityT. This is the condition that in the neighborhood of h,
there are no other parameter vectors with equivalent likelihood.

SEMs are locally identifiable if the Hessian (the matrix of second

order partial derivatives of the log-likelihood with respect to the

parameters) is nonsingular. This provides a practical test for local

identifiability.

Inference

One can then use a likelihood ratio (LR) test to assess the merits

of one model versus another (for a given specificity, no other test

has higher sensitivity). If p(Y|h,m = i) and p(Y|h,m = j) are the

likelihoods of the fitted models m = i and m = j, then the likelihood

ratio for comparing models i and j is

Rij ¼
p Y jh;m ¼ ið Þ
p Y jh;m ¼ jð Þ : ð14Þ

If L(hi) and L(hj) are the corresponding log-likelihoods, then

the log of the likelihood ratio is

logRij ¼ L hið Þ � L hj
� �

: ð15Þ

Under the null hypothesis that the models are identical, and for

large T, �2 log Rij is distributed as a chi-squared variable having

degrees of freedom equal to the difference in number of parameters

between the models (see p. 265 in Bollen, 1989). This provides a

mechanism for model comparison. An important caveat is that the

models must be nested.

A special case of the above test arises when one wishes to

evaluate the goodness of fit of a single model. We will denote this

as dmodel 0T. This can be achieved by comparing the likelihood of

model 0 to the likelihood of the least restrictive (most complex)
model one could possibly adopt. This alternative model, denoted

dmodel 1T, obtains simply by setting the model covariance equal to

the sample covariance, that is, R(h) = S. The likelihood of this

extravagant model is

L1 ¼ � T � 1

2
log jSj þ Tr SS�1

� �� �
ð16Þ

¼ � T � 1

2
log jSj þ Nð Þ: ð17Þ

The corresponding (log) likelihood ratio is

log R01 ¼� T � 1

2
logjR hð Þj þ Tr SR hð Þ�1

� �
� logjSj� N

� �
ð18Þ

which in turn has a corresponding chi-squared value

v2 ¼ T � 1ð ÞF hð Þ ð19Þ

where

F hð Þ ¼ logjR hð Þj þ Tr SR hð Þ�1
� �

� logjSj � N : ð20Þ

The corresponding degrees of freedom are equal to the degrees of

freedom in model 1, k, minus the degrees of freedom in model 0, q.

For an N-dimensional covariance matrix, there are k = N(N + 1) / 2

degrees of freedom. For model 0, q equals the total number of

connectivity and variance parameters to be estimated. The asso-

ciated v2 test provides oneway of assessing if an SEMmodel is good

enough. We reject our model, model 0 (or the null model), if the

associated P value is less than, for example, 0.05. In simple terms,

we reject our model if its implicit covariance is significantly different

from the sample covariance.

We also note that it is possible to obtain maximum likelihood

estimates by minimising F(h). This is because ignoring terms that

are fixed for a given data set, F(h) = �L(h). The quantity F(h) is
proportional to the Kullback–Liebler (KL) divergence between the

probability density of the samples and the probability density of the

model. Thus, maximising the likelihood is equivalent to minimis-

ing this KL divergence.

For more general model comparisons, the v2 statistic associated
with the LR test can be written as

v2 ¼ T � 1ð Þ F h1ð Þ � F h2ð Þð Þ: ð21Þ

For this reason, the LR test is also known as the chi-square

difference test.

A caveat concerning these inferences is that they are based on

the assumption that the data points are independent samples.

However, as discussed in the previous section, fMRI data are

serially correlated. So rather than there being T-independent

samples, the deffectiveT number of independent samples is some-

what less, say v. This provides a rationale for the heuristic in which

the above tests are implemented using v in place of T, and v is

calculated based on an autoregressive model of the serial

correlation (Friston et al., 1995). The above tests can then be used

to make inferences about effective connectivity.

To make inferences about changes in effective connectivity, one

can also use the model comparison approach. This is sometimes

called the dstacked modelT approach. It involves partitioning or

splicing the original data, according to any experimental factor that

causes a putative change in connectivity. In this paper, for example,
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we will look at the effect of dattentionT on connectivity. This factor

has two levels, dattentionT and dno attentionT, so two partitions are

created. One then constructs a dnull modelT in which path

coefficients are constrained to be equal between conditions (dno
attentionT and dattentionT) and an dalternative modelT in which

coefficients of interest can be different. The null and alternative

models are then compared using an LR test. The philosophy behind

this approach is identical to that used in analysis of variance

(ANOVA) in which two regression models are compared, one

having identical coefficients over the levels of a factor and one

having different coefficients.

