
Phil. Trans. R. Soc. B (2005) 360, 983–993

doi:10.1098/rstb.2005.1642

 on February 16, 2017http://rstb.royalsocietypublishing.org/Downloaded from 
Bilinear dynamical systems

Published online 29 May 2005
W. Penny1,*, Z. Ghahramani2 and K. Friston1
One con
of brain

*Autho
1Wellcome Department of Imaging Neuroscience, and 2Gatsby Computational Neuroscience Unit,
University College, London WC1N 3BG, UK

In this paper, we propose the use of bilinear dynamical systems (BDS)s for model-based
deconvolution of fMRI time-series. The importance of this work lies in being able to deconvolve
haemodynamic time-series, in an informed way, to disclose the underlying neuronal activity. Being
able to estimate neuronal responses in a particular brain region is fundamental for many models of
functional integration and connectivity in the brain. BDSs comprise a stochastic bilinear
neurodynamical model specified in discrete time, and a set of linear convolution kernels for the
haemodynamics. We derive an expectation-maximization (EM) algorithm for parameter estimation,
in which fMRI time-series are deconvolved in an E-step and model parameters are updated in an
M-Step. We report preliminary results that focus on the assumed stochastic nature of the
neurodynamic model and compare the method to Wiener deconvolution.
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1. INTRODUCTION
Imaging neuroscientists have at their disposal a variety
of imaging techniques for investigating human brain
function (Frackowiak et al. 2003). The electroencepha-
logram (EEG) records electrical activity from elec-
trodes placed on the scalp, the magnetoencephalogram
(MEG) records the magnetic field from sensors placed
just above the head, and functional magnetic resonance
imaging (fMRI) records changes in magnetic reso-
nances owing to variations in blood oxygenation.
However, as the goal of brain imaging is to obtain
information about the neuronal networks that support
perceptual inference and cognition, one must first
transform measurements from imaging devices into
estimates of intracerebral electrical activity. Brain
imaging methodologists are therefore faced with an
inverse problem, ‘how can one make inferences about
intracerebral neuronal processes given extracerebral/
vascular measurements?’

Though not often expressed in this terminology, we
argue that this problem is best formulated as a model-
based spatio-temporal deconvolution problem. For
EEG and MEG, the required deconvolution is prima-
rily spatial, and for fMRI it is primarily temporal.
Although one can make minimal assumptions about
the source signals by applying ‘blind’ deconvolution
methods (McKeown et al. 1998; Makeig et al. 2002),
knowledge of the underlying physical processes can be
used to great effect. This information can be
implemented in a forward model that is inverted during
deconvolution. In EEG/MEG, forward models make
use of Maxwell’s equations governing propagation of
electromagnetic fields (Baillet et al. 2001), and in
fMRI, forward models comprise haemodynamic
tribution of 21 to a Theme Issue ‘Multimodal neuroimaging
connectivity’.

r for correspondence (wpenny@fil.ion.ucl.ac.uk).

983
processes as described by ‘Balloon’ models (Buxton

et al. 1998; Friston 2002; Riera et al. 2004; Stephan
et al. 2004).

In this paper, we propose a new state-space

method (Haykin 1996) for model-based deconvolu-

tion of fMRI. The importance of this work lies in

being able to deconvolve haemodynamic time-series,

in an informed way, to disclose the underlying

neuronal activity. Such estimates are required by

many models of functional integration and

connectivity in the brain. Typically, the influence of

an experimental manipulation on the coupling

between two regions is tested using a statistical

model of the interaction between the experimental

factor and neuronal activity in the source region.

These interaction terms rest on being able to

deconvolve the fMRI time-series. The procedures

described below enable the construction of precise

and informed interaction terms that can then be used

to detect context-sensitive coupling among brain

regions. The interaction terms are variously known

as psychophysiological interactions (Friston et al.
1997), moderator variables in structural equation

models (Buchel & Friston 1997) and bilinear inputs

in dynamic causal models (Friston et al. 2003).
The model we propose is called a bilinear dynamical

system (BDS) and comprises the following elements.

Experimental manipulation (input) causes changes in

neuronal activation (state), which in turn cause

changes in fMRI signal (output). Experimental inputs

fall into two classes: (i) driving inputs, which directly

excite neurodynamics and (ii) modulatory inputs,

which change the neurodynamics. These modulatory

inputs typically correspond to instructional or attention

set, and therefore allow neurodynamic changes to be

directly attributed to changes in experimental context.

Readers of our earlier papers on dynamic causal

modelling (DCM; Friston et al. 2003; Penny et al.
q 2005 The Royal Society

http://rstb.royalsocietypublishing.org/


984 W.Penny and others Bilinear dynamical systems

 on February 16, 2017http://rstb.royalsocietypublishing.org/Downloaded from 
2004) may well be experiencing a sense of ‘déjà vu’.
This is no accident because BDS employs the same
concepts of driving and modulatory inputs, neuronal
states and outputs.

