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Multivariate autoregressive modeling of fMRI time series
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Abstract

We propose the use of multivariate autoregressive (MAR) models of functional magnetic resonance imaging time series to make
inferences about functional integration within the human brain. The method is demonstrated with synthetic and real data showing how such
models are able to characterize interregional dependence. We extend linear MAR models to accommodate nonlinear interactions to model
top-down modulatory processes with bilinear terms. MAR models are time series models and thereby model temporal order within measured
brain activity. A further benefit of the MAR approach is that connectivity maps may contain loops, yet exact inference can proceed within
a linear framework. Model order selection and parameter estimation are implemented by using Bayesian methods.
© 2003 Elsevier Science (USA). All rights reserved.

Introduction

Functional neuroimaging has been used to corroborate
functional specialization as a principle of organization in the
human brain. However, disparate regions of the brain do not
operate in isolation and more recently neuroimaging has
been used to characterize the network properties of the brain
under specific cognitive states (Buchel and Friston, 1997,
2000). These studies address a complementary principle of
organization, functional integration.

Functional magnetic resonance imaging (fMRI) provides
a unique opportunity to observe simultaneous recordings of
activity throughout the brain evoked by cognitive and sen-
sorimotor challenges. Each voxel within the brain is repre-
sented by a time series of neurophysiological activity that
underlies the measured BOLD response. Given these mul-
tivariate, voxel-based time series, can we infer large-scale
network behaviour among functionally specialized regions?
To answer this question models are needed to describe the
underlying connectivities implied by the data.

Effective connectivity is defined as the influence a neu-
ron (or neuronal population) has on another. At the neuronal
level this is equivalent to the effect presynaptic activity has
on postsynaptic response, otherwise known as synaptic ef-

ficacy. Models of effective connectivity are designed to
identify a suitable metric of influence among interconnected
components (or regions of interest) in the brain. The notion
of inferring influence from recorded data is, however, much
more general. Consider the trajectory of an object as the
result of external forces acting on it. These forces, which
may be represented by equations of motion, determine the
object’s path. The equations of motion are an example of a
model of the physical system. The observed data can be
understood and analyzed by using this model. There are
many different approaches to modeling a dynamic physical
system; however, the motivation is the same for all: to
identify operational principles responsible for generating
the data.

There are two main approaches to modeling dynamic
systems (e.g., physical bodies acted on by external forces or
neuronal firing within a network), which can be used to
understand spatial and/or temporal order within measured
data, such as functional imaging data. These include equa-
tions of motion (as above); alternatively, we may model the
systems behaviour by simply quantifying relationships
within the measured data only. The first approach includes
state-space models, e.g., used by the Kalman filter, while the
second includes simple regression analysis and convolution
models (such as the Volterra approach) to identify statistical
dependencies, or patterns, within the data (Juang, 2001).

Both approaches have been used to measure effective
* Corresponding author. Fax: �02078131420.
E-mail address: lharris@fil.ion.ucl.ac.uk
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connectivity among cortical regions from neuroimaging
data starting with regression models (Friston et al., 1993,
1995, 1997; McIntosh et al., 1994), then input-output mod-
els (Friston, 2001; Friston and Buchel, 2000), and later
state-space models (Buchel and Friston, 1998). Regression
techniques, such as psychophysiological interactions, are
advantageous as they are easy to solve, yet may be used to
approximate nonlinear modulatory interactions (Friston et
al., 1997). However, this is at the expense of ignoring
temporal information, i.e., the history of an input (experi-
mental task) or physiological variable (imaging data). This
is important as interactions within the brain, whether over
short or long distances, take time and are not instantaneous
(which is implicit within regression models). Furthermore,
the instantaneous state of any brain system that conforms to
a dynamical system will depend on the history of its input.
Structural equation modeling (SEM), as used by the neuro-
imaging community (Buchel and Friston, 1997; McIntosh et
al., 1994), has similar problems.1 Input-output models, such
as the Volterra approach, model temporal effects in terms of
an idealized response characterized by the kernels of the
model (Friston, 2000). A criticism of the Volterra approach
is that it treats the system as a black box, meaning that it has
no model of the internal mechanisms that may generate the
data. State-space models account for correlations within the
data by invoking state variables whose dynamics generate
the data. Recursive algorithms, such as the Kalman filter,
may be used to estimate these states through time given the
data. This approach was used to estimate variable regression
coefficients between V1 and V5 activity in the study by
Buchel and Friston (1998).

The MAR model fits into this classification scheme as
one that models temporal effects across different variables
(e.g., regions of interest), without using state variables.
They characterize interregional dependencies within the
data, specifically in terms of the historical influence one
variable has on another. This is distinct from regression
techniques that quantify instantaneous correlations, yet is
similar to the Volterra model in that the relative influences,
over time, are estimated. These considerations have moti-
vated the investigation of MAR models, which may, in
some instances, be suitable for making inferences about
functional integration in fMRI.