One can also make inferences about changes in effective

connectivity via the use of moderator variables, as described in

(Buchel and Friston, 1997). This involves creating ddummy

regionsT whose activities are specified as follows. If one wishes

to test whether experimental factor X changes the connectivity

from region A to region B, one creates a dummy region C

containing the mean-corrected data in A multiplied by the mean-

corrected factor X. This represents the interaction between X and

the physiological variate from A. This is formally identical to the

explanatory variable in psychophysiological interactions (PPIs)

(Friston et al., 1997) and plays a similar role to bilinear effects in

DCMs that are discussed below. If, in the fitted SEM model

containing A, B and C, the path coefficient from C to B is

significantly nonzero, then there is a significant modulation.

One problem with the moderator variable approach, however, is

that the data in the dummy regions are highly non-Gaussian (due to

the multiplication with a discrete variable). This therefore violates

the assumptions of the model. One way around this is to modify

the generative model and so to maximise a different objective

function (see, for example, chapter 4 in Bollen, 1989). A more

fundamental problem, however, is that we may not have enough

degrees of freedom to fit SEMs with a sufficiently rich structure

(e.g., models containing reciprocal connections). These richer

models may be specified in the stacked model approach because

the available degrees of freedom is larger by a factor K, where K is

the number of partitions. This is because the models must explain

K sample covariances. This issue will be revisited in the Attention

to visual motion section.

An alternative approach that enables more complex models to

be fitted is to set the variance parameters, ri
2, to arbitrary values

rather than estimating them. In McIntosh and Gonzalez-Lima

(1994), for example, it is suggested that they be set to between

35% and 50% of the total variance in that region. Alternatively, one

can employ more complex connectivity patterns but constrain sets

of connections to be identical. An example of this is the use of

reciprocally connected networks where the path coefficients are

constrained to be symmetric (Rowe et al., 2002). The disadvantage

of these heuristics is that they may result in poorer model fits.

We have described SEM as implemented in the majority of

applications to functional brain imaging data. Further details of

these applications can be found in (Bullmore et al., 2000). In the

wider SEM world, however, SEMs vary in their generative

models, estimation procedures and styles of inference. It is

possible, for example, to define SEMs with exogenous variables.

Further, one school of SEM modelling employs a Bayesian

approach where priors are placed over model parameters and the

aim of estimation is to find the maximum posterior (rather than

maximum likelihood) parameters. This body of work (see, for

example, (Scheines et al., 1999)) is of particular interest because

the Bayesian framework is also used in DCM.
Dynamic causal models

Whereas SEM was developed in econometrics, dynamic causal

modelling (DCM) (Friston et al., 2003) has been specifically

designed for the analysis of functional imaging time series. The

term dcausalT in DCM arises because the brain is treated as a

deterministic dynamical system (see, for example, Section 1.1 in

Friston et al. (2003)) in which external inputs cause changes in

neuronal activity, which in turn cause changes in the resulting

blood oxygen level-dependent (BOLD) signal that is measured

with fMRI. The term dcauseT is therefore used quite differently than
in SEM (Pearl, 1998).

Generative model

Current DCMs for fMRI comprise a bilinear model for the

neurodynamics and an extended balloon model (Friston, 2002;

Buxton et al., 1998) for the hemodynamics. The neurodynamics

are described by the following multivariate differential equation

żzt ¼ Aþ
XJ
j¼ 1

ut jð ÞB j

!
zt þ Cut

 
ð22Þ

where t indexes continuous time, the dot notation denotes a time

derivative, zt is neuronal activity, ut( j) is the jth of J inputs at

time t and A, Bj and C are connectivity matrices that will be

described below. This is known as a bilinear model because the

dependent variable, żt, is linearly dependent on the product of zt
and ut. That ut and zt combine in a multiplicative fashion endows

the model with dnonlinearT dynamics that can be understood as a

nonstationary linear system that changes according to ut .

Importantly, because ut is known, parameter estimation is

tractable. The neuronal activity zt is an N � 1 vector comprising

activity in each of the N regions and the input ut is a J � 1 vector

comprising the scalar inputs ut( j) where j = 1. . .J. Exemplar

neuronal time series are shown for a simple two-region DCM in

Fig. 1.