A key difference to DCM, however, is that BDS uses
a stochastic neurodynamic model. This is biologically
more realistic as regional dynamics are unlikely to be
under full experimental control. Moreover, it has been
established, across a variety of spatial scales, that
neurodynamics can be meaningfully treated as
stochastic processes, from Poisson processes describing
spike generation (Dayan & Abbott 2001) to statistical
mechanical treatments of activity in cortical macro-
columns (Ingber 1995). Stochastic components could
also be considered as the consequence of local or global
deterministic nonlinear dynamics of a possibly chaotic
nature (see e.g. Breakspear & Terry 2002). From
another perspective, stochastic components could be
considered as reflecting input from remote regions
(David & Friston 2003).

In BDS, neurodynamics cause changes in fMRI
signals via haemodynamic models specified in terms of
a set of basis functions. Although more detailed
differential equation models exist (Buxton et al. 1998;
Friston 2002; Riera et al. 2004), the relationship
between neuronal activation and fMRI signals can be
formulated as a first-order convolution with a kernel
expansion using basis functions (typically two or three).
This kernel is the haemodynamic response function.
This approach has enjoyed a decade of empirical
success in the guise of the general linear model
(GLM; Friston et al. 1995; Henson 2003). Moreover,
this means that the state-output relation can be
described by a linear convolution.

The BDS model may be viewed as a marriage of two
formulations, the input-state relation being a stochastic
DCM and the state-output relation being a GLM.

BDS has a similar form to models used in signal
processing and machine learning. In particular, BDS is
almost identical to a linear dynamical system (LDS;
Roweis & Ghahramani 1999) with inputs. The only
difference is that the inputs can change the linear
dynamics in a bilinear fashion—hence the name
‘bilinear’ dynamical systems. In such models, the
hidden variable, which in our case corresponds to the
neuronal time-series, can be estimated using Kalman
smoothing. Furthermore, the parameters of the model
can be estimated using an expectation-maximization
(EM) algorithm (described in Ghahramani & Hinton
1996), which needs only minor modification to
accommodate the bilinear term.

The structure of the paper is as follows. In §2 we
define BDS and describe how it can be applied to
deconvolve fMRI time-series. We describe a novel EM
algorithm for estimation of model parameters. In §3 we
present preliminary results on applying the models to
synthetic data and data from an fMRI experiment.

(a) Notation

We denote matrices and vectors with bold upper case
and bold lower case letters, respectively. All vectors are
column vectors. XT denotes the transpose of X, and Ik
is the k-dimensional identity matrix. Brackets are used
to denote entries in matrices/vectors. For example,A(i )
Phil. Trans. R. Soc. B (2005)
denotes the ith row of A, A(i, j ) denotes the scalar entry
in the ith row and jth column, and a(i ) denotes the ith
entry in a. We define zN as a vector with a 1 as the first
entry, followed by NK1 zeros and 0I, J as the zero
matrix of dimension I!J.
2. BILINEAR DYNAMICAL SYSTEMS
Although, in principle, we could define models for
activity in a network of regions, in this paper we define a
BDS model for activity in only a single region.
BDS is an input-state-output model where the states
correspond to ‘neuronal’ activations. Neuronal activity
is defined mathematically below, and can be thought of
as that component of the local field potential to which
fMRI is most sensitive (Logothetis et al. 2001). BDS is
defined, for a single region, with the following state-
space equations where n indexes time

sn Z ðaCb
T
unÞsnK1 Cd

T
vn Cwn (2.1)

xn Z ½sn; snK1; snK2;.; snKLC1�
T (2.2)

yn ZbTFxn Cen (2.3)

The first equation describes the stochastic neuro-
dynamic model. Driving inputs vn cause an increase in
neuronal activity sn (a scalar) that decays with a time
constant determined by (aCbTun). This time constant
is determined by the value of the ‘intrinsic connection’,
a, and ‘modulatory inputs’, un. Driving inputs typically
correspond to the presentation of experimental stimuli,
and modulatory inputs typically correspond to instruc-
tional or attentional set. The strengths of the driving
andmodulatory effects are determined by the vectors of
driving connections, d, and modulatory connections,
b. The driving connections are also known as ‘input
efficacies’. Neuronal activity is also governed by zero-
mean additive Gaussian noise, wn, having variance s2w.

Neuronal activation then gives rise to fMRI time-
series according to the second and third equations.
The second equation defines an embedding process
(Weigend & Gershenfeld 1994) in which neuronal
activity over the last L time-steps is placed in
the ‘buffer’, xn. The vector xn is referred to as an
‘embedded’ time-series, where L is the embedding
dimension. Neuronal activation, now described by xn,
then gives rise to fMRI time-series, yn, via a linear
convolution process described in the third equation.
Equation (2.3) comprises a signal term bTFxn and a
zero-mean Gaussian error term en with variance s2e .
The hth row of matrix F defines the hth convolution
kernel (i.e. basis of the haemodynamics response
function) and b(h) is the corresponding regression
coefficient. Figure 1 shows a set of convolution kernels
that have been used widely for the analysis of fMRI data
in the context of the GLM. Linear combinations of
these functions have been found, empirically, to
account for most subject-to-subject and voxel-to-
voxel variations in haemodynamic response (Henson
et al. 2001; Henson 2003).

