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Functional MRI (fMRI) used for neurosurgical planning delineates functionally eloquent

brain areas by time-series analysis of task-induced BOLD signal changes. Commonly

used frequentist statistics protect against false positive results based on a p-value

threshold. In surgical planning, false negative results are equally if not more harmful,

potentially masking true brain activity leading to erroneous resection of eloquent regions.

Bayesian statistics provides an alternative framework, categorizing areas as activated,

deactivated, non-activated or with low statistical confidence. This approach has not yet

found wide clinical application partly due to the lack of a method to objectively define an

effect size threshold. We implemented a Bayesian analysis framework for neurosurgical

planning fMRI. It entails an automated effect-size threshold selection method for posterior

probability maps accounting for inter-individual BOLD response differences, which was

calibrated based on the frequentist results maps thresholded by two clinical experts.

We compared Bayesian and frequentist analysis of passive-motor fMRI data from 10

healthy volunteers measured on a pre-operative 3T and an intra-operative 1.5T MRI

scanner. As a clinical case study, we tested passive motor task activation in a brain

tumor patient at 3T under clinical conditions. With our novel effect size threshold method,

the Bayesian analysis revealed regions of all four categories in the 3T data. Activated

region foci and extent were consistent with the frequentist analysis results. In the

lower signal-to-noise ratio 1.5T intra-operative scanner data, Bayesian analysis provided

improved brain-activation detection sensitivity compared with the frequentist analysis,

albeit the spatial extents of the activations were smaller than at 3T. Bayesian analysis of

fMRI data using operator-independent effect size threshold selection may improve the

sensitivity and certainty of information available to guide neurosurgery.

Keywords: neurosurgical planning, passive fMRI, motor cortex, effect size, interventional MRI, bayesian statistics,

false positive, false negative
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Introduction

Magnetic resonance imaging (MRI) is today commonly used in
planning neurosurgical treatment, offering exquisite soft tissue
contrast and geometric accuracy. A neurosurgical intervention,
e.g., a brain tumor resection, has two principal aims: a maximal
resection of the pathology with minimal damage to functionally
important proximal brain structures. Modern MRI methods can
support both goals. Standard structural MRI provides anatomical
information about the tumor and surrounding brain tissue (Hall
and Truwit, 2008; Wengenroth et al., 2011). Advanced MRI
techniques, such as functional MRI (fMRI), yield otherwise
unavailable spatial and functional localization of eloquent brain
areas potentially invaluable in the neurosurgical planning stage
(Wengenroth et al., 2011). Structural MRIs are routinely used for
neuro-navigation during surgery.

Brain activity related to stimuli or tasks is localized by
exploiting the blood oxygenation level dependent effect (BOLD
effect). A per-voxel time-series statistical analysis estimates the
temporal BOLD response amplitude identifying significantly
task-related brain areas, the results being displayed as a statistical
parametric map (SPM). Several methods have been established
for this analysis. The most commonly used is the frequentist
statistical approach based on a t-statistic (Friston, 2007), applying
frequentist statistics to a general linear model (GLM) (Friston
et al., 1994) describing the experimental paradigm. This approach
rejects a given null hypothesis H0 (usually H0 = no activation
present) at a pre-chosen level of significance (α value), which
determines the level of false positives (Type I error) under a valid
H0. In other words, the α-value determines the probability of
labeling a region as active even though it is not. However, the
frequentist statistic does not control directly for false negatives
(Type II errors), i.e., that H0 is not rejected even though a
region is in fact active. That is, the user is provided with no
information regarding the probability of overlooking true brain
activity. Despite this limitation frequentist statistics is widely
used for analysis of clinical fMRI.

False positive and false negative results are a potential risk
for the patient and must be controlled in planning surgical
intervention (Bartsch et al., 2006; Haller and Bartsch, 2009).
While false positive results compromise the extent of tumor
resection if they obscure tumor tissue (Gorgolewski et al.,
2012), false negative results may precipitate an overly aggressive
resection by obscuring eloquent brain tissue (Haller and Bartsch,
2009). Two recent publications proposed solutions for this
problem. Johnson et al. (2012) proposed a computationally
demanding Bayesian statistics approach comprising of a mixed
Gaussian model with different weighting of false negative and
false positive findings via a loss function, demonstrated on a
single tumor case. Durnez et al. (2013) proposed an advanced
definition of the p-value based using frequentist statistics and

Abbreviations: CSB, cluster size in the Bayesian analysis; CSF, cluster size in the

frequentist analysis; γ, effect size threshold; γloc, minimal BOLD response effect

size for activation loci; γex, minimal BOLD response effect size for activation

extent; LBT, Log Bayes factor thresholdl; tloc, observer selected t-threshold for

activation loci; tex, observer selected t-threshold for activation extent; J, Jaccard

index.

independent component analysis, demonstrated in a group of five
patients.

In this context Bayesian statistics have advantages over the
frequentist approach, as this method does not suffer from
multiple comparison limitations, and is not limited to controlling
for false positives only. Bayesian statistics estimate the posterior
probability of the effect given the fMRI data (Friston et al.,
2002a,b). This probability is expected to be high in task-
related brain regions and low in both brain areas not mediating
performance of the task and in voxels suffering from poor data
quality. Therefore Bayesian analysis can not only test for BOLD
signal increases and decreases, but also detect non-responsive
areas, and separate these from areas with unclear activation status
which therefore provide statistical results with low-confidence.
These results are encoded in posterior probability maps (PPMs)
(Friston and Penny, 2003). This Bayesian approach is therefore
particularly attractive for neurosurgical planning since it reveals
explicitly both activated and non-activated regions. Moreover,
the Bayesian approach could be particularly relevant for intra-
operatively and post-surgically acquired fMRI data, as, during
surgery both the functional localization and BOLD response
could change due to tissue resection effects, e.g., active areas
become non-activated or vice versa (Duffau, 2001). Such changes
are not detectable via common frequentist analysis. Despite the
advantages of Bayesian statistics for neurosurgery, clinical fMRI
currently remains commonly analyzed using the frequentist
techniques, since Bayesian methods are less widely known and
practical implementation is computationally demanding.

A key benefit of Bayesian approaches is that they can
automatically adapt to the spatial scale of signal in the data.
One framework for doing this is to describe spatial dependencies
using Markov Random Field priors (Gössl et al., 2001; Woolrich
et al., 2004a). The original implementation of these algorithms
is particularly computationally intensive, but this has since been
ameliorated by the adoption of Variational Bayesian approaches
(Celeux et al., 2003; Penny et al., 2005; Woolrich and Behrens,
2006). These approaches were generalized further using spatial
Gaussian priors with the ability to model spatial non-stationaries
(Harrison et al., 2007) and combine spatial and non-spatial
priors (Groves et al., 2009). Alternative spatial models such
as Bayesian wavelets (Flandin and Penny, 2007) and mixture
models representing active and non-active voxels (Everitt and
Bullmore, 1999; Hartvig and Jensen, 2000; Woolrich et al.,
2005; Woolrich and Behrens, 2006) have also been proposed.
Other authors proposed spatial non-stationarities not relying on
Gaussian Markov Random Field priors permitting both non-
stationary spatial and regressor-specific regularization (Vincent
et al., 2010; Risser et al., 2011).

