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There is uncertainty introduced when a cortical surface based model derived from an anatomical MRI is used to
reconstruct neural activity with MEG data. This is a specific case of a problemwith uncertainty in parameters on
which M/EEG lead fields depend non-linearly. Here we present a general mathematical treatment of any such
problemwith a particular focus on co-registration. We use a Metropolis search followed by Bayesian Model Av-
eraging over multiple sparse prior source inversions with different headlocation/orientation parameters. Based
on MEG data alone we can locate the cortex to within 4 mm at empirically realistic signal to noise ratios. We
also show that this process gives improved posterior distributions on the estimated current distributions, and
can be extended to make inference on the locations of local maxima by providing confidence intervals for each
source.

© 2012 Elsevier Inc. All rights reserved.

Introduction

The MEG inverse problem is ill-posed. One commonly used con-
straint to help solve this problem is to assume that the anatomy is
known (Baillet & Garnero, 1997; Lin et al., 2006). The knowledge of
anatomy, in the form of a cortical surface, coupled with the assump-
tion that currents flow normal to this surface, considerably simplifies
the problem. However, the accuracy to which the cortical surface can
be known, given only scalp surface landmarks is finite. This anatomi-
cal information is often conveyed through three fiducial markers,
sometimes markers plus a headshape, and sometimes in the form of
bite-bar coordinates; the error implicit in all these approaches is of
the order of 5 mm (Adjamian et al., 2004; Whalen et al., 2008). The
degree to which these co-registration errors affect different algo-
rithms is variable and has not been consistently studied. We know
however that very small errors in mesh location for algorithms such
as beamformers have been shown to be extremely detrimental
(Hillebrand & Barnes, 2003, 2011). For example, so as not to degrade
beamformer performance the cortical surface must be accurate to
within 2 mm and the surface normals to within 10° (Hillebrand &
Barnes, 2003). To our knowledge there is currently no method by
which errors implicit in co-registration can be accounted for and
propagated through to the source reconstruction stage.

The co-registration problem is just one example of a situation in
which there is uncertainty on parameters on which theMEG lead fields
depend non-linearly (for example the shape of the cortical mesh, the
source extent, themodel of the skull boundary). In this paperwe outline
a general mathematical framework which could be used to deal with
any of these unknowns. As an example we demonstrate methodology
to recover the location of the cortical sheet with only approximate
(±2 cm) prior knowledge of the head location. Implicit in this approach
is an estimate of cortical activity that accounts for uncertainty in head
position. Our approach combines deterministic and stochastic Bayesian
inference procedures. Given an assumed head position we use theMul-
tiple Sparse Priors (MSP) algorithm (Friston et al., 2008) to estimate
sources, and to provide an estimate of themodel evidence. This is com-
bined with a stochastic search over head positions using a Metropolis
approach (Gelman et al., 2000). Finally, proposed solutions are com-
bined using Bayesian model averaging (BMA) (Trujillo-Barreto et al.,
2004).

For each head position we used MSPwith models comprising head
location as free parameters and evaluated the free energy of the solu-
tions over models. The model evidence embodies a compromise be-
tween model accuracy and complexity; if the head is placed in the
wrong position the free energy will be decreased because a more
complex model will be required to fit the data to the same accuracy.
In the noiseless case, the model evidence will be maximised when
the model parameters match the true surface position. However, sys-
tem noise and local maxima in the fitting functions can give rise to a
poorly defined error surface. We therefore use a Metropolis search, a
Markov chain Monte Carlo (MCMC) strategy to search over head po-
sitions. We then use BMA to get an optimal model from those in the
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region of this global maximum. This approach allows us to also com-
pute posterior distributions for current density, head location and
peak source location that factor in both noise in the signal and noise
in the co-registration procedure.

This paper is divided into the following main sections. We first
present a brief explanation of the inverse problem formulation from
a Bayesian perspective; this is followed by a description of the Me-
tropolis algorithm used to search anatomical parameter space; we
then describe how BMA is used to combine solutions over models
based on different head positions. In summary, we show that it is pos-
sible to both effectively reconstruct brain activity whilst correctly ac-
counting for anatomical (and signal) uncertainty, and also recover the
location of the head based on MEG data alone.