The model can perhaps be better understood by
looking at the neuronal and haemodynamic time-series
that it generates. An example is shown in figure 2.
The model we have proposed, BDS, can be viewed as

http://rstb.royalsocietypublishing.org/
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Figure 1. Haemodynamic basis functions. Top panel: canonical function; middle panel: derivative of canonical with respect to
time; bottom panel: derivative of canonical with respect to dispersion. Linear combinations of these functions have been found
empirically to account for most subject-to-subject and voxel-to-voxel variations in haemodynamic responses (Henson et al.
2001; Henson 2003).
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a combination of two models: (i) a stochastic, discrete-
time version of DCM to describe neurodynamics and
(ii) the GLM to describe haemodynamics. GLMs are
well established in the neuroimaging literature
(Frackowiak et al. 2003), and DCMs are becoming
so. Consequently, the model choices we have made are
informed by precedents established for GLMs and
DCMs. For example, from previous work using GLMs
(Henson et al. 2001), we know that the embedding
dimension should be chosen to span a 20–30 s period.
With regard to neurodynamics, the discrete bilinear
form affords analytic tractability, while allowing non-
linear interactions between exogenous input and states.
The splitting of exogenous inputs into driving and
modulatory terms is also prompted by DCM. The
motivation for this is that, for data collected from
controlled experiments, one wishes to relate changes in
connectivity to experimental manipulation. This
distinction is echoed by the separate neurobiological
mechanisms underlying driving versus modulatory
activity (Penny et al. 2004).

The modulatory coefficients in equation (2.1), b, are
also known as ‘bilinear’ terms. This is because the
dependent variable, sn, is linearly dependent on the
product of snK1 and un. That un and snK1 combine in
multiplicative fashion endows the model with ‘non-
linear’ dynamics that can be understood as a non-
stationary linear system that changes according to
experimental context. Importantly, because un is
known, it is straightforward to estimate how the
dynamics are changing. We emphasize that the term
‘bilinear’ relates to interactions between a state and an
input rather than among the states themselves.

(a) Relation to biophysical models

In the previous section, we interpreted (aCbTun) as the
time constant of decaying neuronal activity. However,
our BDS model has a much more general relationship
Phil. Trans. R. Soc. B (2005)
to underlying biophysical models of neuronal
dynamics. Consider some biologically plausible model
of neuronal activity that is formulated in continuous
time _xZ f ðx;u; qÞ and allows for arbitrarily complicated
and nonlinear effects of the state and exogenous inputs.
The parameters of this biophysical model q (cf. neural
mass models; Valdes et al. 1999) can be related
directly to biophysical processes. In our discrete-time
formulation, under local linearity assumptions,
aZexpðDtvf =vxÞ and bðiÞZva=vuðiÞZDtav2f =vxvuðiÞ,
where Dt is the sampling interval and i indexes the
input. This means that our input-dependent auto-
regression coefficients can be regarded as a lumped
representation of the underlying model parameters.
This re-parametrization, in terms of a state-space
model, precludes an explicit estimation of the original
parameters. However, this does not cause concern,
because we are not interested in the parameters per se;
we only require the conditional estimates of the states.
The transformation of a dynamic formulation into a
discrete BDS is a useful perspective, because priors on
the biophysical parameters can be used to specify priors
on the autoregression coefficients, should they be
needed.

(b) Relation to GLMs

For models with a single input, BDS reduces to a GLM
if snZvn, that is, if the neuronal activity is synonymous
with the experimental manipulation (driving inputs).
This highlights a key assumption of GLMs, that the
dynamics of neuronal transients can be ignored.

For models with multiple inputs, the relation
between BDS and GLMs is more complex. Ignoring
bilinear and noise terms, BDS can be more parsimo-
nious than the GLM, in the sense of having fewer
parameters. Say, for example, we are modelling
haemodynamics with H basis functions. Then for
M (driving) input variables, the GLM has HM
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Figure 2. Time-series from exemplar BDS model. Driving input vn (top panel) causes an increase in neuronal activity sn (third
panel). This activity decays with a time constant that changes according to a modulatory input un (second panel). In this
instance, the modulatory coefficient, b, is negative. Driving inputs typically correspond to the presentation of experimental
stimuli and modulatory inputs typically correspond to instructional or attentional set. Neuronal activity then gives rise to the
fMRI time-series yn (bottom panel) by convolving neuronal activity with a set of haemodynamic kernels (shown in figure 1).
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parameters, whereas in BDS, there are MCHC1
parameters. For HZ3, for example, BDS has fewer
coefficients if M is 3 or more.

The reason for this reduction is that, in BDS, the
inputs affect only neurodynamics. And the strength of
this effect, ignoring modulatory terms, is captured in a
single parameter, the input efficacy. The relation
between neurodynamics and haemodynamics is inde-
pendent of which input excited neuronal activity. This
is obviously more consistent with physiology, where
experimental manipulation only affects fMRI by chan-
ging neuronal activity.
(c) Deconvolution

Deconvolution consists of estimating a neuronal time-
series, sn, given an fMRI time-series, yn. It is possible to
perform model-based deconvolution using BDS and a
modified Kalman-filtering algorithm. Themodification
is necessary because, owing to the modulatory terms,
the state transition matrix is time dependent. Also, the
BDS model must be reformulated so that the output is
an instantaneous function of the state. This section
describes standard Kalman filtering and the modifi-
cations required for BDS.

