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Abstract

This paper shows that the various computations underlying spatial cognition can be implemented using statistical inference
in a single probabilistic model. Inference is implemented using a common set of ‘lower-level’ computations involving
forward and backward inference over time. For example, to estimate where you are in a known environment, forward
inference is used to optimally combine location estimates from path integration with those from sensory input. To decide
which way to turn to reach a goal, forward inference is used to compute the likelihood of reaching that goal under each
option. To work out which environment you are in, forward inference is used to compute the likelihood of sensory
observations under the different hypotheses. For reaching sensory goals that require a chaining together of decisions,
forward inference can be used to compute a state trajectory that will lead to that goal, and backward inference to refine the
route and estimate control signals that produce the required trajectory. We propose that these computations are reflected
in recent findings of pattern replay in the mammalian brain. Specifically, that theta sequences reflect decision making, theta
flickering reflects model selection, and remote replay reflects route and motor planning. We also propose a mapping of the
above computational processes onto lateral and medial entorhinal cortex and hippocampus.

Citation: Penny WD, Zeidman P, Burgess N (2013) Forward and Backward Inference in Spatial Cognition. PLoS Comput Biol 9(12): e1003383. doi:10.1371/
journal.pcbi.1003383
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Introduction

This paper describes a dynamic Bayesian model of spatial

cognition. Here we define spatial cognition as including the tasks

of localisation (estimating where you are in a known environ-

ment), sensory imagery (constructing a virtual scene), decision

making (deciding which way to turn to reach a goal), model

selection (working out which environment you are in) and motor

planning (computing a sequence of motor commands that will

lead to a sensory goal). We show that all of these tasks can be

implemented using statistical inference in a single probabilistic

model. We note that the above formulation is slightly different to

previous definitions by OKeefe and Nadel [1], Gallistel [2], and

Redish [3] which stress the capacity of determining and

performing a path from a current position towards a desired

location.

The model has hidden states comprising speed, direction and

allocentric location, control variables comprising change in

direction and speed, and sensory states representing olfactory,

somatosensory and visual information. The model describes the

dynamical evolution of hidden states, and provides a mapping

from hidden to sensory states. Inference in the model is then

implemented using a common set of ‘lower-level’ computations

involving forward and backward inference over time. We propose

that these computations are reflected in recent empirical findings

of pattern replay in the mammalian brain [4,5]. Specifically, we

propose that theta sequences reflect decision making, theta

flickering reflects model selection, and remote replay reflects route

and motor planning. Our use of the terms ‘forward’ and

‘backward’ here relate to time and should not be confused with

the direction of message passing in a cortical hierarchy [6].

Our approach falls into the general category of ‘map-based’ or

‘model-based’ planning [1,7–10], or ‘model-based decision mak-

ing’ [11]. The term ‘model-based’ refers to making and updating a

representation of the world (such as a cognitive map). This is to be

contrasted, for example, with ‘model-free’ approaches in which

agents merely react to stimuli, after having previously learnt

stimulus-response mappings through extensive exposure to an

environment [12].

More generally, agents will use a variety of navigation strategies

depending on their cognitive capabilities and familiarity with an

environment. Spatial decisions can, for example, be classified [13]

as being cue-guided (eg. move towards the red house), stimulus

triggered (eg. turn left at the red house), route based (turn left at

the red house then right at the blue house). There is a good deal of

evidence showing that the brain has multiple decision making or

control systems, each with its own strengths and weaknesses [14–

16].

The usefulness of model-based planning is most apparent after

an agent has sufficient experience to learn a model of an

environment and when, subsequently, local changes to that

environment are made which affect the optimal route to a goal

[15]. In statistical terms, these would be referred to as

nonstationarities. For spatial models this could be, for example,

a hole appearing in a wall enabling an agent to take a shortcut, or

a new object appearing preventing an agent taking a habitual

route. Another strength of model-based control is that it can

reduce learning time. Tse et al. [17], for example, studied decision
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making in rats and found that learning required fewer trials when

it occurred against a background of prior knowledge. This allows

new information to be assimilated into an existing schema or

model.

The model-based versus model-free distinction has become

important for the study of decision making in general as the

underlying neuroanatomical differences are being delineated

[11,15]. Khamassi and Humphries [18] argue that, due to the

shared underlying neuroanatomy, spatial navigation strategies that

were previously described as being either place-driven or cue-

driven are better thought of as being model-based versus model-

free. Daw et al. [15] propose that arbitration between model-based

and model-free controllers is based on the relative uncertainty of

the decisions and more recently, Pezzulo et al. [19] have

embedded both types of decision making systems into a single

‘mixed instrumental controller’.