The study is divided into three sections. First, we de-
scribe the theory of MAR models, parameter estimation,
model order selection, and statistical inference. We have
used a Bayesian technique for model order selection and
parameter estimation, which is described fully by Penny and
Roberts, (2002). Second, we test the method with synthetic
data before modeling real neurophysiological data taken
from an fMRI experiment addressing attentional modulation
of cortical connectivity during a visual motion task (Buchel

and Friston, 1997). The modulatory effect of one region
upon the responses to other regions is a second-order inter-
action that is precluded in linear models. To circumvent this
we have introduced bilinear terms (Friston et al., 1997). We
assess the ability of bilinear MAR models to capture top-
down modulatory effects of the prefrontal cortex (PFC) and
posterior parietal cortex (PPC) on motion sensitive regions
in the dorsal visual pathway during attention. In the final
section we discuss the advantages of MAR models, its use
in spectral estimation, and future developments of the
Bayesian approach used to estimate MAR parameters.

Theory

Multivariate autoregressive models

Given a univariate time series, its consecutive measure-
ments contain information about the process that generated
it. An attempt at describing this underlying order can be
achieved by modeling the current value of the variable as a
weighted linear sum of its previous values. This is an au-
toregressive (AR) process and is a very simple, yet effec-
tive, approach to time series characterization. The order of
the model is the number of preceding observations used and
the weights are the parameters of the model estimated from
the data that uniquely characterize the time series.

Multivariate autoregressive models extend this approach
to multiple time series so that the vector of current values of
all variables is modeled as a linear sum of previous activi-
ties. Consider d time series generated from d variables
(brain regions) within a system such as a functional network
in the brain and where p is the order of the model. Here the
scalar p denotes order; however, later we will use p(�) to
mean the probability of �. A MAR (P) model predicts the
next value in a d-dimensional time series, yn, as a linear
combination of the P previous vector values

yn � �
i�1

p

yn�iA�i� � en (1)

where yn � [yn(1), yn(2),. . ., yn(d)] is the nth sample of a
d-dimensional time series, each A(i) is a d-by-d matrix of
coefficients (weights) and en � [en(1), en(2),. . ., en(d)] is
additive Gaussian noise with zero mean and covariance R.
We have assumed that the data mean has been subtracted
from the time series.

The model can be written in the standard form of a
multivariate linear regression model as follows

yn � xnW � en (2)

where xn � [yn � 1, yn � 2,. . ., yn � p] are the p previous
multivariate time series samples and W is a (p � d)-by-d
matrix of MAR coefficients (weights). There are therefore a
total of k � p � d � d MAR coefficients.

1 There exist versions of SEM that do model dynamic information; see
Cudeck (2002) for details of dynamic factor analysis.
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If the nth rows of Y, X, and E are yn, xn, and en, respec-
tively, and there are n � 1. . . N samples, then we can write

Y � XW � E (3)

where Y is an (N � p)-by-d matrix, X is an (N � p)-by-(p
� d) matrix, and E is an (N � p)-by-d matrix. The number
of rows N � p (rather than N) arises as samples at time
points before P do not have sufficient preceding samples to
allow prediction.

MAR models quantify the linear dependence of one
region upon all others in the network. The weights in W can
be interpreted as characterizing the influence each region
has upon it. Independence between a pair of regions results
in a weight of zero while dependence is reflected in a
nonzero magnitude.

A schematic representation of Eq. (3) is shown in Fig. 1.
Fig. 1A shows the original d-dimensional time series (Y)
modeled as a MAR process (XW) plus residual error (E). W
characterizes the d-dimensional series as a network of con-
nection strengths between all possible pairs of elements in
the original series. Fig. 1B is a schematic of W, which
consists of P layers, one for each time lag used in the model.
Each layer is a d � d matrix of weights (shown as the
squares along the bottom of the figure, again, one for each
time lag). The diagonal entries in these are “self-connec-
tions” and the off-diagonals are connections between re-
gions. Any dependence among elements in the d-dimen-
sional time series (brain regions) is reflected in nonzero
off-diagonal coefficients.

The use of MAR models for characterizing networks of
cortical activity associated with cognitive tasks allows one
to quantify the dependence among all possible combinations
of pairs of regions in the model. This way, connectivity

architectures can be compared across different cognitive
tasks. For example, the instruction to attend or not to a
stimulus will induce plastic changes in connectivity, which
may be quantified and compared by using MAR models.

Nonlinear autoregressive models

Given a network coupling model of the brain we can
think of two fundamentally different types of coupling,
linear and nonlinear. The model discussed so far is linear.
Linear systems are described by the principle of superposi-
tion, which is that inputs have additive effects upon the
response that are independent of each other. However, if the
inputs interact to produce a response, the response can no
longer be described by a linear combination of the inputs.
This is an example of a nonlinear interaction.