All Bayesian models provide posterior probability maps,
which require thresholds to mask non-relevant brain activation
and highlight significant activated regions. One of these
thresholds, the “effect size threshold” (γ), is a potential
obstacle to the practical use of Bayesian methods since it
requires the definition of a minimal BOLD response effect
size. In the presurgical environment this is the minimal BOLD
response amplitude considered clinically meaningful. Obtaining
an optimal and objective choice of this threshold is challenging,
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since the amplitude of the minimally expected BOLD response
in any given situation is usually unknown and a subject-specific
value. Furthermore, it may depend on several factors such as
the paradigm, subject performance, physiological artifacts, and
post processing steps. Thus, it is difficult to prescribe an a priori
value. So far, no systematic method for determining a reasonable
minimal effect size from a data set has been reported, and BOLD
response amplitudes are rarely available in the literature: typical
effect sizes for different paradigms, brain areas and populations
including patients are not routinely reported. This may be viewed
as a generic weakness of current brain imaging approaches, as
effect sizes are routinely reported and discussed in many other
scientific disciplines.

The aim of our study was to implement a complete Bayesian
analysis framework for fMRI neurosurgical planning within
a pipeline to allow automated on-site data processing. This
required the development of a method for objective and
algorithmic estimation of the effect size threshold, suitable for
deployment in clinical applications. We developed and tested
our framework in three parts. (1) Development—3T presurgical
scanner: We developed the approach in healthy volunteers
performing a passive motor paradigm in a standard 3T clinical
MRI system. To calibrate the Bayesian analysis results we
performed conventional frequentist inference analysis of the
same data as reference. This was done for two surgical planning
scenarios to determine the activation loci or the extent of the
activated region. We developed a linear model to estimate the
Bayesian effect size threshold from the individual volunteer data
set. Compared to frequentist analysis, Bayesian fMRI analysis
provided identification of activated, deactivated and non-
activated brain regions. (2) Test—intra-operative 1.5T scanner:
We measured the same healthy volunteers in a 1.5T intra-
operative MRI scanner, to test our approach under technically
challenging conditions. Compared with the 3T data, frequentist
and Bayesian results provided less comprehensive information
regarding the brain response to the task. (3) Clinical scenario—
brain tumor patient:We tested the approach in a case study with a
patient candidate for tumor resection. Bayesian statistics revealed
similar activation patterns compared to the frequentist results
and additional information about non-activated areas and areas
with low statistical confidence.

Materials and Methods

Ethics Statement
The study was conducted with institutional research ethics
committee approval of The National Hospital for Neurology and
Neurosurgery and Institute of Neurology Joint Research Ethics
Committee, ref 09/H0716/18. The healthy volunteers and the
patient gave written consent to their participation after receiving
oral and written information as required and approved by the
research ethics committee.

Development—3T Presurgical Scanner
Volunteers
Ten healthy right-handed volunteers participated in the study
(seven males, age = 34.8 ± 6.2 years [mean ± standard
deviation]).

Equipment
Each volunteer was examined in a standard clinical radiology
suite with a 3TMAGNETOMTrio TIM system whole-body MRI
(Siemens Healthcare, Erlangen, Germany) equipped with the
manufacturer’s 32-channel RF head coil. The data were processed
on a computer with 16 3.4 GHz AMD Opteron (tm) processor
cores with 64 GB RAM andDebian Linux “squeeze” version 6.0.7.

Data Acquisition
For fMRI, a time series of 142 echo-planar images (EPIs)
was acquired with axial oblique orientation aligned to
the anterior commissure to posterior commissure line
covering the whole brain using repetition time TR|echo
time TE|flip|angle α = 2260ms|30ms|90◦, field of view
FoV|matrix|phase-encoding = 192 × 192mm2|64 × 64|AP,
slices|thickness|gap = 42|2.7mm|12%, bandwidth
BW|echospacing = 2112Hz/Px|0.56ms, grappa-factor|reference
lines = 2|24, volumes|duration = 142|5:28min. A map of
the static magnetic field (B0) using a double gradient-echo
sequence was acquired for correction of susceptibility-induced
geometric distortion of the EPI images (Andersson et al.,
2001; Hutton et al., 2002) with the following parameters:
TR|TE1|TE2|α = 688ms|4.92ms|7.38ms|60◦, FoV|matrix =

192 × 192mm2|96 × 96, slices|thickness|gap = 42|3mm|0%,
BW= 259Hz/Px, duration= 2:13min. Anatomical images were
acquired using a 3D T1-weighted MPRAGE (magnetization
prepared rapid gradient echo Mugler and Brookeman, 1990)
sequence with the following parameters: TR|TE|TI|α =

2200ms|2.88ms|900ms|10◦, FoV|matrix = 220 × 220 ×

203mm3|192×192×176, BW= 240Hz/Px, duration= 7:02min.

FMRI of Passive Hand Motion
A passive motor paradigm with simple cueing was used, chosen
for operational simplicity and applicability in motor functionally
impaired or anaesthetized patients. An operator standing next
to the scanner bed flexed the volunteer’s upwards-facing right
hand fingers toward the palm and then extended them back.
Operators were trained to flex with a frequency of 1–1.5 s.
Stimulation consisted of a passive hand motion block of 16 s
duration followed by 16 s rest. The stimulation was repeated
10 times. The operator was visually cued to start and stop
the movements in synchrony with the acquisitions but did not
receive any other prompts such as prompts for the frequency of
flexing.

Data Processing
The data sets were individually processed for each volunteer.
The analysis pipeline was automated using a custom-written
toolbox MRIST (MR Imaging and Spectroscopy Toolbox1),
which combines tools mainly from SPM12b2, FSL 5.0.13 ,
MATLAB4 (R2012a, 1984–2012 The Math Works, Inc.) and
BASH into a Debian Linux “squeeze” version 6.0.75 command
line based data analysis pipeline.