In the Kalman-filtering approach, deconvolution
progresses via iterative computation of the probability
density pðsnjy

n
1Þ, where y

n
1Z f y1; y2;.; yng. That is, our

estimate of neuronal activity at time-step n is based on
all the fMRI data up to time n (but not on future
values).

The Kalman-filtering algorithm can be split into two
steps that are applied recursively. The first step is a time
update, where the density pðsnK1j y

nK1
1 Þ is updated to
Phil. Trans. R. Soc. B (2005)
pðsnjy
nK1
1 Þ. In our model this will take into account the

effects of inputs un and vn and the natural decay of

neuronal activity. The second step is a measurement
update, where the density pðsnjy

nK1
1 Þ is updated to

pðsnjy
n
1Þ, thereby taking into account the ‘new’ fMRI

measurement yn. The two steps together take us from

time point nK1 to time point n, and are applied

recursively to deconvolve the entire time-series.

A complication arises, however, because the Kalman

filtering updates require that the output be an

instantaneous function of the hidden state. That is,

that yn depend only on sn and not on snK1, snK2, etc.,

which is clearly not the case. But Kalman filtering can

proceed if we use the embedded state variables xn. This

will lead to an estimate of the multivariate density

pðxnj y
n
1Þ. Our desired density, pðsnj y

n
1Þ, is then just the

first entry in pðxnjy
n
1Þ. While this is conceptually

simple, a good deal of book-keeping is required to

translate the BDS neurodynamical model into an

‘embedded space’. This is described in detail in

appendices A and B.

A second complication arises in that, in the standard

Kalman update formulae (Ghahramani & Hinton

1996), the inputs do not change the intrinsic dynamics.

To account for this, we introduce a time-dependent

state-transition matrix that embodies changes in

intrinsic dynamics owing to modulatory inputs. This

is also detailed in appendices A and B.

It is also possible to perform deconvolution based

on Kalman smoothing rather than Kalman filtering.

Kalman smoothing estimates neuronal activity, by

computing the density pðsnj y
N
1 Þ. It is therefore based

on the whole fMRI record, i.e. past and future values

http://rstb.royalsocietypublishing.org/
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Figure 3. Low neuronal noise data. Top panel: driving input vn; middle panel: neuronal activity sn; bottom panel: fMRI data yn.
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and, as we shall see, provides more accurate deconvo-

lutions in high-noise environments.
(d) Estimation

To run the deconvolution algorithms described in the

previous section, we must know the parameters of the

model, e.g. b, a, b and d. If these parameters are

unknown, as will nearly always be the case, they can be

estimated using maximum-likelihood methods.

For BDS, this can be implemented using an EM

algorithm, which we derive in appendices A and B. The

E-step uses a Kalman-smoothing algorithm, which

contains only minor modifications to the algorithm

presented in Ghahramani & Hinton (1996). The

M-step contains updates derived by considering

estimation of the neurodynamic parameters (a, b, d )

as a constrained linear regression problem (Rao &

Toutenberg 1995). The neurodynamic parameters are

updated as shown in equation (B 14), and the

haemodynamic parameters, b, are updated using

equation (B 17). It is also possible to update the initial

state estimates as described in Ghahramani & Hinton

(1996), but this was not implemented for the empirical

work in this paper.

It is also possible to implement maximum-likelihood

parameter estimation by computing the likelihood

using Kalman filtering (as shown in Appendix C),

and then maximizing this using standard Matlab

optimization algorithms such as pseudo-Newton or

Simplex methods (Press et al. 1992). However,

preliminary simulations showed EM to be faster than

these other maximum-likelihood methods.
(e) Initialization

The EM estimation algorithm is initialized as follows.

In the limit of zero neuronal noise (ZNN), the neuronal
Phil. Trans. R. Soc. B (2005)
activity is given by

sn Z ðaCb
T
unÞsnK1 Cd

T
vn; (2.4)

and the predicted haemodynamic activity is

ŷn ZbTFxn: (2.5)

We initially set a random number between 0 and 1,
and b such that bTun is between 0 and 1Ka for all n.
The values of d are also set to random numbers
between 0 and 1. The first b coefficient is fixed at unity,
and others, if there are any, are initialized to random
numbers between 0 and 1. We then run a pseudo-
Newton gradient descent optimization (the function
fminunc in Matlab) to minimize the discrepancy
between the observed fMRI time-series yn and the
estimated values ŷn under the ZNN assumption.
Occasionally, parameter estimates result in an unstable
model. We therefore repeat these initialization steps
until a stable model is returned. These parameters are
then used as a starting point for EM.
3. RESULTS
(a) Simulations

We generate simulated data to demonstrate various
properties of the deconvolution algorithm. These
simulations are similar to the first set of simulations
in Gitelman et al. (2003). We also compare our results
to those obtained with Wiener deconvolution (Glover
1999), which makes minimal assumptions about the
source (that it has a flat spectral density; Press et al.
1992; Gitelman et al. 2003).