In the study by Buchel and Friston (1997), such nonlin-
ear interactions have been modeled by making use of bilin-
ear terms and is the approach adopted here. Specifically, to
model a hypothesized interaction between variables yn(j)
and yn(k) one can form the new variable

In� j,k� � yn� j� yn�k� (4)

This is the bilinear variable. This is then orthogonalized
with respect to the original time series. We then form an
augmented MAR model with an extra time series and aug-
mented connectivity matrices Ã(i).

� yn, In� j,k�� � �
i�1

p

� yn�i, In�i� j,k��Ã�i� � en (5)

The relevant entries in Ã(i) then reflect modulatory influ-

Fig. 1. A schematic of Eq. (3) (main text). (A) The original d-dimensional time series Y is modeled as a MAR process (XW) plus residual error (E). (B) W
is a matrix containing all the weights that characterize the interactions among the elements of d. It consists of p layers (one for each time lag used in the
model), each layer containing a d � d matrix of weights. The p layers of W have been placed in sequential order at the bottom of the figure. The diagonal
elements are “self-connections” while the off-diagonals reflect the dependence between different variables in the original d-dimensional series. W can be used
to compare network properties associated with different cognitive tasks.

AQ: 2
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ences, e.g., a change of the connection strength between y(j)
and other time series due to the influence of y(k).

It should be noted that each bilinear variable introduces
only one of many possible sources of nonlinear behaviour
into the model. The example above specifically models
nonlinear interactions between yn(j) and yn(k); however,
other bilinear terms could involve, for instance, the time
series yn(j) and the inputs [u(t)]. The inclusion of these
terms are guided by the hypothesis of interest, e.g., does
time change the connectivity between earlier and later
stages of processing in the dorsal visual pathway? Here u(t)
would model time.

Maximum likelihood estimation

Reformulating MAR models as standard multivariate
linear regression models allows us to retain contact with the
large body of statistical literature devoted to this subject;
see, e.g., Box and Tiao (1992) (p. 423).

The maximum likelihood (ML) solution [see, e.g., Weis-
berg (1980)] for the MAR coefficients is

Ŵ � �XTX��1XTY (6)

The maximum likelihood noise covariance, SML, can be
estimated as

SML �
1

N � k
�Y � XŴ�T�Y � XŴ� (7)

where k � p � d � d. We define ŵ � vec(Ŵ) where vec
denotes the columns of Ŵ being stacked on top of each other
[for more on the vec notation, see Muirhead (1982)]. To
recover the matrix Ŵ we simply “unstack” the columns
from the vector ŵ.

The ML parameter covariance matrix for ŵ is given by
Magnus and Neudecker (1997) (p. 321)

ˆ� � SML � �XTX��1 (8)

where R denotes the Kronecker product [see, e.g., p. 477 in
Box and Tiao (1992)]

The optimal value of P can be chosen by using a model
order selection criterion such as the minimum description
length (MDL). See, e.g., Neumaier and Schneider (2000).

Bayesian estimation

It is also possible to estimate the MAR parameters and
select the optimal model within a Bayesian framework
(Penny and Roberts, 2002). This has been shown to give
better model order selection and is the approach used in this
study. The maximum-likelihood solution is used to initialise
the Bayesian scheme.

In what follows, N(m,Q) is a multivariate Gaussian dis-
tribution with mean m and precision (inverse covariance) Q.
Also, Ga(b,c) is a Gamma distribution with parameters b

and c. The gamma density has mean bc and variance b2c.
Finally, Wi(s, B) denotes a Wishart density (Box and Tiao,
1992). The Bayesian model uses the following prior distri-
butions

p�W�p� � N�0, �I� (9)

p���p� � Ga�b,c�

p�	�p� � �	���d�1�/ 2

where p is the order of the model, � is the precision of the
Gaussian prior distribution from which weights are drawn,
and � is the noise precision matrix (inverse of R). In the
study by Penny and Roberts (2002), it is shown that the
corresponding posterior distributions are given by

p�W�Y,p� � N�ŴB,
ˆ�B� (10)

p���Y,p� � Ga�b̂,ĉ�

p�	�Y,p� � Wi�s,B�

The parameters of the posteriors are updated in an iterative
optimization scheme described in the Appendix. Iteration
stops when the “Bayesian evidence” for model order p,
p(Y�p), is maximized. A formula for computing this is also
provided in the Appendix. Importantly, the evidence is also
used as a model order selection criterion, that is, to select
the optimal value of p.

Bayesian Inference

The Bayesian estimation procedures outlined above re-
sult in a posterior distribution for the MAR coefficients
P(W�Y,p). Bayesian inference can then take place using
confidence intervals based on this posterior. See, for exam-
ple, page 84 of Box and Tiao (1992). The posterior allows
us to make inferences about the strength of a connection
between two regions. Because this connectivity can be ex-
pressed over a number of time lags our inference is con-
cerned with the vector of connection strengths, a, over all
time lags. To make contact with classical (non-Bayesian)
inference, we say that a connection is “significantly non-
zero” or simply “significant” at level � if the zero vector lies
outside the 1 � � confidence region for a. This is shown
schematically in Fig. 2. We also refer to � as the “P value”
(see Appendix B).