1In house software, under development and not currently published.
2http://www.fil.ion.ucl.ac.uk/spm/, 12th January 2015.
3http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/, 12th January 2015.
4http://www.mathworks.com, 12th January 2015.
5http://www.debian.org, 12th January 2015.
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Pre-processing was performed with SPM12b and MATLAB
after DICOM to NIfTI image file format conversion. Functional
EP images were corrected for susceptibility-related distortion
based on a voxel displacement map (in the phase encoding
direction) determined from the B0 fieldmap. Motion correction
also included correction for static susceptibility-related
distortions and correction for the interaction between head
orientation and B0 distortion, i.e., dynamic susceptibility-related
distortion effects (Andersson et al., 2001; Hutton et al., 2004).
Finally, the distortion corrected images were smoothed with an
isotropic Gaussian kernel with a full width at half maximum
(FWHM) of 4mm. The smoothed images were used in the next
step for both frequentist and Bayesian frameworks, to ensure
equal pre-processing steps for both frameworks.

For the reference frequentist and Bayesian statistical analyses,
the smoothed data were modeled using a general linear model
(GLM) comprising two groups of regressors modeling different
aspects of the in vivo situation. The first group modeled the
task-related BOLD response. It was constructed by convolving
the stimulus function (boxcar function describing the block
design) with the canonical hemodynamic response function
as implemented in SPM (Friston, 2007). To accommodate for
variability in the hemodynamic response a regressor for the
temporal derivative of the canonical response (Friston, 2007)
was also added. The second group included the six rigid-body
movement parameters estimated in the motion correction step to
account for potential motion induced artifacts. Two t-contrasts
were tested in the frequentist analysis. One tested for a significant
positive BOLD response modeled by the task block indicator
convolved with the hemodynamic response function (HRF). The
second one tested for a negative response.

For the Bayesian analysis6 additional Bayesian-specific SPM12
analysis parameters were selected: Unweighted Graph-Laplacian
(UGL) for signal and noise priors comprising local adaptive
smoothing, and an autoregressive model of order two for the
model of serial correlation of the noise. The priors described
in Penny et al. (2005) allow for the prior spatial smoothness to
be different for each regression coefficient. This makes sense,
as different experimental effects are likely to exist at different
spatial scales. Moreover, because these smoothness parameters
are estimated from the data (in an empirical Bayes optimization
scheme) the final estimated parameters are in this sense rather
insensitive to the prior. However, it is nonetheless assumed that
the prior smoothness for each regression coefficient does not vary
over space. One can relax this assumption by using a prior based
on a Weighted Graph Laplacian (Harrison et al., 2007). This has
the advantage of preserving edges in functional activation maps
but the disadvantage of increased computational complexity and
was not applied here.

In the followingN (x;m,C) denotes a multivariate normal
distribution of random variable x having meanm and covariance
C. The algorithm fits a GLM to fMRI data according to

yi = Xβi + ei (1)

6The mean processing time for the Bayesian analysis was 11min with a standard

deviation of 1:15min.

where yi is the fMRI time series at voxel i, X the design matrix,
βi are the unknown regression coefficients and ei is the error
time series. The Bayesian algorithm then estimates a posterior
distribution over regression coefficients

p (βi|Y) = N(βi; β̂i, 6̂i) (2)

as described in Penny et al. (2005), where β̂i is the posterior
mean, 6̂i is the posterior covariance and Y denotes fMRI
data over all voxels. Regression coefficients at a given voxel
are (softly) constrained to be similar to those at nearby
voxels. The strength of this constraint is determined by a
spatial precision parameter that is estimated from the data.
Different regression coefficients have different spatial precisions
allowing each putative experimental effect to have its own spatial
regularity. Contrasts are then used to test for specific effects

ai = cTβi (3)

where ai is the effect size at voxel i, and c is the contrast
vector used to test for that effect. This gives rise to a posterior
distribution over effect size

p (ai|Y) = N(ai;µi, σi) (4)

where

µi = cT β̂i and σ 2
i = cT6̂ic. (5)

The effect sizes reported in this paper are expressed in percentage
of signal change (task regressor in SPM) compared to the
temporal mean (mean regressor in SPM) in each voxel. Thus an
effect size of 1.5 is a 1.5% increase in local activity. We used a
contrast to test for positive BOLD responses modeled by the task
stimulus function.

The probabilities of activation (PPMa), deactivation (PPMd),
and non-activation (PPMn), are given by:

PPMa = 1−Ncdf(γ ;µ, σ ) (6)

PPMd = Ncdf(−γ ;µ, σ ) (7)

PPMn = 1− PPMa− PPMd (8)

where Ncdf(γ ;µ, σ ) denotes the cumulative density function
for a univariate Gaussian with mean µ, standard deviation σ ,
evaluated at γ . Graphically illustrated, PPMa corresponds to the
shaded area in Figure 1A, PPMd corresponds to the shaded area
in 1b and PPMn to the shaded area in 1c. Subfigure 1d illustrates
the case with low-confidence where none of PPMa, PPMd, and
PPMn lead to significant classification of a voxel.

In addition to the specification of an effect size threshold γ , the
Bayesian PPM approach (Friston and Penny, 2003) also requires
a threshold on the posterior probability itself. Voxels with
posterior probability greater than this threshold will appear in the
relevant PPM. We denote this threshold as pT . Once the voxel
probabilities have been computed they can then be assigned to
one of four categories as follows: voxels for which PPMa> PT are
classified as activated, voxels for which PPMd > PT are classified
as deactivated, voxels for which PPMn > PT are classified as
non-activated, and voxels categorized as “low-confidence.” If a

Frontiers in Neuroscience | www.frontiersin.org 4 May 2015 | Volume 9 | Article 168

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Magerkurth et al. Objective Bayesian fMRI analysis

FIGURE 1 | Posterior distribution and effect size: example posterior

distributions from Bayesian inference in relation to the effect size

threshold γ . (A) Posterior distribution for an activated voxel with probability

PPMa, (B) Posterior distribution for a deactivated voxel with probability

PPMd, (C) Posterior distribution for a non-activated voxel with probability

PPMn, (D) Posterior distribution for a voxel with low-confidence.

voxel is “activated” we are confident the effect is positive; if it
is “deactivated” we are confident it is negative; and if it is “non-
activated” we are confident it is around zero. If none of the above
criteria are met the voxel is assigned to the “low-confidence”
category. It is also convenient to express this probability in the
form of a log odds ratio threshold or log Bayes Factor Threshold
(LBT) where

LBT = log
pT

1− pT
(9)

For example, pT = 0.95 corresponds to LBT = 3, and pT =

4.5 × 10−5 corresponds to LBT = 10. A value of LBT = 10 is
commonly used in Bayesian neuroimaging to determine relevant
effects (Penny and Ridgway, 2013).