Theory

The magnitude of the magnetic fields observed over the scalp with
MEG can be obtained from the quasi-static approximation of Maxwell
equations and Poisson's equation (Hallez et al., 2007). This allows us
to write the general linear model:

Y ¼ LaJ þ∈ ð1Þ

where Y∈RNc�Nt is the MEG dataset of Nc sensors and Nt time sam-
ples, J∈RNd�Nt the amplitude of Nd current dipoles distributed
through the cortical surface with fixed orientation perpendicular to
it, ∈ is zero mean Gaussian noise, and La is a gain matrix that em-
bodies our assumptions about anatomy, a. This includes assumptions
about head location, or the details of the particular cortical surface.
We thereby write the likelihood associated with (1) to reflect this
dependence:

p Yð jJ; aÞ ¼ N Y; LaJ;Rð Þ ð2Þ

with N(⋅) the multinormal density function and R the sensor noise co-
variance. Similarly, our prior assumption about source activity de-
pends on anatomy

p Jð jaÞ ¼ N J;0;Qað Þ ð3Þ

where Qa is the source covariance dependent on parameter set a. This
leads to a posterior over sources via Bayes rule

p Jð jY ; aÞ ¼ p Yð j J; aÞp Jð jaÞ
p Yð jaÞ ð4Þ

where the term in the denominator is known as the evidence. Eq. (4)
makes explicit that source reconstructed solutions are dependent on
anatomical assumptions. Anatomy may comprise multiple sets of pa-
rameters, e.g. a={h,w,s}, where h denotes head location, w the spa-
tial extent of cortical patches, or s the coefficients of a Fourier basis
set describing the cortical surface.

The posterior over anatomical parameters is also, naturally, given
by Bayes rule:

p að jYÞ ¼ p Yð jaÞp að Þ
p Yð Þ : ð5Þ

Importantly, the likelihood of anatomical parameters, p(Y|a), is
equivalent to the evidence of the source reconstruction in Eq. (4).

In this paper we focus solely on head position: a≡h. Our prior as-
sumptions about anatomy p(h), can take many forms, here we use a
uniform (flat) prior p(h)=U(h0,σ) for the head position, where σ
represents the region where the head could be inside the MEG device.

Because the lead field La, and therefore the likelihood p(Y|J,a), and
source posterior p(J|Y,a) are highly non-linear functions of a, we

propose to search anatomical space using a stochastic method such
as the Metropolis algorithm (Gelman et al., 2000).

Bayesian framework for the MEG inverse problem

For a given head model hk, the distributed source solution
(Nc≪Nd) is an ill-posed problem, because the lead field Lhk

in Eq.
(1) is non invertible. To solve the problem it is necessary to find an
inverse operator Mhk∈RNd�Nc :

Ĵ ¼ Mhk
Y: ð6Þ

This problem can be solved in the Bayesian framework by assum-
ing that J and ε are zero mean Gaussian:

p Jð Þ ¼ N J;0;Qð Þp ∈ð Þ ¼ N ∈;0;Rð Þ:

Note that the distribution of the dipoles inside the head remains
constant independently of the head location, but the prior source co-
variance matrix may be affected if it depends on the head model for
its computation (Q would change to Qhk

). By applying the Gaussian
probability distribution for a given head location hk, Eq. (4) leads to:

p Jð jY; hkÞ∝exp − Lhk J−Y
� �

′
R−1 Lhk J−Y

� �
−J ′Q−1J

� �
ð7Þ

where (⋅)′ is the transpose operator. Given that the expected changes
are small it is preferable to maximize the logarithm of the posterior:
log(p(J|Y,hk))∝Ψ, with:

Ψ ¼ − Lhk J−Y
� �

′
R−1 Lhk J−Y

� �
−J ′Q−1J: ð8Þ

The estimated activity is obtained with Ĵ ¼ argmaxJ Ψf g by differ-
entiating Eq. (8):

dΨ
dJ J¼Ĵ ¼ 0 ¼ −2L

0

hk
R−1 Lhk Ĵ−Y

� �
−2Q−1 Ĵ

��� ð9Þ

which after some algebra leads to:

Ĵ ¼ QL
0

hk
Rþ LhkQL

0

hk

� �−1
Y ð10Þ

which is the solution for reconstruction algorithms based on Gaussian
assumptions (Grech et al., 2008). The posterior source covariance is
given by

cov Ĵ
� �

¼ ΣJ ¼ Q−QL
0

hk
Rþ LhkQL

0

hk

� �−1
LhkQ ð11Þ

and can be used to provide error bars or confidence intervals on
the solution. Both estimates of posterior mean and covariance re-
quire a known prior source covariance matrix Q, and known sensor
noise R.

Multiple Sparse Priors (MSP) algorithm

The accuracy of the reconstructed three dimensional map of
source activity is highly dependent on the constraints Q and R used
in Eqs. (10) and (11). We assume that the sensor noise covariance
matrix R=exp(λ)INc

, where INc∈RNc�Nc is an identity matrix, and
exp(λ) is the sensor noise variance. That is, the amount of noise vari-
ance is the same on all sensors (uniformity). The parameter λ can be
positive or negative and is exponentiated to enforce positivity. This
parameter can also be viewed as a regularization parameter or hyper-
parameter (Phillips et al., 2002b).