The effective connectivity in DCM is characterised by a set of

dintrinsic connectionsT, A, that specify which regions are connected

and whether these connections are unidirectional or bidirectional.

These are analagous to the path coefficients, M, in SEM. Unlike

SEM (as used in fMRI to date), however, we also define a set of

input connections, C, that specify which inputs are connected to

which regions, and a set of modulatory connections, Bj, that

specify which intrinsic connections can be changed by which

inputs. The overall specification of input, intrinsic and modulatory

connectivity comprises our assumptions about model structure.

This in turn represents a scientific hypothesis about the structure of

the large-scale neuronal network mediating the underlying

sensorimotor or cognitive function.

The values in the connectivity matrices can be concatenated

into the connectivity vector

hc ¼
vec Að Þ
vec Bð Þ
vec Cð Þ

3
5

2
4 ð23Þ

where, for example, vec(A) returns a column vector comprising the

columns of A. Model structure is defined by specifying which

entries in the above matrices are allowed to take on nonzero values,

that is, which inputs and regions are connected. A given model, say

model m, is then defined by its pattern of connectivity. Note that

only connections which are allowed to be nonzero will appear in



Fig. 1. DCM Neurodynamics. The top panel shows a dynamic causal model

comprising N = 2 regions and M = 2 inputs. The input variable u1 drives

neuronal activity z1. Informally, neuronal activity in this region then excites

neuronal activity z2, which then reactivates activity in region 1. Formally,

these interactions take place instantaneously according to Eq. 22. The time

constants are determined by the values of the intrinsic connections A11, A12,

A21 and A22. Input 2, typically a contextual input such as instructional set,

then acts to change the intrinsic dynamics via themodulatory connectionsB11
2

and B22
2. In this example, the effect is to reduce neuronal time constants in

each region as can be seen in the neuronal time series in the bottom panel. The

y-axis scale is in arbitrary units and the x-axis is in units of seconds.

Fig. 2. DCM Hemodynamics. These distributions characterise our expect-

ations about what the hemodynamic responses, h, should look like as a

function of time (seconds). We first generated neuronal transients from a

single-region DCM according to Eq. 22. Then, for each transient we drew a

sample h h from the prior over hh (see Ref. [11]) and generated a

hemodynamic response. We repeated this 100 times to produce the 100

curves shown in the figure.
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hc. For a network with Na intrinsic, Nb modulatory and Nc input

connections hc will have Nh = Na + Nb + Nc entries.

In DCM, neuronal activity gives rise to hemodynamic activity

by a dynamic process described by an extended balloon model.

This involves a set of hemodynamic state variables, state equations

and hemodynamic parameters hh (for details, see (Friston et al.,

2003)). Exemplar hemodynamic responses are shown in Fig. 2.

We can concatenate all neurodynamic and hemodynamic

parameters into the overall p-dimensional parameter vector

h ¼ h c

h h

��
ð24Þ

This vector contains all the parameters of a DCM model that we

need to estimate.

For given input u and DCM parameters h, model predictions,

h(h,u) can be produced by integrating the state equation as
described in (Friston et al., 2003; Friston, 2002). This numerical

integration is efficient because most fMRI experiments employ

input vectors that are highly sparse by experimental design. For a

data set with Ns scans, we can then create an NNs � 1 vector of

model predictions h(h,u) covering all time points and all areas (in

the order all time points from region 1, region 2, etc.). The observed

data y, also formatted as an NNs � 1 vector, is then modelled as

y ¼ h h; uð Þ þ Xb þ w ð25Þ

where w is an NNs � 1 vector of Gaussian prediction errors with

mean zero and covariance matrix Ce, X contains effects of no

interest and b is the associated parameter vector. The matrix X

would include, for example, regressors to model scanner-related

low-frequency drifts in fMRI time series that are neurobiologically

irrelevant. The error covariance is given by Ce = INs � K where �
denotes the Kronecker product, K is an N � N diagonal matrix with

Kii denoting error variance in the ith region.

To generate data from a DCM, one integrates the neurodynamics

that are described by Eq. 22 together with the hemodynamics that

are described by Eqs. (3) and (4) in Friston et al. (2003). Effects of

no interest are then added according to 25. Fig. 1 shows a neuronal

time series generated from a simple two-region DCM.