Effect Size Threshold (γ ) for the Bayesian Analysis
In order to estimate the above posterior probability maps, the
Bayesian analysis requires a threshold for the effect size threshold
γ (Figure 1). We defined γ as a certain percentage of the
median BOLD amplitude of the voxels with the top 0.1% positive
BOLD response of the whole brain, based on the rationale
that maximal and minimal relevant BOLD responses are tightly
coupled and that γ is the same throughout the brain. Since
it is not known from the literature whether this is a reliable
estimate of the minimal γ , or what percentage of the peak BOLD
amplitude should be chosen, we tested and cross-calibrated the

approach based on clinical best judgment. In current practice
the best available clinical fMRI evaluation is based on frequentist
statistics and expert judgment (FitzGerald et al., 1997; Rutten
et al., 2002). Here, a clinically knowledgeable expert observer
determines a p-value or t-value threshold for the SPM taking into
account the clinical purpose, paradigm, localization, background
noise, amplitude, and extent of activation, in order to achieve
an optimally plausible estimate of the activated motor and
somatosensory cortex.

In the present study two expert observers (TY, LM) with
19 and 7 years neuroradiological fMRI experience defined, in
consensus, for each volunteer, two clinically plausible t-value
thresholds α for the positive BOLD response of the primary
motor cortex on the SPM t-map from the 3T pre-operative
scanner. The first t-value threshold tloc was chosen to most
sensitively indicate the activation loci (with the criteria that
activations should be limited to only pre- and post-central gyri
regions and not extend further) and the second tex to visualize
the extent of the activation area (defined as the maximum
extent of plausible activation without apparent activation in
the white matter). Both criteria were based on two concepts:
first, identifying the primary motor cortex with anatomical
landmarks (Yousry et al., 1997); second, using local established
experience of (pragmatically) thresholding clinical fMRI for
presurgical planning, as no published and generally accepted
standard methods exist. For this purpose t-maps up-sampled to
1mm3 resolution using a 7th order spline interpolation method
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in SPM12b were displayed overlaid on an equivalent up-sampled
anatomical scan obtained in the same scanning session having the
same resolution. The resulting thresholds served in the following
analyses as the reference for choosing two effect size thresholds
required for the above described Bayesian analysis: activation loci
γloc and the extent γex. In the further processing steps only these
areas in the motor cortex were considered and other activated
areas were neglected, but not classified further, e.g., “not-active.”

For cross-calibration of the standard frequentist and the
Bayesian approaches, we used a custom-written MATLAB script
to estimate γ for the corresponding Bayesian PPM resulting in
a best match between the SPM calibrated by the clinical expert
observers and PPM using the Jaccard index (Jaccard, 1901) as the
maximal overlap measure. The calibration was based on a binary
reference map of the right hand motor cortex based on the expert
observer selected thresholds: A cluster map with connectivity7 18
was generated from each low resolution SPM, thresholded using
one of the observer-determined values tloc, tex. All clusters except
for the right handmotor cortex clusterCRef were erasedmanually
from the map. For comparison the PPMs were clustered with the
same algorithm, but without erasing any clusters. These clustered
PPMs were voxel-wise compared with the respective CRef : All
clusters i in the PPM overlapping the motor cortex reference CRef

were selected CBayes = ∪i

{
CBayes,i ∩ CREF > {}

}
and the overlap

between CRef and CBayes was measured with the Jaccard index J

J
(
CRef ,CBayes

)
=

∣∣CRef∩CBayes

∣∣
∣∣CRef∪CBayes

∣∣ (10)

To estimate the effect size with the best overlap the procedure
was repeated with different effect sizes from γ = 0 to γmax where
no activation was present (in the individual volunteer) using
an upper threshold of LBT = 10 and an effect size increment
of 1γ = 0.01. All Jaccard indices were plotted against γ and
smoothed with a box kernel of eight. The γ with the highest
Jaccard index was identified as the optimal effect size threshold
yielding the best match of the SPM and PPM activation extents.
The procedure was performed individually for tloc and tex.

We tested whether γloc and γex could be predicted from
the percentage of the top 0.1% positive BOLD responses by
robust regression analysis. With the rationale that a region with
no brain activation does not show a BOLD effect, and hence
has an effect size of zero, an intercept-free bisquare-weighted
robust regression analysis (Mohammadi et al., 2013) was
implemented in MATLAB. We used the same model parameters
for automatically determining the effect size thresholds for the
data recorded on the intra-operative scanner since our method
is based on the data itself and therefore was presumed generally
applicable. For the regression as well as for the later data analysis,
the brain was masked with a binary image derived from tissue
segmentation of the anatomy to exclude unwanted apparent
activation in non-brain regions.

Result Maps
The 3T frequentist result maps (SPMs) were thresholded based
upon volunteer-specific t-values determined by the two clinical

7MATLAB function “bwlabeln” with connectivity 18.

experts for the 3T data. The Bayesian results (PPMs) are based
on the effect size threshold provided by the linear regression
detailed in the previous section, and using LBT = 10. To
compare the 1.5T and 3T scanner data all statistical maps were
registered and resliced to the AC-PC reoriented intra-operative
scanner anatomical reference images (acquired in the second
part “test—intra-operative 1.5T scanner”) using 7th order spline
interpolation to 1mm3. SPMs were plotted for all volunteers
with three orthogonal slices intersecting the center of mass of
the tloc thresholded t-map from the frequentist analysis of the
3T scanner data located in the right hand motor area. For
comparing results, the experienced observer-defined t-thresholds
were converted into a familywise error corrected p-value, since
this metric is more commonly reported in the literature. The
Bayesian analysis labeled voxels as activated for a positive BOLD
response, deactivated for a negative BOLD response, and non-
activated for no relevant changes in the BOLD signal. For
easier volumetric comparison of the activated region we included
the cluster volumes [mm3] for frequentist analysis (CSF) and
Bayesian analysis (CSB) in Figures 3, 4.

Quantitative Cluster Analysis
To support the visual assessment of the result maps, a
quantitative cluster analysis of the activated motor cluster of
the spatially up-sampled Bayesian maps was performed. The
results were compared with the up-sampled frequentist maps as
reference. We counted true positive (TP), true negative (TN),
false positive (FP) and false negative (FN) voxels in the masked
brain. We calculated the sensitivity = TP / (TP + FN) and false
discovery rate (FDR)= FP / (FP+ TP). The FDR (Benjamini and
Hochberg, 1995) was chosen in preference to the specificity =

TN / (TN + FP) as the large proportion of true negative voxels
(TN >> TP) led to a specificity∼1.

Test–Intra-Operative 1.5T Scanner
For purposes of comparison we measured the same volunteer
group in a 1.5T intra-operative scanner with a dedicated surgery
head coil. While this system opens up the possibility of intra-
operative fMRI (ifMRI), coil and scanner specifications in this
case provide further technical challenges, in particular a low
signal-to-noise ratio (SNR) profile and nonlinear distortions
due to the short gradient system. Currently the scanner is
used to obtain pre- and intra-operative standard anatomical
imaging to guide neurosurgery and the potential use of
intra-operative fMRI has not been explored so far at our
institution. Hence this study section was a pilot with the aim
of testing our methods under instrumentally challenging, but
otherwise physiologically optimal conditions (healthy subjects,
no anesthesia, no craniotomy), as a first step to the future
implementation of ifMRI.