Application

Synthetic data

To test the face validity of the method two sets of
synthetic data were generated, which are shown in Fig. 3.
All time series were generated from known MAR(2) mod-
els. The known values were compared with estimates of

F2
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model order and weights. Each data set contained six time
series, the first being independent (Fig. 3A) with all off-
diagonal MAR terms equal to zero while the second (Fig.
3B) included two sets of three time series that were depen-
dent within sets but independent between sets.

The upper right figure in Fig. 3A shows the true MAR(2)
structure from which time series were generated (lower
left). The model has only nonzero diagonal terms and no
covariance structure and thereby generates independent
time series. Each series is essentially an AR(2) process. The
simulated time series were modeled as a MAR(p) process,
using Bayesian evidence to select the optimal order. This is
shown in Fig. 4A, demonstrating, as anticipated, an optimal
model order of 2. Parameter estimates are shown for com-
parison on the right of Fig. 3A. The matrix W is represented
in two ways; the first (upper right) shows only the condi-
tional means of the parameter estimates in the same format
as the known MAR(2) model. The general character of the
known structure has been captured with dominant diagonal
terms; however, off-diagonal terms have many nonzero
values. A more complete representation of the posterior
distribution [p(W�Y,p)] is shown below, which depicts the
variance about the estimated means. Each plot within the
matrix of graphs contains weight estimates at all time lags in
the model for one connection. Zero is indicated and poste-
rior distributions shown in relation it. Those parameters that
straddle zero, despite having a nonzero mean, are not con-
sidered significant. All connections that are significantly
nonzero are circled. The overall structure of the true param-
eters is reflected in the estimates with the exception of one
connection (circled off diagonal coefficient).

The second set of synthetic data contained a mixture of
dependence and independence and is shown in Fig. 3B. The
format is the same as Fig. 3A. The known MAR(2) model
has two subgroups characterized by dependence within each
subgroup (to the degree of the coefficients magnitude) and
independence between subgroups (reflected in the zero co-
efficients). Modeling the time series (lower left) as a

MAR(p) and using Bayesian evidence (Fig. 4A), the correct
model order (p � 2) was identified. Parameter estimates
(right) again reflect the known MAR(2) structure.

The accuracy of model order selection using Bayesian
evidence was generally stable; however, occasionally an
incorrect order was calculated by using smaller data sets
(e.g., 
 250). Increasing the number of data points to 500
produced robust and correct estimates in all cases. The
stability of these results is worth noting as estimates of the
zero coefficents produced the most “false positives” (usu-
ally only 1 of a possible 30 in the first data set and 18 in the
second) while “false negatives” occurred less frequently.
Given these occasional discrepancies, the Bayesian frame-
work for estimating model parameters was able to differen-
tiate and quantify interdependence within a MAR process.

fMRI data

Attentional effects on the responsiveness of motion sen-
sitive area V5 and PPC measured in electrophysiological
and neuroimaging studies suggest attention is associated
with changes in connectivity (Assad and Mausell, 1995;
O’Chaven and Savoy, 1995). In this study we use data from
an fMRI study investigating attentional modulation of con-
nectivity within the dorsal visual pathways (Buchel and
Friston, 1997). This provides a testbed for assessing how
MAR models estimate changes in connectivity.

In brief, the experiment was performed on a 2-T MRI
scanner on several subjects. The visual stimulus involved
random dots moving radially outward at a fixed rate. Sub-
jects were trained beforehand to detect changes in velocity
of radial motion. Attentional set was manipulated by asking
the subject to attend to changes in velocity or to just observe
the motion. Both of these states were separated by periods
of “fixation” where the screen was dark and only a fixation
dot was visible. Each block ended with a “stationary” con-
dition in which a static image of the previously moving dots
was shown. Unknown to the subjects, the radial velocity
remained constant throughout the experiment such that the
only experimental manipulation being attentional set.

Categorical comparisons using SPM(t) were used to
identify changes in brain activity dependent on attentional
set. This revealed activations throughout right and left
hemispheres in the primary visual cortex V1/2 complex,
visual motion region V5 and regions involved in the atten-
tional network including posterior parietal cortex (PPC),
and in the right prefrontal cortex (PFC). Regions of interest
(ROI) were defined with a diameter of 8 mm centered around
the most significant (
0.05, corrected) voxel and a represen-
tative time series was defined by the first eigenvariate of the
region. For details of the experimental design and acquisition
see Buchel and Friston (1997). The time series of the right
hemisphere regions, in one subject, are shown in Fig. 4.