There are multiple constraints that can be used for the prior co-
variance Q. The simplest (minimum norm) assumption about the
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sources is that all the dipoles have approximately the same prior var-
iance and no covariance: Q= INd

. A more realistic assumption is a
weighted sum of a set of Np predefined covariance matrices D={D1,
…,DNp

}:

Q ¼
XNp

i¼1

exp λið ÞDi ð12Þ

These matrices can be generated with prior information (such as
fMRI data), or with a template like the Green's function based on a
graph Laplacian (Harrison et al., 2007). Each of these Np components
defines a potential activated region of cortex,with hyperparameters
λ={λ1,…,λNp

} pruned to those D corresponding to activated regions.
This is the assumption underlying the MSP algorithm (Friston et al.,
2008).

Free energy as objective function

For the linear Gaussianmodels underlyingMEG source reconstruc-
tion, the model evidence is well approximated by the negative varia-
tional free energy (henceforth “Free Energy”) (Friston et al., 2007;
Penny, 2012; Wipf & Nagarajan, 2009). The free energy allows one to
determine the most adequate model for a given dataset. For the
model associated with a given head location hk it can be expressed
as a trade off between accuracy and complexity:

F hkð Þ ¼ Accuracy hkð Þ−Complexity hkð Þ ð13Þ

where the accuracy depends on the estimation erroreY ¼ Y−Mhk
Ĵ , the

model based sample covariancematrix: CY=R+LQL′, and the number
of samples available Nt:

Accuracy hkð Þ ¼ −1
2
e
0

YC
−1
Y eY−

1
2
logjCY j−

Nt

2
log2π ð14Þ

with |⋅ | the matrix determinant operator. When searching for the op-
timal head position the MEG data do not change, so Nt is the same for
all the models; and the accuracy is affected by the estimation error eY,
and themodel covariance CY, decreasing the free energy for inaccurate
models.

In the MSP algorithm the complexity only depends on the hyper-
parameters λ, that control the power allocated to each of the source
components. Here we consider the prior p(λ) and approximate poste-
rior q(λ) densities of the hyperparameters as Gaussian distributed:

p λð Þ ¼ N λ;ν;Cλð Þ q λð Þ ¼ N λ; μ;Σλð Þ:

For the head location hk, the complexity of the solution is defined
as:

Complexity hkð Þ ¼ 1
2
e
0

λC
−1
λ eλ þ

1
2
log

Cλj j
Σλj j ð15Þ

where the error eλ=μ−ν and the posterior covariance of the hyper-
parameters Σλ, are calculated within the MSP estimation. In absence
of prior information the initial values of the hyperparameters can be
considered uninformative: ν=0, and their prior variances: Cλ=αINp

,
with α large. Based on the definition of complexity, it can be conclud-
ed that the use of a large number of hyperparameters increases the
complexity and reduces the freeenergy.

In this work the free energy is used in two different ways. First, it
provides an objective function for hyperparameter optimization. The
optimal set of hyperparameters for a given head location hk is
achieved with the maximum free energy value: λ̂ ¼ arg maxλF hkð Þ.
Second, because free energy approximates the log model evidence it
can be used to score source reconstructions based on different head
locations. That is, the reconstruction of each head location has an

associated free energy that can be compared with those of other
head locations, in order to find the optimum.

Search algorithm

In Section Free energy as objective function we stated that each
head location has an associated Free energy. These Free energy values
are approximate the log model evidence: F≈ logp(Y|h). Applying the
free energy criterion to the models which vary only in head position
keeps the data and the number of parameters unchanged, but it af-
fects the complexity. One would expect that the maximum free ener-
gy corresponds to the true position of the head, because any other
location would require more complexity to explain the same data
with the same accuracy (See Figs. 1 and 2 and their discussion).

For a single dataset the Free energy is a function of head position
and orientation, which implies six degrees of freedom (three for posi-
tion and three for orientation). The head location hk is specified by
three fiducials in MEG sensor space: Nasion, left ear, and right ear.
Movement between head locations h0 and h1 is performed by a rigid
body transformation over the three fiducials (Friston et al., 2006,
chap. 4). Here the mid-point between the left and right ear fiducials
is used as the origin of rotation of the head.

In practice, there is always some uncertainty about the head loca-
tion inside the helmet, but for the purposes of this demonstration we
will consider the worst case: a uniform probability distribution of the
head location p(h) inside the search space, which in this case is the
space inside the MEG helmet allowing free rotation of the head.

The problem is now how to search this space. One possibility
would be to create a grid and evaluate F at each position. This is how-
ever too computationally demanding for a six-dimensional space. An-
other possibility would be a deterministic algorithm which follows
the gradients of Fwith respect to head position. Given that this search
space is highly non-linear (see later) this would be suboptimal. For
these reasons we have chosen to use the Metropolis search strategy.
It consists of following a Markov chain with variable step given by a
probability distribution centred on the last step. Parameters are
updated so as to follow increasing F values, but decreases are also
allowed (in order to avoid getting stuck in local extrema).