This paper describes the computations underlying spatial

cognition, initially, at a rather abstract level of manipulations of

probability densities and then employs vector and matrix

representations of variables and connectivities. Although we later

on go on to describe how our model relates to underlying neuronal

implementations, the model itself is not specified at a neuronal

level. This style of modelling has many precedents in the literature.

For example, Bousquet et al. [20] have conceived of the

hippocampus as a Kalman filter. This requires that the

hippocampus has an ‘observation model’ relating hidden states

(places specified in allocentric coordinates) to sensory cues, and a

dynamic model relating previous to current state via path

integration. Kalman filtering then refers to the forward inference

algorithm that combines path integral estimates of state with

current sensory cues to provide optimal updates of the agent’s

location. The main function of Kalman filtering in this context is

therefore one of localisation. One of the key points of this paper is

that if an agent has taken the trouble to construct a ‘dynamic

model’ and an ‘observation model’ then they can be used for more

than just localisation; the same models, when combined with

additional inference steps, can also be used for model selection,

decision making and motor planning and to construct sensory

imagery.

Other statistical treatments of hippocampal function address the

issue of context learning [21]. Here, a context is defined in

statistical terms as a stationary distribution of experiences. The

problem of context learning is then reduced to one of clustering

together an agent’s experiences into a finite number of contexts.

This is addressed through the use of Hidden Markov Models

(HMMs) and it is shown how this perspective explains experi-

mental findings in rat navigation concerning sequence and reversal

learning and place-cell remapping. Johnson et al. [22] provide a

normative statistical model of exploratory behaviour called

Information Foraging (IF). ‘Passive IF’ describes the temporal

distribution of an agent’s sampling process (eg. spending longer

investigating novel versus familiar objects) whereas ‘Directed IF’

describes its spatial distribution (eg. where it should move to next).

Additionally, IF is conceived to apply both to the environment and

the agent’s memory of the environment. Directed IF proposes a

common hippocampal substrate for constructive memory (eg.

scene construction), vicarious trial and error behaviour, model-

based facilitation of memory performance, and memory consol-

idation. The IF framework samples spatial locations, or episodic

memories using an information theoretic criterion. To compute

this criterion it is necessary for the agent to possess an observation

model of the sort described in our article below. A further

statistical treatment of hippocampal function comprises a two-

stage processing model of memory formation in the entorhinal-

hippocampal loop [23]. The first stage, which is proposed to take

place during theta activity, allows hippocampus to temporally

decorrelate and sparsify its input, and develop representations

based on an Independent Component Analysis. The second stage,

which is proposed to take place during Sharp Wave Ripples [24],

allows hippocampus to replay these new representations to

neocortex where long term memories are held to be instantiated.

This paper is concerned with computational processes under-

lying spatial cognition and we describe how the underlying

computations may be instantiated in hippocampus and associated

brain regions. The hippocampal formation is, however, implicated

in a much broader array of functions [25], such as episodic

memory, that our model does not address. Indeed one of the key

differences between our approach and some other models of

spatial cognition [10,16] is that the approach we describe has no

episodic component. Specifically, the sequences that are generated

in our model are the result of online computation rather than

memory recall. However, as we highlight in the discussion, the

interactions between episodic memory and the computations we

describe would be especially interesting to examine in future work.

The paper is structured as follows. The computer simulations in

this paper describe an agent acting in a simple two-dimensional

environment. This environment produces visual, somatosensory

and olfactory cues as described in the methods section on the

‘Environmental Model’. The agent then develops its own model of

the environment as described in the ‘Probabilistic Model’ section.