Equipment
Each volunteer was examined in an intra-operative 1.5T
MAGNETOM Espree TIM system whole-body MRI (Siemens
Healthcare, Erlangen, Germany) located in a neurosurgical
theater. This scanner was equipped with a dedicated 8-channel
receive-only surgical head coil (NORAS MRI products GmbH,
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Hoechberg, Germany). For safety reasons, the head-holder pins
of the 8-channel coil, designed for surgical (invasive) head
fixation were replaced by a foam pad for these experiments. The
scans were performed approximately concurrently with the 3T
scans: For five volunteers the time interval between scans was 1
week; for the remaining volunteers the intervals were 0, 2, or 10
weeks.

Data Acquisition
For fMRI, a time series of 142 echo-planar images (EPIs) were
acquired with axial oblique orientation aligned to the anterior
commissure to posterior commissure line covering the whole
brain using TR|TE|α = 3100ms|40ms|90◦, FoV|matrix|phase-
encoding = 192 × 192mm2|64 × 64|AP, slices|thickness|gap =

42|2.7mm|12%, BW|echospacing= 1446Hz/Px|0.82ms, grappa-
factor|reflines = 2|24, volumes|duration = 104|5:32min. A
map of the static magnetic field (B0) using a double gradient-
echo sequence was acquired for correction of susceptibility-
induced geometric distortion of the EPI images (Hutton et al.,
2002, 2012) with the following parameters: TR|TE1|TE2|α =

630ms|4.92ms|9.68ms|60◦, FoV|matrix= 192× 192mm2|64×
64, slices|thickness = 42|3mm, BW = 260Hz/Px, duration =

1:23min. Anatomical images were acquired using a T1-weighted
MPRAGE (magnetization prepared rapid gradient echo Mugler
and Brookeman, 1990) sequence and the following parameters:
TR|TE|TI|α = 2250ms|3.70ms|1100ms|15◦, FoV|matrix =

220 × 220 × 221mm3|192 × 192 × 192, BW = 180Hz/Px,
duration= 7:14min.

Data Processing
The data pre-processing was similar to that used for the
3T data. An additional step was included to correct for the
image distortions originating from the relative non-linearity of
the imaging gradients resulting from engineering limitations
of the short and wide intra-operative scanner magnet bore.
This problem was exacerbated by the necessity to scan with
an off-centered head position (as is routine practice in our
iMRI practice) due to restrictions of the intra-operative head-
clamp set-up: the head (patient orientation: head first supine)
was shifted 60mm from isocentre along the anterior direction
(positive y-axis of the scanner) out of the sphere of optimal
gradient linearity (d∼120mm). The non-linearity correction
was applied to the functional and the structural NIfTI images
as the first processing step, and to the voxel displacement
map estimated using the B0 fieldmap. The correction was
implemented in MATLAB using the manufacturer’s spherical
harmonic description of the imaging gradient field non-linearity
and a correction method published in Janke et al. (2004). The
underlying image resampling was done with SPM12b using non-
linear three-dimensional image deformations and a 7th order
spline-based interpolation.

FMRI Analysis and Result Maps
The smoothing and statistical processing with frequentist and
Bayesian modeling were kept identical as for the 3T data
(see first part “development—3T presurgical scanner”). The
threshold process was adapted to cope with the limited SNR

of the surgery head coil. An initial frequentist statistical
analysis of the 1.5T functional data revealed that the activation
extent was constrained to the center of the motor region
in all volunteers. Thus a comparison of our Bayesian model
with expert observer thresholds was not possible and a fixed
familywise error corrected p-value of p(FWE) = 0.05 was
chosen.

In contrast to frequentist statistics we could apply our
proposed effect-size model for motor loci and motor extent, as
the Bayesian analysis applies additional data-driven smoothing
increasing the effective Signal-to-Noise.

We generated the presented high-resolution result maps with
the same procedure as in the first part “Development—3T
presurgical scanner.”

Quantitative Cluster Analysis
To support the visual assessment of the result maps, a
quantitative cluster analysis was performed in the same
way as described in the part “development—3T presurgical
scanner.”

Clinical Scenario–Brain Tumor Patient
We tested our Bayesian analysis framework on data obtained
from a 58y male patient with an oligodendroglioma in the left
inferior precentral gyrus. The patient was suffering from speech
disturbance, but had no loss of motor functions and was receiving
no medication at the time of the study.

Data Acquisition
Echo-planar images and fieldmaps were acquired as described
in the first part “development—3T presurgical scanner.”
Anatomical images were also acquired identically except for a
slice thickness of 1.1mm. For diagnostic imaging of the tumor
a sagittal fluid attenuated inversion recovery (FLAIR) image
was acquired using the following parameters: TR|TE|TI|α =

6000ms|388ms|2200ms|120◦, FoV|matrix = 250 × 250 ×

160mm3|256× 256× 160, slices|thickness= 160|1.0mm, BW=

240Hz/Px, slice-partial-fourier = 7/8 grappa-factor|reference
lines= 2|24, duration=7:02min.

Data Processing, FMRI Analysis, and Result Maps
The data preprocessing and statistical modeling were identical
to the first part “development—3T presurgical scanner.” We
used our effect size threshold model to generate Bayesian result
maps for the motor localization (γloc) and the motor extent
(γex). To compare these results with a frequentist statistics
reference, one clinical expert (LM) selected respective thresholds
for motor localization (tloc) and motor extent (tex) on the t-
map from the frequentist statistics. Based on these references
we estimated the best fitting effect size threshold as described
in the first part “development—3T presurgical scanner” and
compared these effect sizes with γloc and γex estimated by our
model.

For the results all fMRI result maps and the FLAIR
images were registered to the AC-PC oriented structural data
set and up-sampled to 1mm3 resolution using 7th order
interpolation.
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Results

Development—3T Presurgical Scanner
Estimating the Effect Size Threshold
The robust fit revealed a slope of 0.497 for the activation loci effect
size γloc using an intercept-free regression of the median of the
top 0.1% positive BOLD response amplitudes against the expert-
defined γ as independent variable (Figure 2A). The fit algorithm
excluded one outlying point (circle at x = 5.2). All remaining
points were weighted between 0.06 and 1.0. For activation extent
effect size γex, the same robust fit revealed a slope of 0.144. No
points were excluded. The weights were between 0.84 and 1.0
(Figure 2B).