Metropolis search
The Metropolis search algorithm is part of a family of MCMC tech-

niques (Gelman et al., 2000) that allows several problem specific
modifications. Here we describe the algorithm implemented to search
for the true head location:

1. Select a random sample from the prior over head location:
h0∼p(h), solve the MSP reconstruction for that location and
calculate the corresponding free energy value F(h0).

2. Use a Gaussian proposal distribution to obtain a new set of fiducials
near to the head location computed on the previous step hk−1:
h′∼N h′;hk−1;σ2I

� �
. For each of the six degrees of freedom we

used the same standard deviation ofσ ¼ 2:4=
ffiffiffi
6

p
. With σ expressed

in degrees for rotation, and mm for translation (Gelman et al.,
2000). The parameter σ could be adjusted to improve the rate of
convergence (Woolrich et al., 2006), but this is beyond the scope
of the current paper.

3. Perform MSP reconstruction on the new location of the head and
calculate the ratio with the new Free energy value F(h′):

r ¼ p Yð jh′Þp h′ð Þ
p Yð jhk−1Þp hk−1ð Þ

¼ exp F h′ð Þ−F hk−1ð Þð Þ p h′ð Þ
p hk−1ð Þ

the ratio is given by the comparison of log evidence between the
previous reconstruction p(Y|hk−1), and the proposed one p(Y|h′),
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where each is also weighted by the prior. A ratio larger than one
means that the proposed head location h′ has more evidence
than the previous one.

4. Take a decision: If r>1 then the new value is higher and accepted
(hk=h′); if rb1, then the new value is compared with a random
sample from a uniform distribution: β∼U(0,1), if r>β it is accept-
ed, or rejected otherwise: hk=hk−1. Allowing transitions to lower
probability values enables the algorithm to escape from local
maxima.

5. Return to the second step and repeat until convergence. After an
initial burn-in period, the samples h′ together comprise an approx-
imate posterior distribution over the head locations p(h|Y).

The following section describes a standard method for determin-
ing when the sampling procedure has converged. After convergence,
the first half of samples constitute a burn-in period and are discarded.
This avoids dependence on the initial head position h0 of the sampling
chain.

Use of convergence rule
The Metropolis algorithm presented above follows a single

Markov chain to generate samples from the posterior p(h|Y), but it
may fall into a local maxima or take an excessive amount of time to
approximate the true posterior. In order to avoid these problems we
use multiple chains simultaneously and define convergence based
on the variance-between and -within chains (Gelman et al., 2000),
i.e. each chain forms an approximate posterior pg(h|Y), for g=1,…,
G chains; then the variance within each chain and between chains is
computed in order to determine convergence.

In brief, start G chains from different head locations. Then perform
the Metropolis algorithm individually for each chain. Wait until all

chains have a representative number of samples (here we used
100), then after each iteration of all chains, use the second half of
samples (length n) to calculate

ffiffiffiffî
R

p
for each of the selected scalar esti-

mands (in this case we use F), and the algorithm finishes whenffiffiffiffî
R

p
≈1. The parameter

ffiffiffiffî
R

p
gives a tolerance limit for the Free energy

variation.
The stopping parameter

ffiffiffiffî
R

p
, relates the marginal posterior vari-

ance var(F|Y) and the within-sequence variance Z for the scalar esti-
mand F

ffiffiffiffî
R

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var Fð jYÞ

Z

r
ð16Þ

The marginal posterior variance var(F|Y) is computed as the
weighted average of Z and the between-sequence variance B

var Fð jYÞ ¼ n−1
n

Z þ 1
n
B ð17Þ

with

B ¼ n
G−1

XG
g¼1

F ⋅g−F ⋅⋅

� �2 ð18Þ

where F ⋅g is the mean Free energy of the g-th sequence, and F ⋅⋅ is the
mean Free energy among sequences. The within-sequence variance is
calculated as:

Z ¼ 1
G

XG
g¼1

1
n−1

Xn
i¼1

Fig−F ⋅g

� �2 !
: ð19Þ

a) Original current distribution b) MSP estimation

c) MSP solution for a head translated 1 cm and
 rotated 10 degrees in a random direction

d) MSP solution for a head translated a 4 mm 
distance and rotated by 4 degrees in a random
direction

Fig. 1. Glass brainwith simulated brain activity: (a) Original brainmap, (b)MSP estimate of the simulated data. (c) and (d) Examples of differentMSP reconstructionswith co-registration
error; on (c) one lateral source keeps most of the energy and the other two almost disappear, on (d) a ghost source appears in the middle of the brain.
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The quantity
ffiffiffiffî
R

p
compares the variance of each independent Mar-

kov chain with the marginal posterior variance of all chains. If
ffiffiffiffî
R

p
ap-

proaches unity then all chains should be sampling from the same
density. This will occur when the chains have forgotten their initial
states and have converged (Gelman et al., 2000).