This describes the two elements of the model (i) a dynamical model

describing the evolution of hidden states and (ii) a mapping from

hidden states to sensory states. The section on ‘Spatial Cognition

as Statistical Inference’ then describes how the various tasks of

localisation, decision making (and sensory imagery), model

selection and motor planning can be described in probabilistic

terms. The section on ‘Forward and Backward Inference’

describes the common set of forward and backward recursions

for estimating the required probability densities. The section on

‘Results’ describes an implementation of the above algorithms and

provides some numerical results. The discussion section on

Author Summary

The ability of mammals to navigate is well studied, both
behaviourally and in terms on the underlying neurophys-
iology. Navigation is a well studied topic in computational
fields such as machine learning and signal processing.
However, studies in computational neuroscience, which
draw together these findings, have mainly focused on
specific navigation tasks such as spatial localisation. In this
paper, we propose a single probabilistic model which can
support multiple tasks, from working out which environ-
ment you are in, to computing a sequence of motor
commands that will take you to a sensory goal, such as
being warm or viewing a particular object. We describe
how these tasks can be implemented using a common set
of lower level algorithms that implement ‘forward and
backward inference over time’. We relate these algorithms
to recent findings in animal electrophysiology, where
sequences of hippocampal cell activations are observed
before, during or after a navigation task, and these
sequences are played either forwards or backwards.
Additionally, one function of the hippocampus that is
preserved across mammals is that it integrates spatial and
non-spatial information, and we propose how the forward
and backward inference algorithms naturally map onto
this architecture.

Forward and Backward Inference in Navigation
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‘Neuronal Implementation’ then describes our proposal for how

these algorithms are implemented in the brain and how functional

connectivity among a candidate set of brain regions changes as a

function of task. We conclude with a discussion of how the above

computations might relate to pattern replay and what are the

specific predictions of our model.

Methods

In what follows matrices are written in upper case bold type and

vectors in lower case bold. Scalars are written in upper or lower

case plain type. We use N(x; m,C) to denote a multivariate

Gaussian density over the random variable x having mean m and

covariance C . Table 1 provides a list of all the symbols used in the

main text.

Environmental Model
Computer simulations are implemented in Matlab (R2012a,

The MathWorks, Inc.) and are based on an agent navigating in a

simple 2D environment depicted in Figure 1. The location of the

agent is specified using orthogonal allocentric coordinates

l ~½l1,l2�T and its direction of heading (clockwise from positive

l2) is w. The environment contains two inner walls and four

boundary walls. The agent is equipped with a touch sensor that

detects the minimum Euclidian distance to a wall, yt. It is also

equipped with a nose that detects olfactory input, yo. In this paper

we consider a single olfactory source located at allocentric

coordinates o s~½o1,o2�T . We assume this source diffuses

isotropically with scale parameter ss so that olfactory input at

location l is given by an exponential function

yo~Ao exp {
DD l { o sDD2

2s2
s

� �
ð1Þ

All of the simulations use a single olfactory source with Ao~10,

o s~½7,7�T and ss~5. More realistic environments with multiple

olfactory sources and turbulence [26] are beyond the scope of this

paper.

The agent is also equipped with a retina that is aligned with the

direction of heading. The retina provides one-dimensional visual

input, y v, from 245 to +45 degrees of visual angle around w and

comprises J~20 pixels. The retina provides information about the

‘colour’ of the walls within its field of view. In our simulations

‘colour’ is a scalar variable which we have displayed using

colormaps for ease of visualisation. The scalar values correspond-

ing to the various walls are 0.14 (north border), 0.29 (east border),

0.43 (south border), 0.57 (west border), 0.71 (west wall), 0.86 (east

wall). These map onto the colours shown in Figure 1 using

Matlab’s default colour map. Although classical laboratory

Table 1. Description of mathematical symbols used in the
main text.

Environmental Model

Ao Scaling of olfactory source

os Allocentric location of olfactory source

ss Spatial diffusion of olfactory source

~YY n Sequence of sensory states from
environmental model

Sensory State Variables

yo,yt, y v Olfactory, somatosensory and visual
states

yn Sensory state (comprising yo,yt, y v)

Y n Sequence of sensory states up to time n

(observations or goals)

e n Sensory noise

Ro Variance of olfactory noise

Rt Variance of somatosensory noise

R v Covariance of visual noise

R Sensory noise covariance
(blkdiag(Ro,Rt, R v))

Control Variables

un Control signal (virtual input or motor
efference copy)

U n Sequence of control signals up to time
index n

ûun Estimate of control signal from
backward inference

B n Uncertainty in est. of control signal from
backward inference

Hidden State Variables

l Allocentric location comprising l1 and l2

s Speed

w Direction of heading

x n Hidden state (comprising l ,s,w) at time
step n

X n Hidden state sequence up to time index
n

F n Flow term describing change of state
wrt. previous state

H n Flow term describing change of state
wrt. input

z n Hidden state noise

Q Hidden state noise covariance

m n State estimate from path integration
(forward inference)

m̂m n State estimate based on Bayes rule
(forward inference)

m n State estimate from backward inference

Q n Covariance of state estimate from path
integration

P n Covariance of state estimate from Bayes
rule (forward inference)