A 250 s time-series of input events with sampling
period DtZ0.5 s was generated from a Poisson distri-
bution, with a mean interval between events of 12 s.
Events less than 2 s apart were then removed. The
half-life of neuronal transients was fixed to 1 s by
setting aZ0.71, the input efficacy was set to dZ0.9

http://rstb.royalsocietypublishing.org/
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and the neuronal noise variance was set to s2wZ0:0001.
There were no modulatory coefficients, and a single
haemodynamic basis function (the ‘canonical’, shown
in figure 1) was used.

We then added observation noise to achieve a signal-
to-noise ratio (SNR) of unity (this is equivalent to the
100% noise case in Gitelman et al. 2003). This was
achieved using s2e Z0:015. The generated time-series is
shown in figure 3.

The parameters were estimated using EM to be
aZ0.72 and dZ0.88. Wiener and BDS Kalman-
smoothing deconvolutions (the latter obtained using
estimated parameters) are shown in figure 4. Wiener
deconvolution used the known value of s2e , and BDS
Kalman smoothing used the known values of s2e and s2w.
The quality of the BDS deconvolution is considerably
better than that using the method described in
Gitelman et al. (2003); see, for example, fig. 3D in
Gitelman et al. (2003). This is because information
about the paradigm (e.g. experimental inputs) has been
used. For Wiener deconvolution, the correlation with
the generated neuronal time-series is rZ0.520 and for
BDS Kalman smoothing it is rZ0.998.

We then ran a second simulation with the neuronal
noise variance set to a high value, s2wZ0:03. These data
are shown in the top panel of figure 5. Neurodynamic
parameters were estimated using EM to be aZ0.68 and
dZ0.83. For comparison, ZNN initialization (see §2e)
Phil. Trans. R. Soc. B (2005)
produced parameter estimates aZ0.45 and dZ1.13.
That is, the assumption of ZNN leads to an under-
estimate of the neuronal time constant and an over-
estimate of the input efficacy.

The neuronal time-series, as estimated using BDS
Kalman smoothing (bottom panel of figure 5), had a
correlation with the generated time-series of rZ0.775.
The ZNN estimate neuronal time-series had a corre-
lation of rZ0.724. The Wiener deconvolved time-
series (second panel in figure 5) gave rZ0.52 (again).
We also show, in the third panel of figure 5,
deconvolutions from BDS Kalman filtering.

Figure 5 shows that Wiener estimation recovers the
intrinsic dynamics but misses the evoked responses,
whereas BDS Kalman filtering recovers the evoked
responses but misses the intrinsic dynamics. Deconvo-
lution using BDS Kalman smoothing recovers both.

The smoother can capture the intrinsic dynamics
because it uses more information than the filter. It
updates the filter estimates of neuronal activity, at a
given time point, using information in advance of that
time point (i.e. from the future). These updates are
implemented using the ‘backward recursions’
described in Appendix B(a). Heuristically, the reason
for the improvement is that the best estimates of
neuronal activity are obtained using observed fMRI
activity about 5 s or so in the future, i.e. at the peak of
the haemodynamic response.

(b) Single word processing fMRI

We now turn to the analysis of an fMRI dataset
recorded during a passive listening task, using epochs
of single words presented at different rates. The
experimental inputs in figure 6 describe the paradigm
in more detail. The driving inputs in the top panel
indicate presentation of words in the subject’s head-
phones and modulatory inputs in the lower panels
indicate epochs with different presentation rates.

We focus on a single time-series in primary auditory
cortex shown in figure 7. This comprises 120 time
points with a sampling period DtZ1.7 s. Further details
of data collection are given in Friston et al. (2003). As
the experimental inputs are specified at a higher
temporal resolution than the fMRI acquisition, we
upsampled the fMRI data by a factor of 4 prior to
analysis. The input variables were convolved with a
‘canonical’ haemodynamic response function (see top
panel of figure 1) to form regressors in a GLM. Figure 7
shows the resulting GLM model fit.

The same input variables and haemodynamic basis
function were then used to define a BDS model. The
observation and state noise variances were set to
s2e Zs2wZ0:1, and the haemodynamic regression coef-
ficient was set to bZ1. Figure 8 shows the resulting
model fit which is clearly superior to the GLM model
fit in figure 7 (but see §4). Figure 9 shows neuronal
activity as estimated using BDS Kalman smoothing.
This includes both event-related responses (the
‘spikes’) and intrinsic activity (slow fluctuations).

Neurodynamic parameters were estimated using
EM as dZ0.80, aZ0.92, b(1)ZK0.44, b(2)ZK0.08
and b(3)ZK0.02. Thus, epochs with faster stimulus
presentations were estimated to have an increasingly
inhibitory effect on event-related neurodynamics.
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This pattern was robust across a wide range of settings
of the noise variance parameters. This finding is
consistent with neuronal repetition suppression effects
and is in agreement with DCM of these data (Friston
et al. 2003).
4. DISCUSSION
We have proposed a new algorithm, based on a BDS,
for model-based deconvolution of fMRI time-series.
The importance of the work is that haemodynamic
time-series can be deconvolved, in an informed way, to
disclose the underlying neuronal activity. Being able to
estimate neuronal responses in a particular brain region
is fundamental for many models of functional inte-
gration and connectivity in the brain. Of course, these
estimates can only describe those components of
neuronal activity to which fMRI is sensitive. They
should, nevertheless, be useful for making fMRI-based
assessments of connectivity (Friston et al. 1997;
Gitelman et al. 2003).