Priors are placed on the A and Bj matrices so as to encourage

parameter estimates that result in a stable dynamic system (for a

discussion, see Section 2.3.1 in Friston et al. (2003)). For each

connection in A and Bj, the prior is

p Aikð Þ ¼ N Aik ; 0; vað Þ ð26Þ

p B
j
ik

� �
¼ N B

j
ik ; 0; vb

� �
where the prior variance va is set to ensure stability with high

probability (for a discussion of this issue, see Appendix A.3 in

Friston et al. (2003)). For each connection in C the prior is

p Ci j

� �
¼ N Ci j; 0; vc

� �
: ð27Þ

These priors are so-called dshrinkage-priorsT because the

posterior estimates shrink towards the prior mean, which is zero.
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The size of the prior variance determines the amount of

shrinkage. The above information can be concatenated into the

overall prior

p h cð Þ ¼ N h c
p;C

c
p

� �
ð28Þ

where the p subscripts denote priors and

h c
p ¼ 0Nh½ 
T

C c
p ¼ diag va1Na

; vb1Nb
; vc1Nc


:½ ð29Þ

In the above equations, 1K is a 1 � K vector of 1’s and 0K is a

1 � K vector of zeros. The choice of the prior mean, hp
h, and

covariance, Cp
h, is usually based on empirical estimates and

estimates from physiological studies as described in Friston et al.

(2003). Samples of hemodynamics responses from this prior are

shown in Fig. 2. Consequently, the overall prior mean and

covariance for a DCM are given by

hp ¼
h c
p

h h
p

#"
ð30Þ

Cp ¼
C c

p 0

0 C h
p

�
:

�

The prior and likelihood distributions for a given DCM model,

say model m, are therefore

p hjmð Þ ¼ N h; hp;Cp

� �
ð31Þ

p yjh;mð Þ ¼ N y; h h; uð Þ þ Xb;Ceð Þ

These are used in Bayes rule to form the posterior distribution, as

described in the Estimation section.

Relation to SEM

If we assume that (i) the neurodynamics are directly observable,

that is,. yt = zt,, and (ii) that the direct inputs are stochastic, that is,.

et = Cut then the generative model for DCM becomes

ẏyt ¼ Ayt þ et ð32Þ
In this context, the effect of modulatory inputs would be

accommodated by splitting the data into different partitions, each

partition having its own intrinsic connectivity matrix.

Further, if we decompose the intrinsic connectivity matrix into

A = H � IN where H is an off-diagonal matrix, then we have unit

self-inhibition within regions and arbitrary connections between

regions. This gives

ẏyt ¼ H � INð Þyt þ et: ð33Þ
If we now assume that the dynamics have converged at the

point of observation, that is, ẏt = 0, then the generative model

reduces to

yt ¼ Hyt þ et ð34Þ
which is identical to SEM (cf. Eq. 4). This could be implemented in

DCM by having very strong shrinkage priors (cf. Eq. (26)).

Therefore, a second perspective on SEMs is that they correspond

to DCMswith stochastic inputs where neuronal states can be directly

observed. But unfortunately for SEM, what we observe are

hemodynamics not neurodynamics. It is also assumed that these

dynamics have reached equilibrium at each point of observation. In

other words, the dynamics are assumed to occur over a time scale

that is short relative to the fMRI sampling interval. This is also not

the case as the time scale of hemodynamics is much longer than this.

Estimation

From Bayes’ rule the posterior distribution is equal to the

likelihood times the prior divided by the evidence (Gelman et al.,

1995)

p hjy;mð Þ ¼ p yjh;mð Þp hjmð Þ
p yjmð Þ : ð35Þ

Taking logs gives

log p hjy;mð Þ ¼ log p yjh;mð Þ þ log p hjmð Þ � log p yjmð Þ: ð36Þ

The parameters that maximise this posterior probability, the

maximum posterior (MP) solution, can then be found using a

Gauss–Newton optimisation scheme, whereby parameter estimates

are updated in the direction of the gradient of the log-posterior by

an amount proportional to its curvature (see, e.g., (Press et al.,

1992)). The model parameters are initialised to the mean of the

prior density. Because the posterior probability consists of two

terms, the likelihood and the prior, the maximum posterior solution

is the one which optimally satisfies the two constraints (i) that the

model prediction errors are minimised and (ii) that the parameters

are close to their prior values.