Inspecting the four time series reveals a number of char-
acteristics worth noting. The series from the V1/2 complex
show a dependence on the presentation of the moving image

Fig. 2. For a MAR(2) model the vector of connection strengths, a, between
two regions consists of two values, a(1) and a(2). The probability distri-
bution over a can be computed from the posterior distribution of MAR
coefficients as shown in Appendix B and is given by p(a) � N(m,V).
Connectivity between two regions is then deemed significant at level alpha
if the zero-vector lies on the 1 � � confidence region. The figure shows an
example 1 � � confidence region for a MAR(2) model.

F4

tapraid3/6k-nimage/6k-nimage/6k0603/6k1502-03a knepper1 S�5 5/20/03 9:31 Art: 1502

5L. Harrison et al. / NeuroImage 0 (2003) 000–000



63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

UNCO
RREC

TE
D P

RO
O

F

tapraid3/6k-nimage/6k-nimage/6k0603/6k1502-03a knepper1 S�5 5/20/03 9:31 Art: 1502

6 L. Harrison et al. / NeuroImage 0 (2003) 000–000



63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

UNCO
RREC

TE
D P

RO
O

F
with a small difference between attention and nonattention.
However, in the higher brain areas of PPC and PFC, atten-
tional set is the dominant influence, with a marked increase
in activity during periods of attention. The relative influence
each region has upon others, or indeed any nonadditive
interaction, is not obvious from visual inspection alone.
Modeling the series as a MAR process provides a quanti-
tative approach to these putative effects.

Three models were tested by using the regions and bi-
linear terms shown below. Bilinear terms for interactions
between V1/2 complex and PPC are written as Iv1,ppc, and

regions V5 and PFC as Iv5,pfc. These time series were
entered into bilinear MAR models. The interaction terms
can be thought as “virtual” nodes in a network. Models 1
and 3 involved only right hemisphere PFC as no significant
attention related activation in the left PFC was found.

● Model 1: V1/2, V5, PPC, and PFC
● Model 2: V1/2, V5, and Iv1,ppc

● Model 3: V5, PPC, and Iv5,pfc

The motivation for the first model was to ask a very
general question: given time series of brain activity over the

Fig. 3. Two synthetic data sets are generated from known MAR(2) models (A and B). Both A and B have the same layout with the known MAR(2) model
(upper left) from which time series are generated (sample in lower left). See Fig. 4A, for a plot of the Bayesian evidence verses model order identifying a
model order of p � 2. Parameter estimates are shown on the right in two formats. The first (upper right) is a plot of estimated means of weighting parameters
for comparison with the known MAR model. Below this is a more comprehensive representation of the posterior distribution [p(W|Y,p)] of the estimates.
There are 6 � 6 plots with mean and variance (two standard deviations) shown at all time lags (2) in relation to zero. Distributions that do not straddle zero
are significantly nonzero. A and B differ in that the known MAR(2) models used in A produce largely independent series whereas B generates mixed
dependences between series. Estimates that are significantly different (
0.05) from zero across both time lags are circled and reveal the same MAR(2)
underlying process that generated the series originally.

Fig. 4. These are the representative time series of regions V1/2 complex, V5, and PPC, and PFC from one subject, in the right hemisphere. All plots have
the same axes of activity (adjusted to zero mean and unit variance) versus scan number (360 in total). The experiment consisted of four conditions in four
blocks of 90 scans. Periods of “attention” and “non-attention” were separated by a “fixation” interval where the screen was dark and the subject fixated on
a central cross, and each block ended with a “stationary” condition where the screen contained a freeze-frame of the previously moving dots. Epochs of each
task are indicated by the background grayscale (see key) of each series. Visually evoked activity is dominant in the lower regions of the V1/2 complex whereas
attentional set becomes the prevalent influence in higher regions’ PPC and PFC.
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entire experiment, during all four states, is there, on aver-
age, a functional network connecting key regions in the
visual and attentional systems? The second and third models
were motivated by SEM and Volterra analyses of the same
data reported by Buchel and Friston (1997) and Friston and
Buchel (2000), respectively. These different methodologies
address the same issues of modulatory, or bilinear interac-
tions, at different levels of the visual and attentional path-
ways and provide a convenient benchmark with which to
validate the current approach. Models 2 and 3 therefore
specifically address whether or not attentional influence
from top-down regions could be mediated by second-order
interactions. If there is no bilinear interaction among the
regions then this should be reflected as zero-valued weights
within a bilinear MAR model.

All pairwise connection strengths (MAR coefficents
across all time lags) were tested separately across all time
lags for significant differences from zero. This raises an
important issue of how apriori knowledge of connectivity
should determine the analytic strategy. By testing all con-
nections we are essentially approaching the model with no
prior knowledge. Alternatively, a model led approach is
directed by prior knowledge of connectivity, thereby only
testing connections established by, for example, anatomical
studies. Given the motivation of the first model, to test for
average connectivities over all tasks, we used the former
strategy.