FMRI Result Maps
Results from the 3T scanner revealed activation in the left
hemispheric motor and somatosensory cortex corresponding to
the right hand in all volunteers in agreement with the literature
(Lotze et al., 1999) for frequentist (Figure 3) and Bayesian
analysis (Figure 4). Compared with the frequentist analysis the
Bayesian analysis showed similar activation patterns (yellow/red)
in seven of 10 volunteers using the automatically determined γloc
and similar patterns in all volunteers for γex. The somatosensory
cortex was conspicuously visible using the γex for frequentist
(Figure 3, right) and Bayesian analysis (Figure 4, right) and
less prominent in the γloc threshold results (Figure 3, left and
Figure 4 left). Volunteer 9 showed conspicuous deactivation on
the hemisphere ipsilateral to the movement and volunteer 10
small deactivated clusters for the γex thresholded PPM. For those
volunteers the clinical observers chose a low t-threshold leading
to a high familywise error-corrected p-value above the accepted
value of p = 0.05. Hence both data sets may be considered as
outliers.

The non-activated areas (blue) revealed by the Bayesian
analysis using γloc (Figure 4, left) were pronounced and tightly

encapsulated the activated areas in most of the volunteers except
volunteers 9 and 10. Volunteer 2 showed a weaker and less-
pronounced probability of non-activated brain regions. The
extent of the non-activated areas based on γex were overall
reduced (Figure 4, left) compared with the γloc based results
and pronounced only in three volunteers. Non-colored regions
in the brain correspond to the low-confidence category (neither
activated, deactivated or non-activated).

Quantitative Cluster Analysis
The quantitative cluster analysis reflected the results of visual
comparison between frequentist and Bayesian results. Six out of
Ten volunteers showed high sensitivity (Figure 5) for revealing
the motor loci with the new Bayesian framework. For the
remaining four volunteers, a lower sensitivity was observed in
two volunteers (three and seven) due to the underestimation
of the motor loci cluster size and a data quality problem in
volunteers 9 and 10. The sensitivity for revealing the motor
extent was higher than the sensitivity for revealing the motor
loci in all volunteers. False discovery rates were low for all
assessments.

Test—Intra-Operative 1.5T Scanner
FMRI Result Maps
Frequentist analysis results from the 1.5T intra-operative scanner
revealed overall less prominent activation patterns (Figure 6)
compared with the 3T data. Only volunteers 1, 4, 5 and 6
showed a somewhat pronounced activation response compared
with other 1.5T maps. Most of the 1.5T Bayesian analysis maps
(Figure 7) showed more widespread activation patterns than the
frequentist maps, but these were still less conspicuous than the
equivalent 3T results (Figures 3, 4); only volunteers one, four,
and five showed a larger activation area in the frequentist and
Bayesian maps. Overall the reduced cluster sizes CSF and CSB
at 1.5T corroborated this visual assessment. For the activation

FIGURE 2 | Linear model for effect size estimation: Intercept-free

robust linear regression of the estimated effect size against the

median effect size of the 0.1% highest activation-signal

amplitude voxels of the whole brain. The weighting on each data

point in the robust fit is plotted in the bar diagram at the top. (A)

Motor area localization: one point was weighted with zero by the robust

fit algorithm (circle). The other points were weighted between 0.06 and

1.0. The starred points mark the two outliers in the data set (volunteers

9 and 10). (B) Motor area extension: the points were weighted

between 0.84 and 1.0. The robust algorithm did not exclude any points

as outliers. The starred points mark the two outliers in the data set

(volunteers 9 and 10).
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FIGURE 3 | Frequentist analysis for the 3T pre-operative scanner:

The left side shows the activity maps using the operator

selected t-threshold revealing the central motor area location;

on the right side the operator selected t-threshold

approximating the motor area extent. The maps are labeled as

activated=positive BOLD response, deactivated=negative BOLD

response. The used familywise error (FWE) threshold is the

FWE-value converted from the t-threshold estimated by the operators.

The cluster size of the frequentist analysis (CSF) is displayed in

number of voxels.
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FIGURE 4 | Bayesian analysis for the 3T pre-operative scanner: Log

Bayes factor maps showing the activation pattern and strength

expressed by the voxel-wise log Bayes factor. The left side shows the

activity maps using the effect size threshold γloc revealing the central motor

area localization; on the right side the effect size threshold γex revealing the

motor area extent. The maps are labeled as activated=positive BOLD

response, deactivated=negative BOLD response and non-activated = no

changes in the BOLD contrast, non-colored = low-confidence, i.e., BOLD

activation status cannot be determined based on data. The effect size

threshold (γ ) calculated with the proposed linear model and the cluster size in

voxels extracted from the Bayesian analysis (CSB) are displayed. Results from

volunteers 9 and 10 are considered as outliers due to data quality problems.
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FIGURE 5 | Quantitative cluster analysis of the 3T Bayesian results:

The quantitative cluster analysis reveals sensitivity and false discovery

rate (FDR) for the 3T Bayesian results. The activated motor clusters using

the 3T frequentist result maps as reference.

loci base effect size γloc a marked reduction in the probability
for non-activated areas was observed in all images. Except for
volunteers one, four, and six the majority of the voxels could
not be classified as activated, deactivated, or not active and were
marked as low-confidence. The extents of the non-activated areas
based on γex were overall further reduced (Figure 6, right) to
isolated small clusters in some volunteers. Compared to the 3T
data, at 1.5T all frequentist and Bayesian maps provided less
comprehensive information regarding the brain response to the
task.

Quantitative Cluster Analysis
The quantitative cluster analysis (Figure 8) reflects the visual
assessment between frequentist and Bayesian results. Bayesian
and frequentist statistics showed generally lower sensitivity
compared with the 3T data (Figure 5), but a higher sensitivity
for Bayesian analysis compared with the 1.5T frequentist results.
The results from volunteers 9 and 10 revealed a similar data
quality problem as seen at 3T. False discovery rates were low to
moderate.

Results: Tumor Case
Both threshold models for the Bayesian effect size showed
prominent activation in the right hand motor cortex for
motor localization and motor extent (Figure 9). The activated
region was not infiltrated by MRI-visible tumor tissue (hyper-
intense region), but slightly dislocated posteriorly by the space-
occupying lesion. Similarly to the healthy subjects’ 3T results,
the motor location threshold revealed non-activated areas.
Deactivated regions were prominent with the motor extent
threshold, but not close to the activated areas of the motor
cortex. In the frequentist statistic both expert observer thresholds
revealed similar activation in the right hand motor cortex and
overall pronounced deactivated regions.