Bayesian model averaging

Our framework decouples inference about functionality, based on
p(J|Y), from inference about anatomy p(h|Y). This allows us to use
established algorithms to compute them: Inference about anatomy
can be made solely on the posterior samples hk obtained with the Me-
tropolis algorithm, and inference about functionality is given by
Bayesian model averaging

p Jð jYÞ ¼ ∑
k

p Jð jY; hkÞp hkð jYÞ ð20Þ

where p(J|Y,hk) is the distribution of the sources obtained with model
hk. This is evaluated using

p Jð jYÞ≈∑
s

p Jð jY ;hsÞ ð21Þ

where hs are the posterior samples produced by the Metropolis algo-
rithm. Whilst this equation can be used to compute a full posterior
distribution over sources we are typically only interested in the

posterior mean, Ĵ . The following algorithm is used to provide an esti-
mate of Ĵ and is used with T=10,000 iterations.

For t=1,…,T do
- a) Pick a head location from its posterior probability distribu-

tion: hk∼p(h|Y)
- b) For the head location hk obtain the estimated values Ĵk and

their posterior covariance Σk, using Eqs. (10) and (11).
- c) Obtain a normal random variable with mean Ĵ k and covari-

ance (ΣJ)k: ~J t∼N ~J t
� ���̂J k; ΣJ

� �
kÞ. In practice, for computational effi-

ciency and storage limitations only the main diagonal of each
(ΣJ)k is computed in Eq. (11).
end for
- Obtain the mean of the random variables: Ĵ ¼ ∑t

~J t

In brief, step (a) renders the source estimate ~J dependent on ana-
tomical uncertainty and step (c) renders it dependent on measure-
ment error. One can also use the Jt to produce confidence intervals
over the location of the global maximum, or the maximum within a
certain cortical region. Note that BMA is computationally very effi-
cient, on a desktop computer it takes less than one minute.

Results

In this section we first generate simulated MEG data for several
source distributions and head locations and then attempt to estimate
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a) Noiseless left-right head movement

e) Second noisy left-right head movement

c) First noisy left-right head movement

b) Noiseless up-down head movement

d) First noisy up-down head movement

f) Second noisy up-down head movement

Fig. 2. Graphs of different normalised free energy trajectories for a single axis with 0.5 mm of resolution: (a) presents the movement on the left–right axis. (c) and (e) show the
same left–right movement using data with SNR=0 dB, both the waveform and the maxima varied. (c) shows the up–down movement, note that the free energy seems to be higher
when the head is near the sensors. (d) and (f) show the same up–down movement using noisy data with SNR=0 dB, again the free energy trajectory varies for each case.
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the head position and cortical current distribution under various
noise conditions using the algorithm outlined above. We then also
test our algorithm with previously published experimental data
(Sedley et al., 2012).

Description of the simulated data

Several single trial datasets of Nt=161 samples over Nc=274 MEG
sensorswere generated by projecting different source distributions into
sensor space. Fig. 1(a) shows for example two synchronous lateral
sources of neural activity with sinusoidal signals of 20 Hz, and a frontal
source with sinusoidal signal of 10 Hz. Tests were performed noiseless
and using SNR={−20,−10,0,5,10,15,20} decibels, with SNR= log10|
var(Y)/var(noise)|. All sources were spatially normally distributed with
full width half maximum of approximately 10 mm. The MSP algorithm
was implemented over a mesh of Nd=8,196 dipoles distributed over
the cortical surface, each with fixed orientation perpendicular to it; fol-
lowing the procedure proposed in (Phillips et al., 2002a).

The priors used to form the set of covariance components D of
(12) were the same as implemented with the MSP algorithm in the
Statistical Parametric Mapping (SPM8) software package.1 They con-
sist of 512 covariance components with selected columns of a Green's
function (Harrison et al., 2007) covering the entire cortical surface.
The settings of the algorithm are also explained in (Friston et al.,
2008). The translucent glass brains of Fig. 1 show the frontal, lateral
and superior views of the 512 dipoles with highest variance during
the time windows of interest.

For all tests we used a reducedmodel of the sensor space using the
100 largest eigenmodes, obtained with the singular value decomposi-
tion of the gain matrix and projecting the sensors into this new space
(as explained in (Friston et al., 2008; Phillips et al., 2002a)), consider-
ably reducing computation time. This dimension reduction was based
only on the first head location lead field Lh0

, and its decomposition
was used in all the following iterations to guarantee the data did
not change. In future it might be worth considering schemes in
which this dimension reduction stage is removed once the approxi-
mate location of the global maximum is reached.

Fig. 1(b) shows the MSP solution for the true position of the head
with the source distribution of Fig. 1(a). For the i-th source of neural
activity, the estimation error was defined as the Euclidean distance
between its location S(true)(i), and the location of the dipole with
maximum energy after MSP reconstruction in the region near to the
i-th original source, S(msp)(i):

Error ið Þ ¼ jjS mspð Þ ið Þ−S trueð Þ ið Þjj ð22Þ

The average source location error for the three source simulation,
given the true head location, was zero (between Figs. 1(a) and (b)).
This is not so surprising as the simulated neural sources were randomly
placed at MSP patch centres. Note that we used a coordinate system for
the dipoles referenced to the head itself, but we used a coordinate sys-
tem referenced to MEG helmet to describe fiducial locations.