BDS is fitted to data using a novel EM algorithm
where deconvolution is instantiated in an E-step and
model parameters are updated in an M-step.
Simulations showed EM to be faster than maximum-
likelihood optimization based on simplex or pseudo-
Newton methods. Deconvolution can be based either
on a full E-step, using Kalman smoothing, or a partial
E-step based on Kalman filtering. Kalman smoothing
uses the full data record whereas Kalman filtering only
uses information from the past.

Simulations showed that our model-based deconvo-
lution is more accurate than blind deconvolution
Phil. Trans. R. Soc. B (2005)
methods (Wiener filtering). This is because BDS uses

information about the paradigm. We also observed the

following trends. Wiener estimation recovers the

intrinsic dynamics but misses the evoked responses,

whereas BDS Kalman filtering recovers the evoked

responses but misses the intrinsic dynamics. Deconvo-

lution using BDS Kalman smoothing recovers both.

Simulations also suggest that if dynamics are indeed

of a stochastic nature, as is assumed in BDS, then if we

mistakenly assume deterministic dynamics, estimation

of neuronal efficacies and time constants will become

inaccurate. This has implications for models that

assume deterministic dynamics, such as DCM (Friston

et al. 2003).
Our applications of BDS provide good examples of

Kalman smoothing providing better deconvolutions

than Kalman filtering. The reason is that smoothing

also uses future observations and the best estimates of

neuronal activity are obtained using observed fMRI

activity about 5 s or so into the future, that is, at the

peak of the haemodynamic response. This property

should hold for any state-space model of fMRI (see, for

example, Riera et al. 2004).
A comparison of GLM and BDS model fits in

figures 7 and 8 clearly shows that BDS is superior.

Although this is somewhat encouraging, this obser-

vation should be tempered with a note of caution. This

is because the BDS model is more complex and no

penalty was paid for this during model fitting. The

BDS model may therefore be overfitted. In particular,

as fMRI time-series are known to contain aliased

cardiac and respiratory artefacts, the finer details that

http://rstb.royalsocietypublishing.org/
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Figure 6.Word fMRI inputs. Driving input vn (top panel) and
modulatory inputs un (lower panels). The delta functions in
the top panel indicate presentation of words in the subject’s
headphones and the modulatory inputs in the lower panels
indicate epochs with different presentation rates.
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Figure 7. GLM fit to word fMRI data. fMRI time-series
from primary auditory cortex (thin line) and GLM model fit
(thick line).
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Figure 8. BDS fit to word fMRI data. fMRI time-series
from primary auditory cortex (thin line) and BDS model fit
(thick line).
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Figure 9. BDS deconvolution of word fMRI data estimation
of neuronal activity using BDS Kalman smoothing. Event-
related responses can be seen as spikes superimposed on
intrinsic dynamics.
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BDS picks up may be of artefactual rather than

neuronal origin. To eliminate this possibility one

would need to estimate model parameters (especially

the state noise variance) using Bayesian or cross-

validation (Yamashita et al. 2004) methods.

Fortunately, Bayesian methods have already been

developed for linear dynamical systems (Ghahramani

& Beal 2001) that should not require too many changes

to accommodate the bilinear term.

Recently, Riera et al. (2004) have proposed a state-

space model for fMRI time-series which allows for

nonlinear state-output relations. They showed how

model parameters could be estimated using a

maximum-likelihood procedure based on extended

Kalman filtering. Moreover, they showed how the

parameters could be related to a stochastic differential

equation implementation of the Balloon model. Thus,

unlike BDS which assumes linear haemodynamics,

their model can describe nonlinear properties such as
Phil. Trans. R. Soc. B (2005)
haemodynamic refractoriness. This is important, as the
neuronal refractoriness inferred using BDS in §3b, for
example, may actually be of haemodynamic rather than
neuronal origin. In fact, a DCM analysis of these data
(Friston et al. 2003), which allows for both neuronal
and haemodynamic refractoriness, concluded that both
effects were present.

The model proposed by Riera et al. (2004) also differs
from BDS in the input-state relations. In BDS, this is
governed by driving inputs that excite linear neuro-
dynamics, which can be changed according to modula-
tory inputs.Thismeans that neurodynamics and changes
in them can be directly attributed to changes in
experimental context. This modelling approach is there-
fore appropriate for designed experiments where the
inputs are known. In the Riera model, the inputs are not
assumed tobeknown. Instead, amoreflexible radial basis
function approach is used to make inferences about the
onsets of linear neurodynamical processes.

In previous work we have proposed an
fMRI deconvolution model based on the GLM

http://rstb.royalsocietypublishing.org/
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(Gitelman et al. 2003). This uses a forward model in
which neuronal activity, represented using a temporal
basis set and corresponding coefficients, is convolved
with a known haemodynamic kernel to produce an
fMRI time-series. Observation noise is then added.
Deconvolution is achieved by estimating the coeffi-
cients of the temporal basis functions. In Gitelman et al.
(2003), we used full-rank Fourier basis sets and
overcomplete basis sets that used information about
experimental design. Coefficients were estimated using
priors and parametric empirical bayes. A problem with
the method, however, is that for J coefficients (where
J is typically the length of the time-series or longer) one
must store and invert J!J covariance matrices.
A computational benefit of the BDS approach is that,
by making use of factorizations that derive from
Markov properties of the state-space model, one need
only manipulate L!L covariance matrices, where L is
the temporal embedding dimension (L/J). We have
also argued, in §3b, that BDS is more parsimonious and
biologically informed than the GLM.