If the proportion of data points to model parameters is

sufficiently large, as is the case with DCM models of fMRI time

series, then the posterior is well approximated with a Gaussian.

The aim of optimisation is then to estimate the mean and

covariance of this density, which can be achieved using an

expectation–maximisation (EM) algorithm described in Section

3.1 of Friston (2002). In the E-step, the posterior mean and the

posterior covariance are updated using a Gauss–Newton step, and

in the M-step the hyperparameters of the noise covariance matrix,

Ce, are updated. Both the E andM steps can be expressed in closed

form as shown in Friston (2002). These steps are iterated until the

posterior distribution

p hjy;mð Þ ¼ N hMP;RMPð Þ ð37Þ

is reached, where the subscripts MP denote maximum posterior

values. The posterior density can then be used to make inferences

about the size of connections. Fig. 8, for example, shows the

posterior distribution for a modulatory coefficient.

In statistics, approximation of a posterior density by a Gaussian

centred on the maximum posterior solution is known as a Laplace

approximation (Kass and Raftery, 1993). The parameters of no

interest, b, can also be estimated by forming an augmented

parameter vector that includes h and b and an augmented

observation model, as described in Eq. (7) of Friston et al. (2003).

We close this section with some remarks about identifiability.

As in SEM (see end of the Estimation section), it is difficult to

establish the identifiability of DCMs. We note, however, that EM



Fig. 3. Attention data: experimental variables. The plots bottom to top show

the dPhoticT, dMotionT and dAttentionT inputs, ui, used in the analysis of the

attention to visual motion data.
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optimisation always produces positive definite estimates of the

posterior covariance matrix. If we define the Hessian as the matrix

of second order partial derivatives of the log-posterior (instead of

the log-likelihood, cf. SEM in the Estimation section) then because

the Hessian is the inverse of the covariance, EM optimisation

guarantees dlocal identifiabilityT. We also note that due to the

influence of the prior, the log-posterior is a smoother function than

the log-likelihood. It is therefore more likely that these local optima

correspond to global optima.

Inference

The structure of a DCM model is defined by specifying which

regions are connected to each other, via the intrinsic connectivity

matrix, and which inputs can alter which connections, via the

modulatory matrix. A given model, say model m, is then defined

by this pattern of connectivity. Different models can be compared

using the evidence for each model. This can be thought of as a

second-level of Bayesian inference. The model evidence is

computed from

p yjmð Þ ¼
Z

p yjh;mð Þp hjmð Þdh: ð38Þ

Note that the model evidence is simply the normalisation term

from the first level of Bayesian inference, given in Eq. 35. In

Penny et al. (2004), we show how the evidence can be estimated

using Akaike’s information criterion (AIC), Bayesian information

criterion (BIC) or the Laplace approximation.

Model comparison can then take place using evidence ratios.

Given models m = i and m = j, the dBayes factorT comparing model

i to model j is defined as (Kass and Raftery, 1993, 1995),

Bij ¼
p yjm ¼ ið Þ
p yjm ¼ jð Þ ð39Þ

where p( y|m = j) is the evidence for model j found by exponentiat-

ing AIC, BIC or Laplace approximations to the log-evidence. When

Bij N 1, the data favour model i over model j, and when Bij b 1 the

data favour model j. The Bayes factor is a summary of the evidence

provided by the data in favour of one scientific theory, represented

by a statistical model, as opposed to another. Just as a culture has

developed around the use of P values in classical statistics (e.g., P b

0.05), so one has developed around the use of Bayes factors. For

example, Bayes factors of 20 or more provide strong evidence in

favour of one model over another Penny et al. (2004).

The use of Bayes factors or devidence ratiosT for DCM is

analagous to the use of likelihood ratio tests for SEM (cf. Eq. 14

and Eq. 39). The difference is that the likelihood ratio Rij depends

on estimated parameters. This means that Rij is a random variable

and so inference must be based on its distribution. With Bayes

factors, there is no dependence on parameters (they have been

integrated out using Eq. 38), and so they can be interpreted

directly, as described above.