The results of all connections that attained signifcance (P
values 
0.05) are shown for three subjects in Tables 1, 2,
and 3. Connectivity maps have been used to illustrate the
dependencies in Figs. 6, 7, and 8 for Models 1, 2, and 3,
respectively. The width of the arrows are scaled to the P
values (thin for P values between 0.05 and 0.001 and thick
for values 
0.001). The optimal model order was selected
by using Bayesian evidence. Plots of which are shown for
one subject and all three models in Fig. 5B. The optimal
model order was P � 4 for all models.

The first model characterizes the network of connectivi-

ties on average over all attentional states. Table 1 reveals
clear feedforward and backward connections within the
network. All V1 to V5 connections reached very high sig-
nificance (P 
 0.0004) and for V5 to PPC connections this
was true for two subjects (P 
 0.0009). Top-down connec-
tions between PFC and PPC were demonstrated in all sub-
jects (P 
 0.02).

A schematic of these results is shown in Fig. 6 for one
subject. Fig. 6A is the weight matrix W shown as a 4 � 4
matrix with each element containing a representation of the
posterior distribution [p(W�Y,p)] of weights for one connec-
tion at all time lags in the model, the same as in Fig. 3.
Given the hierarchical sequence of the regions the upper
off-diagonal terms correspond to dependence ascending
through the cortical hierarchy. For example the plots in
position (1,2) are the coefficients characterizing the influ-
ence V1 has upon V5 at all time lags. In short, upper
diagonal coefficients quantify the influence of forward con-
nections. The lower off-diagonal terms complement these
and characterize backward projections. The forward driving
influence of V1 on V5, V5 on PPC, and PPC on PFC is
evident. Back projecting influences of PFC upon V5 and
PPC are also shown. These are important observations;
however, they are limited in that they represent a linear
characterization that precludes attentional modulation. The
second and third models were designed to test whether
attentional areas modulate coupling within the visual sys-
tem.

Bilinear terms Iv1,ppc and Iv5,pfc were included in Models
2 and 3, respectively. The results of Model 2 are displayed
in a similar fashion to Model 1 in Table 2 and Fig. 7. Both
left and right hemispheres were modeled separately and
show consistent results in the left for the connection be-

Table 1
P values for testing individual connection strengths across all time lags
for Model 1 for all three subjects, right hemisphere onlya

Direction Regions Subject 1 Subject 2 Subject 3

Bottom-up v1-v5 (0.0000c) (0.0004c) (0.0000c)
v1-ppc (0.0000c) d d

v1-pfc d (0.007b) d

v5-ppc (0.0002c) (0.0009c) d

ppc-pfc (0.0182b) d d

Top-down pfc-v1 d d (0.0045b)
pfc-v5 (0.0005c) d d

pfc-ppc (0.0197b) (0.0017b) (0.0001c)

a The table is divided in two with the upper part showing values for
ascending connections (bottom-up) and the lower part descending connec-
tions (top-down) within the visual and attentional systems.

b,c,dThe most significant coefficients are shown schematically for Subject
1 in Fig. 6. b P values between 0.05 and 0.001; c P values 
 0.001; d for
estimates not significantly different from zero (P � 0.05).

Table 2
P values for connection strengths across all time lags for Model 2 for all
three subjectsa

Direction Regions Subject 1 Subject 2 Subject 3

Top-down Iv1,ppc-v5 right (0.0205b) c c

Iv1,ppc-v5 left (0.0384b) (0.0568) (0.0474b)

a Left and right hemispheres were modeled separately. The table in-
cludes top-down connections in both hemispheres. The bilinear term Iv1, ppc

introduces second-order interactions among PPC, V1, and V5. There is a
consistent dependence between Iv1, ppc and V5 in the left hemisphere for all
three subjects. Diagrams of the weight matrix W and connectivity maps are
shown in Fig. 7.

Table 3
Similar layout for Model 3, right hemisphere onlya

Direction Regions Subject 1 Subject 2 Subject 3

Top-down Iv5-pfc-ppc (0.056) (0.03b) c

a Second-order interactions are modeled between Iv5,pfc and PPC and
show significant coefficients in two of the three subjects. Weight matrix
and connectivity maps are shown in Fig. 8.
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Fig. 5. Model order selection using the Bayesian evidence versus model order p. A contains two plots calculated for the synthetic data described in Fig. 3.
In both data sets (independent and mixed dependence) the optimal order was identified as p � 2. B shows three plots generated from one subject for all three
models of the real data described in Fig. 5. The optimal order was p � 4 for each subject.AQ: 30
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tween Iv1,ppc and V5 (P 
 0.05). This indicates that PPC
changes the connection between V1 and V5. Only Subject 1
reached significance on the right for this interaction. The
bilinear effect is depicted in Fig. 7B and C, first (left figure)
showing the bilinear variable as a “virtual” node and second

(right figure) its implicit physiological interpretation. Given
the posterior density of the connection strength, bilinear
terms are seen to account for a significant component of the
activity observed within these regions.