The method we have proposed has been applied to
deconvolve data at a single voxel. This is useful in
providing a ‘source’ neuronal time-series, for example,
for the analysis of psycho-physiological interaction
(Friston et al. 1997; Gitelman et al. 2003). More
generally, however, one is interested in making infer-
ences about changes in connectivity in neural networks
extended over multiple regions. This requires simul-
taneous deconvolution at multiple voxels and, ideally, a
full model-based spatio-temporal deconvolution. The
application of state-space models to this more difficult
problem is an exciting area of current research (see, for
example, Galka et al. in press).

Will Penny and Karl Friston are funded by the Wellcome
Trust.
APPENDIX A: EMBEDDING
It is convenient to re-write the neurodynamic model as

sn Z ~b
T
~unsnK1 Cd

T
vn Cwn; (A 1)

and ~un is a vector of modulatory inputs augmented with
a 1 as the first entry (note some inputs may be driving
and modulatory, in which case they appear in both
~un and vn) and ~b

T
Z ½a;b�T absorbs a.

The state-space equations can then be written in
terms of the embedded neuronal activity, xn, as

xn ZAnxnK1 CDvn C ~wn

yn Z cTxn Cen;

)
(A 2)

where cTZbTF. The embedded state transition matrix
is

An Z
~b
T
Fn

JL

" #
; (A 3)

where

Fn Z ~unz
T
L (A 4)

is a (BC1)!L matrix (where B is the number of
modulatory inputs) and JL is the (LK1)!L delay
matrix that fills the lower LK1 rows of An. This ensures
Phil. Trans. R. Soc. B (2005)
that the embedded time-series are shifted one time-step
each time An is applied. The input matrix is given by

DZ
dT

0LK1;M

" #
; (A 5)

where M is the number of driving inputs. The state
noise in equation (A 2) is given by ~wnZwnz

T
L. The

covariance of ~wn is Q and the only non-zero entry is
Qð1;1ÞZs2w.

If we have a BDS with a single driving input, no
modulatory inputs and LZ4, aZ0.92 and dZ0.80,
then the embedded neurodynamic model is

xn ZAnxnK1 CDvn Cwn (A 6)

sn

snK1

snK2

snK3

2
666664

3
777775Z

0:92 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

2
6666664

3
7777775

snK1

snK2

snK3

snK4

2
666664

3
777775C

0:80

0

0

0

2
6666664

3
7777775
vnC

wn

0

0

0

2
6666664

3
7777775
:

Modulatory inputs would change the first entry
in An.
APPENDIX B: EM ALGORITHM
In probabilistic models with hidden variables,
maximum-likelihood learning can be implemented
using an EM algorithm (Dempster et al. 1977). This
requires us to maximize the auxiliary function

F Z
Ð
pðXj yÞlog pðX; yÞdX ; (B 1)

whereXZ{x1, ., xn, ., xN} are the hidden variables
and yZ{y1, ., yn, ., yN} are the observed variables
(Ghahramani & Hinton 1996). In BDS, the observed
variables are the fMRI time-series and the hidden
variables are the neuronal activities. Using the Markov
property, we can write

pðX; yÞZ pðx1Þ
YN
nZ2

pðxnjxnK1Þ
YN
nZ1

pð ynjxnÞ: (B 2)

The initial, transition and output probabilities are
given by

pðx1ÞZNðm1;S1Þ; (B 3)

pðxnjxnK1ÞZNðAnxnK1 CDvn;QÞ; (B 4)

pð ynjxnÞZNðcTxn; s
2
e Þ; (B 5)

which define the observation model, state transition
model and initial state distribution. In the above
expression, the quantity c is as defined in equation
(A 2). Therefore, the joint log-likelihood is a sum of
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quadratic terms

LJ Zlog pðX; yÞ

ZK
XN
nZ1

1

2s2e

"
ðynKc

T
xnÞ

TðynKc
T
xnÞ

#
K

N

2
logjs2e j

K
XN
nZ2

1

2

"
ðxnKAnxnK1KDvnÞ

T

!Q
K1ðxnKAnxnK1KDvnÞ

#

K
1

2

"
ðx1Km1Þ

TSK1
1 ðx1Km1Þ

#
K

1

2
logjS1j

K
NK1

2
logjQjK

NL

2
log2p:

In the above equation, the quantity Q refers to an
arbitrary covariance matrix. In appendix B(b) we show
how LJ, as a function of the state variables xn, simplifies
for the Q defined for the BDS model in appendix A.
The expectation over the terms in the above equation
can be maximized as shown in the following sections.