Finally we note that, in the context of SEM, a statistical test

concerning the dabsoluteT fit of a model was derived by comparing

it to the most complex SEM one could imagine, that is, one where

the model covariance is set to the sample covariance. This suggests

a test concerning the dabsoluteT fit of a DCM that is based on

comparing the evidence for that DCM to the evidence of a DCM

having the most complex structure one can imagine, that is, full

intrinsic connectivity.
Attention to visual motion

In previous work, we have established that attention modulates

connectivity in a distributed system of cortical regions mediating

visual motion processing (Buchel and Friston, 1997; Friston and

Buchel, 2000). These findings were based on data acquired using

the following experimental paradigm. Subjects viewed a computer

screen that displayed either a fixation point, stationary dots or dots

moving radially outward at a fixed velocity. In some epochs of

moving dots, they had to attend to changes in the speed of radial

motion (which were actually absent), in other epochs they were

instructed to simply watch the dots. For the purposes of our analyses

in this paper, we can consider three experimental variables. The

dphotic stimulationT variable indicates when dots were on the

screen, the dmotionT variable indicates that the dots were moving

and the dattentionT variable indicates that the subject was attending
to possible velocity changes. These are the three input variables that

are shown in Fig. 3. In this paper, we model the activity in three

regions V1, V5 and superior parietal cortex (SPC). The original

360-scan time series were extracted from the data set of a single

subject using a local eigendecomposition and are shown in Fig. 4.

As an example of the sort of modelling one can do, we look at

the effect attention has on effectivity connectivity. Specifically,

how attention affects the connection between V1 and V5 (Fig. 4).

SEM

We first apply SEM. The first step in this analysis is to partition

the data set into (i) periods in which the subject was attending to

moving stimuli and (ii) periods in which stimuli were moving but

the subject did not attend to that movement. SEM is therefore only

provided data for epochs when the stimulus is in motion. Note that

this subset of data still contains motion-related responses (not just

steady-state responses) because of the hemodynamic delay. There

are 80 fMRI samples in each data set and these compose the dno
attentionT and dattentionT conditions.

To make inferences about changes in effective connectivity, we

apply the model comparison approach. This involves creating a

dnull modelT in which path coefficients are fixed between

conditions (dno attentionT and dattentionT) and an dalternative



Fig. 5. Feedforward SEM. The figures show null and alternative SEMs

fitted to the dno-attentionT and dattentionT periods of the data set. In the

alternative model, the V1 to V5 path coefficient was allowed to vary

between conditions. The entries in the covariance matrices are ordered V1,

V5 and SPC.

Fig. 4. Attention data: fMRI time series. The plots show fMRI time series

(rough solid lines) from regions V1, V5 and SPC and the corresponding

estimates from DCM model 2 (smooth solid lines).
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modelT in which coefficients of interest can vary. In both models,

we allow the variance parameters, ri
2, to vary between conditions.

In an N = 3 region network, there are k = N(N + 1) / 2 = 6

degrees of freedom per data set giving a total of k = 12 over both

conditions. As we are estimating the variance components and

allowing them to vary between conditions, this takes six degrees of

freedom leaving a maximum of six estimable path coefficients over

the two conditions. This provides a limit on the complexity of the

SEM one can fit.

With this in mind, we initially constructed an SEM with a

purely feedforward structure as shown in Fig. 5. In the null

model, the two path coefficients are common between con-

ditions but in the alternative model the path coefficient from V1

to V5, MV1,V5, can vary. Testing this model against the null

model will allow us to infer whether or not dattentionT changes

MV1,V5.

In the alternative model, as applied to the two data sets, there

are six variance parameters to estimate and three path coef-

ficients, giving q = 9. Fig. 5 shows the estimated values of the

path coefficients. The overall fit of the alternative model, which

captures discrepancies between the sample covariance and

implied model covariance matrix (also shown in Fig. 5), was

v2 = 24.6. This model has k � q = 3 degrees of freedom. In

contrast, the null model had v2 = 33.2 with four degrees of

freedom. This leads to the conclusion that attention does indeed

significantly change the value of this connection (v2 = 8.6, df =

1, P = 0.003).

If we look at the absolute fit of the alternative model, however,

then an LR test tells us that its implied covariance matrix is

significantly different from the sample covariance matrix (v2 =

24.6, df = 3, P = 2e�5). This means that it is not a good model.