FIGURE 6 | Frequentist analysis for the 1.5T intra-operative scanner

(similarly labeled to Figure 3): Frequentist analysis showing t-values of

significant active areas using a familywise error (FWE) threshold

p = 0.05. The cluster size of the frequentist analysis (CSF) is displayed in

number of voxels.
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FIGURE 7 | Bayesian analysis for the 1.5T intra-operative scanner

(similarly labeled to Figure 4): Bayesian analysis log Bayes factor

maps showing the activation pattern and strength expressed by the

voxel-wise log Bayes factor. The effect size threshold (γ ) calculated with

the proposed linear effect size model and the cluster size in voxels extracted

from the Bayesian analysis (CSB) are displayed.
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FIGURE 8 | Quantitative cluster analysis of the 1.5T Bayesian results:

The quantitative cluster analysis reveals sensitivity and false discovery

rate (FDR) for the 1.5T Bayesian results and frequentist results of the

activated motor clusters using the 3T frequentist result maps as

reference.

Discussion

We introduced a novel approach for calculating Bayesian
statistical maps of task-related BOLD activity in pre-operative
fMRI. The Bayesian analysis permits identification of brain areas
that are explicitly activated, deactivated, non-activated and areas
with low-confidence, unlike conventional frequentist statistical
analysis that only identifies activated and deactivated brain areas.
We developed a new automatic estimation method for the effect
size threshold required for the Bayesian analysis. We tested
the approach in a group of healthy, awake volunteers in a 3T
pre-operative scanner.

We measured fMRI activation due to a passive movement
paradigm. We calibrated and tested for self-consistency the
Bayesian analysis by comparison with our local practice based
on frequentist statistical inference incorporating expert clinical
judgment. Since definition of an effect size threshold is a central
requirement of Bayesian analysis, we devised a method for
operator-independent determination of a clinically-meaningful
effect size threshold based upon the acquired fMRI data
for two clinical scenarios: activation loci and activation area
extent. The method relates the top 0.1% positive BOLD effect
amplitude excursions observed in the data to the clinically
meaningful minimal BOLD response amplitudes as judged by
expert observers. In this study the maximal and minimal BOLD
response amplitudes were found to be related by a simple factor
that depended on the clinical objective. If activation loci were
targeted, the relative factor was 0.497; if the activation extent was
of interest, the factor was 0.144.

We tested the Bayesian analysis approach and automated γ

estimation for self-consistency using data from a conventional
3T pre-operative scanner, specifically by comparing frequentist
and Bayesian analysis. Comparing Bayesian versus frequentist

analysis results, similar activation patterns were found in seven of
10 volunteers for the activation loci and similar motor area extent
for all volunteers.

The analysis showed the expected surgically-relevant motor
loci, motor area extent and somatosensory brain areas, except for
the data of volunteers 9 and 10 that were categorized as outliers.
These data showed implausible small effect sizes and activations.
The sensitivity was high for 6 out of 10 volunteers for the motor
localization and further overall increased for the motor extent.
The false discovery rate was generally low.

The choice for frequentist analysis as reference is based on
the fact that clinicians are familiar with the commonly used
frequentist statistics for fMRI analysis and therefore we resort to
this method as we have established in-house expert knowledge.
Furthermore, for the healthy subjects scanned, electro-cortical
mapping as an alternative independent reference was not
available, and the representative patient data was obtained in
advance of surgery so electro-cortical mapping or confirmatory
surgical outcome data were also unavailable.

The impact of additional smoothing on the quantitative
analysis by the interpolation process was negligible because we
used a 7th order spline interpolation with high SNR (Thévenaz
et al., 2000). The analysis on the upscale maps was chosen since
it reflects the surgical workflow in which the fMRI results are
presented on a high resolution structural scan.

An alternative Bayesian approach for estimating non-
activated regions for surgical planning has been presented by
Johnson et al. (2012). This alternative approach differs from our
method in a number of ways. First, the method operates on
Z-scores from a previous GLM analysis, rather than by direct
Bayesian estimation of the parameters of a GLM as in our
approach. Second, the prior distribution is based on a Potts
model with Dirichlet process priors, rather than the spatial
Gaussian priors in our approach. Third, the method has been
applied to data from only a single subject, as compared to the
11 subjects in our study. Furthermore, the (implicit) effect size
is estimated by the algorithm and not based on a calibration
framework informed by clinical expert knowledge.

Our novel estimation of the minimal effect size is automatic
and operator independent. It is calibrated with respect to
the current expert-knowledge based clinical best judgment. As
a caveat, care must be taken to exclude non-brain regions
showing artefactual apparently high activation, e.g., in the orbits
and veins, in applying this automated method (Turner, 2002),
since these data will bias the effect size model. We overcame
this using masks derived from brain tissue segmentation with
SPM12b.

We postulate that our model is widely applicable to Bayesian
fMRI analysis, although this requires validation in further studies
using alternative paradigms, e.g., visual stimulation, active motor
tasks or tactile stimulation. These studies will also address the
potential circularity in the present study, which used the same
data for both calibration and self-consistency test at 3T. In the
worst-case scenario, the circularity may indicate validity of an
incorrect effect size model, leading to under- or overestimation
of the BOLD activation. We note that the effect size model
was validated on the independent 1.5T dataset, avoiding
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FIGURE 9 | Bayesian analysis and frequentist analysis results of

the patient data: The Bayesian analysis for the tumor patient

data shows the activation pattern and strength expressed by the

voxel-wise log Bayes factor (similarly labeled to Figure 4). The

activated motor region matches the respective area in the frequentist

statistics results.

circularity. We recommend further validation on independent
datasets under different conditions and at different field
strengths.

We understand further that the use of fMRI and frequentist
analysis as the reference is a potential limitation. Future studies
may compare the results with the gold standard intrasurgical
electrocortical stimulation mapping (ESM).

Since the calibration reflects our workflow for presurgical
planning, it might not be the calibration of choice for other
sites. Nevertheless, the calibration is based on commonly used
frequentist statistics and can be adapted to match different
threshold procedures for presurgical fMRI at other sites. As
an alternative to calibration, function arterial spin labeling
techniques (Raoult et al., 2011; Vincent et al., 2013) or calibrated
BOLD (Leontiev and Buxton, 2007) could be considered if
available at the site and suitable for the patients.

We explored two strategies for thresholding fMRI maps using
the motor extent and the motor loci. While the maps based
on the motor extent calibration include small and potentially
borderline activated areas, the motor loci threshold maps include
mainly the central primary focus of the activation, potentially
obscuring lower level activations. Thus the methods are expected
to yield different, complementary maps. As a pragmatic solution
for clinical interpretation we suggest the possibility of producing
combined maps exploiting both thresholds.

The passive movement used here was designed to be readily
performed by a trained operator, with no reliance on mechanical
and electrical devices, to facilitate clinical and especially intra-
operative implementation in anesthetized subjects. It has been
shown recently that passive motion is equally reliable as an active
finger task (Blatow et al., 2011). However, a potential drawback
of this method is that operator-dependent variations of passive
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stimulation frequency and amplitude could affect the neuronal
and BOLD responses and hence alter the activation pattern. It
is possible that more consistent results may be achieved using
a metronome temporal cue for the operator action or simple
mechanical devices enforcing consistent guided motion of the
fingers. It is, however, possible fully device-guided finger motion
may also lead to decreased BOLD activation, as recently shown
for certain tactile stimuli (van der Zwaag et al., 2013).