(a) E-step
The objective of the E-step is to compute the
probability of the hidden variables given the data.
Because the initial, transition and output probability
distributions are Gaussian, this can be achieved by
updating the conditional mean and conditional covari-
ance. Following Ghahramani & Hinton (1996), we
write the expected value of xn conditioned on all data
up to time n as xn

nhE½xnjy
n
1�. Similarly, the corres-

ponding covariance is given by Sn
nhVar½xnj y

n
1�.

(i) Kalman filtering
The objective of Kalman filtering is to compute the
probability of the hidden variables given all observed
variables up to that time point, that is, to compute
pðxnj y

n
1Þ. Kalman filtering implements the recursive

computation of xn
n and Sn

n from xnK1
nK1 and SnK1

nK1 in two
steps. Firstly, in the time update step

pðxnj y
nK1
1 ÞZ

Ð
pðxnjxnK1ÞpðxnK1j y

nK1
1 ÞdxnK1: (B 7)

This is implemented using

xnK1
n ZAnx

nK1
nK1 CDvn

SnK1
n ZAnS

nK1
nK1A

T
n CQ:

)
(B 8)

Secondly, in the measurement update step

pðxnj y
n
1ÞZ

pð ynjxnÞpðxnjy
nK1
1 ÞÐ

pð ynjxnÞpðxnjy
nK1
1 Þdxn

: (B 9)

This is simply Bayes rule where pðxnjy
nK1
1 Þ (from

equation (B 7)) describes ourbelief inxnbefore observing
yn. The measurement update is implemented using

K n ZSnK1
n cðcTSnK1

n cCs2e Þ
K1

xn
n ZxnK1

n CK nð yn KcTxnK1
n Þ

Sn
n ZSnK1

n KK nc
TSnK1

n ;

9>>=
>>; (B 10)

where Kn, known as the Kalman gain matrix, operates as
an adaptive step size parameter for each hidden variable.
Phil. Trans. R. Soc. B (2005)
In the above expressions, the quantity c is as defined in
equation (A 2).Theprocedure is initialized usingx0

1Zm1

and S0
1ZS1. These updates are exactly as described in

Ghahramani & Hinton (1996), except that (i) An is used
instead of A because our dynamics are input dependent
and (ii)we use c instead ofCbecause our observations are
univariate.
(ii) Kalman smoothing
The objective of Kalman smoothing is to compute the
probability of the hidden variables given all observed
variables, that is, to compute pðxnjy

N
1 Þ. They are

implemented using a set of ‘backward recursions’
which compute xN

nK1 and SN
nK1 from the forward

estimates xnK1
nK1, S

nK1
nK1. Because these formulae are also

almost identical to those described in Ghahramani &
Hinton (1996), we do not reproduce them here. The
only difference is that An is used instead of A.
(iii) Expectations
TheM-step requires a number of expectations that can
be derived from the E-step

mn Z
Ð
pðxnjyÞxndxn

Pn Z
Ð
pðxnj yÞxnx

T
n dxn

Pn;nK1 Z
Ð
pðxn;xnK1j yÞxnx

T
nK1dxn:

9>>=
>>; (B 11)

These can be computed as shown in Ghahramani &
Hinton (1996), with the minor modification that the
updates for Pn and Pn,nK1 depend on An instead of A.
(b) M-step for neurodynamics

Because theonlynon-zeroelement inQ (seeAppendixA)
is the first entry, the joint log-likelihood can be
written as a function of the neurodynamic parameters
as follows:

LJ ZK
1

2

XN
nZ2

ðxnð1ÞKxnK1F
T
n
~bKv

T
n dÞ

2

ZK
1

2

XN
nZ2

ðxnð1ÞK ½xT
nK1F

T
n ;v

T
n �qÞ

2; (B 12)

where xn(1) is the first entry in xn and

qZ
~b

d

" #
: (B 13)

Taking expectations and derivatives leads to the
update

q̂Z
X
n

~Sn

 !K1 X
n

~vn

 !
; (B 14)

where

~Sn Z
FnPnK1F

T
n FnmnK1v

T
n

vnm
T
nK1F

T
n vnv

T
n

" #
(B 15)

and

~vn Z ½Pn;nK1ð1ÞF
T
n ;mnð1Þv

T
n �: (B 16)
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The quantities mn, mnK1, PnK1 and Pn,nK1 are
computed after Kalman smoothing, vn are the driving
inputs and Fn is a matrix derived from the modulatory
inputs defined in equation (A 4).

(c) M-step for haemodynamics

The output kernel coefficients can be updated using

b̂Z
X
n

~Pnð1Þ

 !K1 X
n

Fmnyn

 !
; (B 17)

where

~Pn ZFPnF
T: (B 18)

The quantities mn and Pn are computed after
Kalman smoothing, F is the matrix of haemodynamic
basis functions and yn is the observed fMRI time-series.
APPENDIX C: LIKELIHOOD
The likelihood is given by

LZ log pðyN1 ÞZ log pðy1ÞC
XN
nZ2

log pð ynj y
nK1
1 Þ (C 1)

where

pð ynj y
nK1
1 ÞZNðcTxnK1

n ; cTSnK1
n cCs

2
e Þ: (C 2)

The quantities xnK1
n and SnK1

n are obtained from
Kalman filtering (see Appendix B(a)).
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