Indeed, one can see from the covariance matrices in Fig. 5 that the

covariance between V1 and SPC is not modelled accurately in

either the dattentionT or dno attentionT conditions.
We then set up an SEM with reciprocal connectivity between

regions as shown in Fig. 6. The assumption of reciprocal

connectivity is biologically more realistic. In the null model, the

four path coefficients are common between conditions but in the

alternative model MV1,V5 is allowed to vary. Again, testing this

model against the null model allows us to infer whether or not

dattentionT changes MV1,V5.
In the alternative model, as applied to the two conditions,

there are six variance parameters to estimate and five path

coefficients, giving q = 11. Fig. 6 shows the estimated values of

the path coefficients. The overall fit of the alternative model,

which captures discrepancies between the sample covariance and

implied model covariance matrix (also shown in Fig. 6), was v2 =

3.9. This model has k � q = 1 degrees of freedom. In contrast,

the null model had v2 = 23.6 with two degrees of freedom.

This leads to the conclusion that attention does indeed

significantly change the value of this connection (v2 = 19.7,

df = 1, P = 9e�6).

If we look at the absolute fit of the alternative model, then an

LR test tells us that its implied covariance matrix is not

significantly different from the sample covariance matrix (v2 =

3.9, df = 1, P = 0.05). This means that it is a good model (although,

with P = 0.05 as a cutoff point, one could argue that its a borderline

case). Indeed, one can see from the covariance matrices in Fig. 6

that the covariance between V1 and SPC is now modelled much

more accurately than before.

Note that it would not be possible to fit the reciprocal model to

the data if we had used the dmoderator variableT approach (see

Inference section). This is because, without partitioning the data

into two subsets, there would only be k = 6 degrees of freedom

instead of k = 12.



Fig. 7. DCM models. In all models, photic stimulation enters V1 and the

motion and attention variables modulate the connection from V1 to V5.

Models 1, 2 and 3 differ in their intrinsic connections, model 1 having

feedforward structure, model 2 having reciprocal and hierarchically

organised intrinsic connectivity and model 3 having full connectivity.

Fig. 6. Reciprocal SEM. The figures show null and alternative SEMs fitted

to the dno-attentionT and dattentionT periods of the data set. In the alternative

model, the V1 to V5 path coefficient was allowed to vary between

conditions. The entries in the covariance matrices are ordered V1, V5 and

SPC.
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DCM

We then applied DCM to this data set. With DCM, there is no

need to partition the time series into selected periods of interest as

inferences about changes in connectivity can be made based on the

strength of modulatory connections.

Three different DCMs were applied, each differing in their

intrinsic connectivity structure; model 1 has a feedforward

structure, model 2 a reciprocal structure and model 3 a fully

connected structure. The models and their estimated parameters are

shown in Fig. 7. All models assume that both motion and attention

modulate the connection from V1 to V5.

A Bayes factor, comparing model 2 against model 1, of the

order 1020 provides decisive evidence in favour of the network

with reciprocal connections. That the modulatory connection (due

to attention) within this model is significant can be seen by looking

at the posterior distribution shown in Fig. 8. This allows one to

make statements about our belief that this modulation is larger than

some threshold, c. For example, the probability that this effect is

larger than zero is 0.98 and the probability that it is larger than 0.17

is 0.78. This sort of inference can also be made via a model

comparison approach in which we compare model 2 to the same

model but without the modulatory connection.

A comparison of model 2 against model 3 resulted in no

consistent evidence either way. This suggests that the model with

reciprocal connections is a sufficiently good model of the data.

This is analagous to the LR test for SEM models that assesses the
dabsoluteT fit of a single model. Both SEM and DCM approaches

conclude that models with reciprocal connections are good models

per se and are superior to feedforward models. They also both

conclude that attention significantly modulates the connectivity

from V1 to V5.

Generative models

A final perspective on the different modelling approaches is

offered by revisiting the generative models associated with SEM

and DCM (see the Generative model section under the Structural

equation models and Dynamic causal models sections). Here, we

use SEM and DCM models that were fitted to the attention data.

Fig. 9a shows a new data set generated from the reciprocal SEM,

and Fig. 9b shows a new data set generated from the reciprocal

DCM.

Firstly, we note that SEM only provides data for periods in

which the stimulus is in motion (hence the absences of data in Fig.

9a). Secondly, the dtime seriesT it produces are very spiky. This is

because, in SEM, samples are assumed to be statistically

independent. These time series bear little resemblance to the actual

fMRI traces in Fig. 4. We would therefore conclude from this

comparison that the generative model underlying SEM is poorly

suited to fMRI.