The Bayesian analysis of the 1.5T intra-operative scanner
data showed activation patterns that were less clear but similarly
located compared with the 3T data. In contrast, frequentist
analysis revealed almost no active regions for the 1.5T scanner
data. The 1.5T intra-operative scanner results showed generally
lower significance and less certain localization information than
the 3T results.

The quantitative cluster analysis revealed an improved
sensitivity for the 1.5T Bayesian analysis results compared with
the 1.5T frequentist results. This could be explained by the
improved spatial SNR of the data due to the additional local
smoothing of the Bayesian algorithm. The higher FDR rates are
prominent in subjects with small activated clusters, increasing the
impact of FP in the denominator.

While the benefits of our proposed fMRI analysis methods
for pre-operative guidance are conceptually straightforward,
advanced use for intra-operative guidance is more contentious.
Despite our results showing that it is possible to acquire
fMRI with the surgery head coil, the benefit of ifMRI as a
tool for surgical re-planning during a craniotomy remains to
be determined. The benefit and a potential improved patient
outcome needs to be assessed and compared with alternative
methods such as electrocortical stimulation mapping (Berger
and Rostomily, 1997). Future work at our center and elsewhere
will explore ifMRI as an additional data source to our routinely
performed intra-operative structural imaging to update neuro-
navigation as procedures progress.

We also note that the direct use of the 1.5T system PPMs (from
ifMRI) without the PPMs from the 3T pre-operative scanner may
be problematic, since the activity status of large brain regions
could not be classified on the intra-operative scanner data. Hence,
where possible it may be helpful to use pre- and intra-operative
fMRI results in combination.

Several issues remain to be addressed before initial application
of our method for ifMRI during neurosurgery, including the
potential effects of anesthetic level on the BOLD signal, and
other factors that may affect BOLD signal detection during
craniotomy and dural incision, e.g., brain pulsation, air cavities,
and blood coagulation (Gasser et al., 2005). In our study the
effect-size model was developed in healthy awake volunteers;
across the spectrum of neurological disease the effect size model
may be inaccurate and require further validation. For example,
the model could not account for hypothetical pathological non-
linear BOLD response changes, i.e., a disease condition affecting
only the most highly activated voxels rather than causing a
global scaling of the BOLD response. Thus pathology in the
highly activated voxels would bias estimation of the clinically-
meaningful minimal effect-size threshold yielding inaccurate
brain activity maps.

The 8-channel intra-surgery coil used here provides sufficient
quality for structural images and is successfully used for routine
iMRI neuro-navigation. However an improved-sensitivity coil
design may be beneficial, since the multi-channel receive coil
elements of our existing unit cover only the anterior and posterior
cranial regions, with no coil elements located adjacent to the
vertex near the motor cortex. Hence we presume that the
regionally reduced coil sensitivity contributed in part to the lower
activation significances and more extensive unclassified regions
in the intra-operative scanner data.

We tested our novel approach for thresholding Bayesian
statistical maps of task-related BOLD activity on a brain tumor
patient. We acquired our passive movement paradigm on
the 3T presurgical scanner and derived activation maps for
the motor localization and motor extent using our Bayesian
statistics framework. For the Bayesian result maps we used
our novel threshold method. The frequentist statistics results
were based on the expert observers thresholds. Bayesian and
frequentist statistics revealed activation in the motor cortex for
both clinical scenarios (targeting the extent or location of the
motor cortex), as well as deactivation in various areas. Bayesian
statistics revealed additionally non-activated and low-confidence
areas.

In this clinical case the motor-strip BOLD activation was not
expected to suffer from tumor-related abnormal vessel blood flow
and lack of auto-regulation in the tumor, as the lesion is inferior
to the hand knob. However, in future studies a perfusion map to
exclude abnormal vascularization, not part of the current study
protocol, might be helpful.

The deactivated areas are neither in the primary motor cortex
nor in the tumor and are not directly adjacent to the activated
area. Therefore we consider those areas to be correctly identified
and not be paradoxically negative BOLD (Fujiwara et al., 2004).
However in patients with tumors in eloquent brain areas this
might apply and therefore activated and deactivated areas must
be assessed in combination (Fujiwara et al., 2004).

We can further exclude influences on the BOLD response by
medication, e.g., acetazolamide (Brown et al., 2003) and impaired
attention. However, we can not exclude that the patient age
(58 years) had an impact on the image intensity (Chen et al.,
2008). To cope with potential abnormal hemodynamic response
functions in tumors patients, dispersion derivatives (Friston et al.,
1998) or more sophisticated approaches (Chaari et al., 2013;
Woolrich et al., 2004b) could be used in future applications of
our method.

As an alternative approach to passive fMRI or direct cortical
stimulation, resting state fMRI has recently been proven to offer
similar sensitivity and specificity without requiring the patient’s
active cooperation (Qiu et al., 2014). However the authors did
not address whether this still pertains when a lesion affects
the motor cortex, or how resting state fMRI performs under
tumor-induced brain plasticity. Alternative, topological analysis
(Due-Tonnessen et al., 2014) also cannot detect tumor induced
brain plasticity, because only structural brain parameters are
considered, although this method is reliable where the central
sulcus is not, or is only moderately distorted by the lesion
(Due-Tonnessen et al., 2014).
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General application in patients may also pose other new
challenges: cerebral blood flow and BOLD response may be
affected by tumor pathology or other malformations. One
approach to reduce the potential impact of physiological
noise is advanced correction (Josephs et al., 1997; Hutton
et al., 2011) incorporating physiological monitoring signals.
Patient compliance may also differ significantly (claustrophobia,
impaired attention, . . . ), although the passive motion paradigm is
expected to be minimally affected by this.

Conclusion

We implemented, calibrated and tested for self-consistency a
Bayesian fMRI analysis framework using passive motor task
data from a conventional 3T MRI scanner and a 1.5T intra-
operative MRI scanner. In comparison to frequentist analysis we
demonstrated that Bayesian fMRI analysis yields identification of
activated, deactivated and non-activated brain regions, important
for guiding brain tissue resection avoiding functionally eloquent

brain areas. Additionally, the ability to explicitly identify
remaining regions, which could not be classified in the Bayesian
analysis, is also important, as these represent the limits of
the information available from the fMRI experiment. These
maps will further empower surgeons to address the practical
problem of ambiguity in fMRI results, which may be more
pronounced in intra-operative MRI scanners due to generally
lower static magnetic field strengths and RF coil placement
restrictions.
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