For the first validation of the proposed algorithm, the head was
allowed to move 20 mm in each direction with the constraint of avoid-
ing collision with the sensors. The orientation of the head was free to
vary and it was always initialised in a random location within ±15°
from the true location. Two examples of the MSP reconstruction for a
displaced head are presented in Figs. 1(c) and (d), and show how
poor knowledge of the head location affects source reconstruction,
both solutions have lower free energy than that at the true location.
Note however that both these incorrect solutions arise from relatively
small (and typical) co-registration errors (4 mm and 4° in 1(d)).

Our objective is to recover the true distribution of currents that
generate the data, as well as the true head position. All the error

measurements of sources of neural activity were made with respect
to the original simulated distribution. The co-registration, forward
problem (Nolte, 2003) and MSP inverse solution were obtained
with the SPM8 software package.

Illustrative example: single axis movement

For a better understanding of the different steps involved, we first
explore head movement along a single dimension. Several tests were
performed by allowing the head to move only on a single axis or ori-
entation. This allowed us to compare the Metropolis algorithm with a
simple grid search.

Fig. 2 shows the normalised (with respect to the maximal) free
energy trajectories in six different realisations, the head was moved
between ±15 mm from its original position, 0.5 mm at a time. Fig. 2
(a) shows a left–right movement, the positive values correspond to
the right part of the head being nearer to the sensors. Fig. 2(b)
shows an up–down movement, the upward movement corresponds
to positive error values. There were higher free energy values when
the head was nearer to the sensors. Figs. 2(c) and (e) show two differ-
ent noisy (SNR=0 dB) left–right head movement realisations, note
that the peak free energies do not give zero error and are different
to one another for the same underlying head location. The same situ-
ation can be seen in Figs. 2(d) and (f), where up-down noisy (SNR=0
dB) realisations again present different solutions for the same head
locations; this is an important motivation for the steps that follow.

The solution of the MSP for several head locations makes it neces-
sary to generate a new lead field matrix at each iteration and then
solve the MSP reconstruction, causing a high computational load.
For an Intel Core i7 desktop computer with 6 GB of RAM memory
each lead field matrix takes 30 s and the MSP solution takes approxi-
mately 80 s, using Matlab 2010b and multiprocessing functions; the
simulations of Fig. 2(a) took approximately two hours. This means
that the grid search presented in Fig. 2 is not computationally feasible
for a problem with six degrees of freedom.

The Metropolis search was implemented to step through parame-
ter space in the left–right axis with SNR=0 dB. This algorithm is fas-
ter than a grid search and it allows one to avoid local maxima. Fig. 3
(a) shows the normalised free energy update through 200 simula-
tions; Fig. 3(b) shows 60 normalised free energy values accepted
from the 200 simulations through the Metropolis iterative process,
and the second half of samples used to form the posterior distribution
p(h|Y) are shown in Fig. 3(c).

Fig. 3(d) shows the trajectory of the nasion fiducial position (orig-
inally at 0 mm). The posterior mean head position is shown in Fig. 3
(d) (‘final value’) and is 0.7 mm from the true position.

The Metropolis search algorithm proposed in Section Search
algorithm is designed to sample from the posterior distribution over
head locations p(h|Y), based on the convergence of multiple chains.
Samples from the second half of all G=4 chains were used to form
this posterior density. The mean of this posterior distribution pro-
vides a robust estimate of head location whereas the maximum
does not, as illustrated in Fig. 4.

Fig. 4(a) shows the normalised free energy accounting 95% of cu-
mulative probability distribution of four chains of 200 samples each,
for a one degree of freedom movement of the head (left–right) with
SNR=0 dB, the fourth chain has a global maximum at around
0.4 mm. Fig. 4(b) highlights the maximum posterior value whereas
Fig. 4(c) highlights the posterior mean, the latter being much closer
to the true value.

An advantage of our inference framework is that we can obtain a
posterior distribution of activity in each source location that takes
into account uncertainty about anatomy, in this case head position.
Similar inferences can be made about locations of peak activity (see
later). Fig. 4(d) shows how the posterior source distribution changes
(a change in the mean and increase in the variance) when the1 http://www.fil.ion.ucl.ac.uk/spm/
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uncertainty in head location is taken into account (see
Section Bayesian model averaging for methods).

Simulation results

For the six degrees of freedom simulations the head was allowed
to move by 20 mm in each direction with free rotation (360°) around
all axes. Several tests were performed with noiseless and noisy data.