The results of Model 3 are shown in Table 3 and Fig. 8.

Fig. 6. Model 1 including regions V1/2 complex, V5, PPC, and PFC. (A) W from a MAR(4) model, with each region indicated on the rows and columns
of the diagram. Each element within the matrix of plots contains means and variances of parameter estimates at all time lags for that connection (same as
Fig. 3). Diagonals are “self-connections” and, given the order of variables, the upper off-diagonal coefficients represent ascending, feed forward influence,
and can be interpreted as characterizing driving connections through the cortical hierarchies. The lower off-diagonals complement these and characterize the
influence higher regions have upon lower, estimating back-projecting activity. All significant connections are circled. (B) Connectivity map of all connection
strengths that were significantly different from zero across all time lags for model 1. Arrow width is scaled to the P value of the connection strength estimated
in W (thin for P values between 0.05 and 0.001 and thick for 
0.001).
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Second-order connections between Iv5,pfc and PPC reach
significance with P values between 0.03 and 0.056 in two
subjects. Fig. 8B demonstrates a similar interaction as in
Fig. 7B, suggesting that attention may be mediated by PFC

and modulation of the connection strength between V5 and
PPC. That is, PFC changes how PPC responds to V5, the
responsiveness being greater during attention than nonatten-
tion. This is a bilinear effect, similar to that found in Model 2.

Fig. 7. Model 2 including regions V1/2 complex, V5, and bilinear term Iv1,ppc for one subject (right hemisphere). (A) W is shown in the same layout as Fig.
6. The weight of interest is between Iv1,ppc and V5 as it describes a second-order interaction characterizing the modulatory role upon downstream processing
(upon the connection strength between V1 and V5). These coefficients were significantly nonzero (circled). A diagram of the model including the bilinear
term as a “virtual” node is shown in B and the physiological interpretation of this is shown in C, where Iv1,ppc is not shown but is represented implicitly (the
thin arrow represents a P value of between 0.05 and 0.001).

tapraid3/6k-nimage/6k-nimage/6k0603/6k1502-03a knepper1 S�5 5/20/03 9:31 Art: 1502

11L. Harrison et al. / NeuroImage 0 (2003) 000–000



63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

UNCO
RREC

TE
D P

RO
O

F

Discussion

We have proposed the use of MAR models for making
inferences about functional integration using fMRI time
series. One motivation for this is that the dominant model,
used for making such inferences in the existing fMRI/PET

literature, namely structural equation modeling, as used by
Buchel and Friston (1997) and McIntosh et al. (1994), is not
a time series model. Indeed, inferences are based solely on
the instantaneous correlations between regions; i.e., if the
time series were randomly permuted SEM would give the
same results. Thus SEM throws away temporal information.

Fig. 8. Model 3 including regions, V5, PPC, and bilinear term Iv5,pfc for one subject (right hemisphere). The significance of the connection between Iv5,pfc-PPC
is tested as in previous models and connectivity maps are shown as in Fig. 6. The model supports the notion that PFC plays a modulatory role during attention
upon the connectivity between V5 and PPC.
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This deficiency is not shared by MAR models that are
proper time series models.

Further, MAR models may contain loops and self-con-
nections yet parameter estimation can proceed in a purely
linear framework; i.e., there is an analytic solution that can
be found via linear algebra. In contradistinction, SEM mod-
els with loops require nonlinear optimization. The reason
for this is that MAR models do not contain instantaneous
connections. The between-region connectivity arises from
connections between regions at different time lags. Due to
temporal persistence in the activity of each region (i.e., the
activities are similar from one sample to the next) this
captures much the same effect, but in a computationally
simpler manner.

Given that MAR models extract temporal information,
how can this be interpreted? MAR models derive temporal
information from the auto and crosscovariance function,
which is used to estimate coefficients at different lags. The
temporal profile of the coefficient estimates characterizes
the temporal aspects of the dependencies. For example, the
coefficients can alternate from positive to negative and
decay with increasing lags, due to oscillatory interactions.
As BOLD is a measurement of the hemodynamic response
to neuronal processes, temporal information is smoothed,
rendering the coefficients a summary of neuronal activity
observed during the hemodynamic response. This may con-
found the interpretation of the exact timing of an interac-
tion; however, general observations regarding the brains
response are possible. In Fig. 6A the first and second coef-
ficient of connectivity between PPC and PFC, both forward
and backward, are similar. This suggests that on average,
throughout the entire experiment, that there is an equivalent
level of connectivity between the two regions, over a period
of two time lags (approximately 6 s). The models in Figs. 7
and 8 support the hypothesis of a modulatory interaction,
modeled using a bilinear term, from PPC and PFC, whose
effect becomes less prominent with time, i.e., up to four
time lags (approximately 12 s).