Fig. 8. DCM model: posterior distribution. The plot shows the posterior

probability distribution of the parameter B21
1. This is the connection from

region 1 (V1) to region 2 (V5) that is modulated by attention (the third

input). The mean value of this distribution is 0.23. This is also shown in

Fig. 7. We can use this distribution to compute our belief that this

connection is larger than some threshold c. If we choose, for example, c =

(log 2) / 4 = 0.17, then this corresponds to computing the probability that

this modulatory effect occurs within 4 s. In DCM, faster effects are

mediated by stronger connections (see, for example, Eq. 22). For our data,

we have p(B21
3 N c) = 0.78.
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In contrast, DCM models the entire time series, captures its

underlying regularities and produces very similar traces to the

actual fMRI data in Fig. 4. One attractive option is to use DCM

as a modelling laboratory in which one can investigate the

putative effects of experimental manipulations on changes in

effective connectivity. This can take place before any data are

collected and can provide an aid to experimental design.

Furthermore, prior to starting such a study, one can verify that

a given model, designed to test a particular hypothesis, is

sufficiently sensitive to detect the effects of interest given typical

signal to noise ratios (Penny et al., 2004).
Fig. 9. Data from generative models. The top plot shows data generated

from an SEM and the bottom plot data from a DCM. Both of these models

were fitted to the attention data set.
Discussion

In this paper, we have compared the use of SEM and DCM for

making inferences about changes in effective connectivity from

fMRI time series. On our fMRI attention to visual motion data,

both SEM and DCM approaches led to the same conclusions (i)

that reciprocal models are superior to feedforward models, (ii) that

models with reciprocal connections provide a good fit to the data

and (iii) that attention significantly modulates the connectivity

from V1 to V5.

There are data sets, however, where DCM will be able to make

inferences that cannot be made with SEM. Such an example is

given in Friston et al. (2003) in which DCM was used to make

inferences about changes in connectivity in a three-region auditory

system network. Of key interest was whether the repeated

presentation of auditory stimuli reduced activity via neuronal

saturation in addition to hemodynamic saturation (it did). Such an

inference is clearly impossible, even in principle, in SEM as no

distinction is made between dneuronalT and dhemodynamicT levels.
More generally, as compared to SEM, DCM has the following

advantages. Firstly, DCM models interactions at the neuronal rather

than the hemodynamic level. As well as being biologically accurate,

this is important because neuronal interactions do not necessarily

lead to detectable hemodynamic interactions (Gitelman et al.,

2003). DCMs are able to work at the neuronal level because they

employ a dforward modelT (with hemodynamic parameters) relating

neuronal activity to fMRI activity, and this model is inverted during

the model fitting process. Secondly, in DCM, one can postulate

arbitrarily complex connectivity patterns between regions. This

both results in better fitting models and is, again, biologically more

realistic. Thirdly, because DCM uses Bayesian model comparison,

one can compare nonnested network models (Penny et al., 2004).

Finally, DCM uses a sufficiently rich generative model that one can

use it as a modelling laboratory in which one can investigate the

putative effects of experimental manipulations on changes in

effective connectivity. This can take place before any data are

collected and provides an aid to experimental design. Because of

these advantages, DCM is the preferred method for making

inferences about changes in effective connectivity from fMRI data.

SEM is, however, appropriate for PET data.

A current limitation of DCM is that model fitting is computa-

tionally demanding. As implemented in SPM2 (Friston, 2002), one

is limited to modelling networks comprising approximately up to

eight regions. Parameter estimation in these models takes of the
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order of tens of minutes whereas estimation in comparable SEM

networks takes of the order of minutes.

A second current limitation of DCM is that neurodynamics in

each region are characterised by a single state variable (dneuronal
activityT). This prohibits inferences that can be meaningfully linked

to specific neurotransmitter systems as these would require

multiple state variables in each region that might, for example,

describe activity in excitatory and inhibitory subpopulations. The

parameters of such models would best be identified via DCMs that

use high temporal resolution data such as EEG. The development

of such models may therefore depend on integration of information

from fMRI (to find out where activity occurs) and from EEG (to

find out when it occurs). This is an exciting area for future research

that would significantly strengthen the bridge between modalities

in imaging neuroscience and our understanding of the neuro-

biology underlying cognitive processing.
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