Fig. 5(a) shows the estimatedMSP image after applying theMetrop-
olis and BMA algorithms, the average estimation error computed with
Eq. (22) for the noiseless case is zero, and the FID positions had mean
error of 2.2 mm. Fig. 5(b) shows the free energy evolution and the ac-
cepted values of the chain, and Fig. 5(c) shows the Nasion fiducial
movements for the 300 samples in the X-Z axis (left–right–up–down),
the error for this fiducial was 2.2 mm, but the search space was up to
20 mmper axis. That is, the prior over head location is a uniformdensity
with width σ=20mm (see beginning of Section Theory). Fig. 5(d)
shows the MSP reconstruction with Metropolis search and BMA for
SNR=0 dB, the three sources of neural activity were recovered with
an average error of approximately 5 mm.

Fig. 6 shows the MSP reconstructed brain images for single and five
source simulations. Figs. 6(a) and (d) show the original simulated cur-
rent distributions for one and five sources respectively, Figs. 6(b) and
(e) show their MSP reconstructions, and Figs. 6(c) and (f) show the nor-
malised free energy evolution of theMetropolis algorithm for each case.
In both cases the reconstruction error is approximately zero (≈0.5 mm).

Fig. 7 shows a summary of the algorithm performance for different
source configurations and noise conditions. For each current distribu-
tion or noise realisation, eight noisy datasets were generated and a set
of G=4 chains with different seeds were used to determine conver-
gence. The Metropolis chains stopped after approximately 300 itera-
tions in most cases (relatively modest number considering we are
optimizing a function with six degrees of freedom).

Fig. 7(a) shows the fiducial error as a function of number of
sources in the noiseless and SNR=0 dB cases. For low number of
sources (b3) there is relatively little information available to define
the location of the cortex and error is large. For moderate number
of sources (3–10) the algorithm finds the head location to within
around 4 mm. For large number of sources (>15) performance be-
comes constrained by the deterministic (MSP) stage, which fails to
recover all the sources.

The effect of SNR on fiducial and co-registration error is shown in
Fig. 7(b). At extremely low SNR the head location is known only to
within the prior uncertainty (in this case 20 mm). Above SNR=0
we found only a moderate dependence on noise and the algorithm
maintained an average fiducial localisation error of approximately
4 mm in all situations except for the noiseless case. Due to the fact
that MSP uses discrete patches, there is some quantisation error
here, consequently one achieves close to perfect source localisation
for moderate fiducial errors (as the nearest incorrect source lies ap-
proximately 10 mm away).

One advantage of this approach is the possibility to determine a
confidence interval for each source, or fiducial location. Alternatively
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it is possible to make inference on other indirect metrics such as the
location of the global maximum in the cortex. Fig. 7(c) shows this
posterior distribution (which through quantization effects, men-
tioned above, turns out to be one of three possible patch locations)

for the single source problem. In this case the fiducials could only
be located to within 6.33 mm of their true position. By using BMA
(Section Bayesian model averaging) to examine the location of the
image maximum over the second half of samples generated by the
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Metropolis algorithm, and after applying an Occam's window, it was
possible to construct an approximate posterior distribution reflecting
this uncertainty.

Experimental data validation

The methodology proposed in this work was tested with previous-
ly published data. A detailed description of the experimental set-up
and previous data analysis are presented in (Sedley et al., 2012). In
brief, auditory evoked responses using a passive listening paradigm
and regular interval noise (RIN) pitch-evoking stimuli were fit with
bilateral dipolar sources over 13 healthy subjects. We used the data
of a single subject from this study but gave the algorithm no informa-
tion on the subject's head location, i.e. flat priors on location (within
the σ=20 mm MEG helmet) and orientation 360° (around all axes).
The Metropolis algorithm was performed over approximately 350 it-
erations per chain in four chains. Unlike the synthetic data examples,
with real data some chains generated anomalous samples which were
then discarded based on their lower Free energy values.

Fig. 8(a) shows the MSP reconstruction using the fiducial coordi-
nates obtained after performing the Metropolis and BMA estimates.
That is, even with no knowledge of head location, the reconstructed
current distribution falls within auditory cortex. The problem here
is that we do not know the ground truth (either in terms of head lo-
cation or current distribution). However, we can compare the confi-
dence interval on the maximum, for this individual, against the
confidence interval obtained from the group study. Fig. 8(b) shows
the 95% confidence ellipsoid based on the dipole fit results of
(Sedley et al., 2012) in grey. Overlaid in colour are the confidence in-
tervals on the locations of the left and right hemisphere image maxi-
ma based on the single subject's data and without knowledge of head
position.

Fig. 8(c) shows the prior and posterior distributions of the Nasion
fiducial location. Zero indicates the location of the fiducial location es-
timated through co-registration. That is, here (in the absence of any
other prior information) the MEG data suggest a co-registration
error of approximately 7 mm.