In this study we have used “off-the-shelf” MAR mod-
els in which every region is connected to every other
region. Bayesian inferences about connections are then
made on the basis of the estimated posterior distribution.
This is in the spirit of how general linear models are used
for characterizing functional specialization; all conceiv-
able factors are placed in one large model and then
different hypotheses are tested using t or F-contrasts
(Frackowiak et al., 1997). We note that this approach is
fundamentally different to the philosophy underlying
SEM. In SEM, only a few connections are modeled and
these are chosen on the basis of prior anatomical or
functional knowledge. In cases where this knowledge is
available this may be the preferred approach and, in the
future, we envisage the use of MAR models that are not
fully connected (see Bayesian estimation below).

MAR models can be used for spectral estimation. In
particular, they enable parsimonious estimation of coher-

ences (correlation at particular frequencies), partial co-
herences (the coherence between two time series after the
effects of others have been taken into account), phase
relationships (Marple, 1987; Cassidy and Brown, 2002),
and directed transfer functions (Kaminski et al., 1997).
MAR models have been used in this way to investigate
functional integration from EEG and ECOG recordings
(Bressler et al., 1999). This provides a link with a recent
analysis of fMRI data (Muller et al., 2001) that looks for
sets of voxels that are highly coherent. MAR models
provide a parametric way of estimating this coherence,
although in this study we have reported the results in the
time domain.

A further aspect of our off-the-shelf MAR models is
that they capture only linear relationships between re-
gions. Following Buchel and Friston (1997), we have
extended their capabilities by introducing bilinear terms.
It is also possible to include further higher order terms,
for instance, second-order interactions across different
lags. Frequency domain characterization of the resulting
models would then allow us to report bispectra [28].
These describe the correlations between different fre-
quencies that may be important for the study of func-
tional integration (Friston, 2000).

A key aspect of our approach has been the use of a
mature Bayesian estimation framework (Penny and Roberts,
2002). This has allowed us to select the optimal MAR
model order. In the future, the Bayesian approach could be
greatly extended. In the study by Penny and Roberts (2002),
we show how MAR coefficients can be placed into groups.
For example, all of those connecting the same two regions
could be placed in the same group. Different groups could
then be associated with different prior precisions. Groups
with prior means of zero and infinite prior precision in effect
then specify the absence of a connection. In this way, we
could design MAR models with sparse connectivities. More
generally, prior means and precisions could be estimated
from data using a Bayesian framework that could be spec-
ified so as to include time series from multiple subjects.
These further extensions will be the subject of subsequent
studies.
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Appendix A

Bayesian estimation

Following the algorithm developed in the study by Penny
and Roberts (2002), the parameters of the posterior distri-
butions are updated iteratively as follows:
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	D � 	̂R(XTX) (11)

ˆ�B � �	D � �̂I��1

ŴB �
ˆ�B	DŴ

1
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1

2
ŴB

TŴB �
1

2
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ˆ�B� �
1

b

ĉ �
k

2
�c

�̂ � b̂ĉ

s � N

B �
1

2
�Y � XŴB�T�Y � XŴB�

� �
n

�I � xn�
ˆ�B�I � xn�

T

	̂ � sB�1

The updates are initialized using the maximum-likelihood
solution. Iteration terminates when the Bayesian evidence
increase by less than 0.01%. The Bayesian evidence is
computed as follows

p�Y�p� �
N

2
log�B� � KL� p�W�p�,p�W�Y,p��

� KL� p���p�,p���Y,p�� � log�d�N/ 2� (12)

where KL(p1,p2) denotes the Kullback-Liebler (KL) diver-
gence between densities p1 and p2. Expressions for these
are given in in the study by Penny and Roberts (2002).
Essentially, the first term in the above equation is an accuray
term and the KL terms act as a penalty for model complex-
ity.

Appendix B

Testing the significance of connections

The connectivity between two regions can be expressed
over a number of time lags. Therefore, to see if the connec-
tivity is significantly nonzero we make an inference about
the vector of coefficients a, where each element of that
vector is the value of a MAR coefficient at a different time
lag. First we specify (k � k) (k � p � d � d) sparse matrix
C such that

a � CTw (13)

returns the estimated weights for connections between the
two regions of interest. For a MAR(p) model, this vector has
p entries, one for each time lag. The probability distribution

is given by p(a) � N(m, V) and is shown schematically in
Fig. 2. The mean and covariance are given by

m � CTŵ (14)

V � CT ˆ�BC

where ŵ � vec(ŴB) and ̂B are the Bayesian estimates of
the parameters of the posterior distribution of regression
coefficients from the previous section. In fact, p(a) is just
that part of p(w) that we are interested in.

The probability � that the zero vector lies on the 1 � �
confidence region for this distribution is then computed as
follows. We first note that this probability is the same as the
probability that the vector m lies on the edge of the 1 � �
region for the distribution N(0, V). This latter probabilitiy
can be computed by forming the test statistic

d � mTV�1m (15)

which will be the sum of r � rank(V) independent, squared
Gaussian variables. As such it has a �2 distribution

p�d� � �2�r� (16)
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