Summary and discussion

We have described a method for mapping brain activity that al-
lows one to account for uncertainty in anatomical parameters which

non-linearly affect the MEG forward problem. In order to illustrate
this approach we have presented a robust method of MEG source re-
construction that requires only approximate prior knowledge of head
location to produce accurate estimates of current density.

We have shown that it is possible to estimate where the brain is
to within 4 mm (see Section Simulation results) based purely on
MEG data with a signal to noise ratio of zero. Importantly this meth-
od provides posterior distributions on current density (or source lo-
cation), that properly account for not only measurement but also co-
registration noise.

Our approach combined deterministic and stochastic Bayesian infer-
ence procedures. For a given head location we used the MSP algorithm
to estimate sources, and to provide an estimate of themodel evidence. A
Metropolis search was then used to generate a posterior distribution
over possible head locations, and finally the models were combined
using BMA. The model averaging stage is simple and increases the ro-
bustness of the solution. We stress that the method is used to illustrate
what is possible, but its successful empirical realisation depends on
knowledge of other unknowns (in this case the correct patch extents
and centres) which reflect the true underlying current distribution.
Here we have assumed that these other parameters are known, but
(given more accurate knowledge of where the brain is) they could be
estimated using the same approach. That said, we were encouraged to
find that wewere still able to provide plausible estimates of the cortical
current distribution for real data with no prior knowledge of head posi-
tion (Fig. 8).

To avoid local maxima in the posterior distribution of the head lo-
cation a Metropolis search algorithm was implemented. The Metrop-
olis search showed fast and accurate convergence for a MCMC
technique. Here, for the purposes of illustration, we used a flat prior
on the head location p(h) however, in application, one will generally
have some information on the true head location (for example, a
Gaussian with standard deviation of 5 mm centred around the mea-
sured fiducial locations) which will improve the accuracy of the cur-
rent estimates and also decrease the computation time.

The BMA step is able to pool estimates from across a range of op-
timisation steps and weight them by their model evidence. This gives
a degree of robustness to the process (see Fig. 4(c)) and importantly
provides us with useful posterior estimates of not only the head loca-
tion but also the estimate of current distribution, or alternatively
spatial confidence bounds on the locations of local maxima. That is,
even if one were not interested in the precise location of the brain
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(to within 10 mm say); one can still properly account for co-
registration errors on the current density estimation.

We were initially surprised to see that no matter how high the
SNR was, we were not able to perfectly recover the fiducial locations.
It seems that this is a constraint due to the current implementation of
the MSP algorithm in which cortical activity is modelled by discrete,
non-overlapping patches; this gives rise to a certain level of quantisa-
tion error which means that fiducial localisation error can be non-
zero for zero source localisation error (see Fig. 7(b)). We also should
emphasize that the framework proposed here is not explicitly linked
to the MSP algorithm but can sit around any inversion algorithm that
provides some form of model evidence.

Continuing on this note, we found that the framework was con-
strained by the determinsitic inversion stage (the MSP) for large
(>15) numbers of sources (due to the increasingly complex optimi-
sation problem) whereas for small numbers (b3) of sources, although
the MSP worked perfectly, the location of the cortex was poorly de-
fined; there presumably being many positions and orientations of
the head that a single source would fit and explain the data equally
well.

In this work we have tackled the problem of locating the cortical
surface. It should be noted that this general form (MCMC followed
by BMA) is a robust method which could be applied to many prob-
lems in M/EEG. For example, the estimate of spatial extent of MSP
patches, the estimation of conductivity parameters in EEG or as a
method to robustly combine algorithms with different prior assump-
tions (Trujillo-Barreto et al., 2004).

An alternative way to look at the method is to view it as a way of
testing the validity of the assumptions behind a source reconstruction
algorithm and the forwardmodel. That is, if we hadmade a nonsensical
source reconstruction then we would not have been able to recover
where the brain was. Indeed, using LORETA-like priors we were unable
to find the location of the electrical activity we had simulated using the
same smoother that generates the MSP priors (Green's function, see
(Harrison et al., 2007)). That is, in reality, where we do not know
what the appropriate functional priors are, but we do know approxi-
mately where the head is, we have a method to judge between inver-
sion schemes. Similarly, the higher the spatial resolution/robustness of
the algorithm the tighter the confidence bounds on where the brain
is. For example (Hillebrand & Barnes, 2003) found that errors in cortical
location had little effect on minimum norm as opposed to beamformer
solutions. One could also use the approach to test between forward
models (canonical vs. individual meshes, for example (Henson et al.,
2009)); the advantage being that one could take full account of co-
registration errors which might mask the improvement in model evi-
dence given by a specific forward model.

An important application of our method, if not to find out where
the brain is, is that one can put a posterior distribution on the loca-
tions of the source space maxima which accounts for noise in the
measurement of the data and noise in the estimate of head location.
Such distributions allow one to make spatial inference on the location
of a source, quantify how likely it is to sit in a certain cortical area or
be spatially distinguished from another source.
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