P̂P n
Covariance of state estimate from
backward inference

Agent’s Observation Model

Ei Model of environment i

go , gt , g v Agent’s predictions of olfactory,
somatosensory and visual state

g () Agent’s predictions of sensory state

G n Local linearisation of observation model

k Precision of head direction cells

hj Output of jth head direction cell

pi Output of ith spatial basis function

wo , wt , w v Weights in agent’s olfactory,
somatosensory and visual models

doi:10.1371/journal.pcbi.1003383.t001

Table 1. Cont.

Forward and Backward Inference in Navigation
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navigation tasks do not involve walls with different colours, they

employ extra-maze cues which enable experimental subjects to

localize themselves. For the sake of simplicity, here we provide such

visual information to the simulated agent by variation of wall colour.

The environmental model of retinal input takes the values of l

and w and produces y v using calculations based on the two-

dimensional geometrical relation of the agent with the environ-

ment. This uses a simple ray-tracing algorithm. The agent then

has its own predictive model of retinal input, described in the

‘vision’ section below, which predicts y v from l and w using a

basis set expansion. The agent has similar models of olfactory and

somatosensory input (see ‘Olfaction’ and ‘Touch’ below). Overall,

the environmental model produces the signals y v, yt and yo which

form the sensory inputs to the agent’s spatial cognition model (see

next section). We write this as ~yy~½yo,yt, y v�T to denote sensory

signals from the environment. For a sequence of signals we

write ~YY n~f y1, y2,::: yng. These sensory inputs are surrogates

for the compact codes produced by predictive coding in sensory

cortices [27]. We emphasise that the agent has its own model of

sensory input (an ‘observation model’) which is distinct from the

environmental input itself. The agent’s observation model is learnt

from exposure to the environment.

Probabilistic Model
We investigate agents having a model comprising two parts (i) a

dynamical model and (ii) an observation model. The dynamical

model describes how the agent’s internal state, xn is updated from

the previous time step xn{1 and motor efference copy un{1. The

observation model is a mapping from hidden states xn to sensory

states yn. Our probabilistic model falls into the general class of

discrete-time nonlinear state-space models

xn~f (xn{1, un{1)zzn

yn~g (xn)zen

ð2Þ

where un is a control input, zn is state noise and en is sensory

noise. The noise components are Gaussian distributed with

zn*N(zn; 0, Q ) and en*N(en; 0, R ). This is a Nonlinear

Dynamical System (NDS) with inputs and hidden variables. We

consider a series of time points t(1),:::,t(n),:::t(N) and denote

sequences of sensory states, hidden states, and controls using

Yn~fy1, y2,::: yng, Xn~fx1, x2,::: x ng, and U n~

fu1, u2,::: ung. These are also referred to as trajectories. The

above equations implicitly specify the state transition probability

density p(xnDxn{1, un{1) and the observation probability density

p(ynDxn,E). This latter probability depends on the agent’s model

of its environment, E. Together these densities comprise the

agent’s generative model, as depicted in Figure 2 (top left).

Path integration. During spatial localisation, an agent’s

current location can be computed using path integration. This

takes the previous location, direction of heading, velocity and

elapsed time and uses them to compute current position, by

integrating the associated differential equation. We assume that

the agent is in receipt of a control signal u which delivers

instructions to change direction, w, and speed, s. During

navigation, for example, these signals will correspond to motor

efference copy. Later we will show how these control signals can be

inferred by conditioning on desirable future events (i.e. how the

agent performs planning). For the moment we assume the controls

are known. The dynamical model is

dl1

dt
~s sin w

dl2

dt
~s cos w

ds

dt
~u1{ks

dw

dt
~u2

ð3Þ

Here the state variables are two orthogonal axes of allocentric

location, l ~½l1,l2�T , speed s and direction w (clockwise angle

relative to the positive l2 axis). Motion is also subject to frictional

forces as defined by the constant k. We set k~5. We can write a

Figure 1. Model of environment. Allocentric representation (left panel) and egocentric view (right panel). The agent (white triangle) is at
allocentric location l1~l2~12 and oriented at w~0 degrees (clockwise relative to the positive l2 axis). The environment contains two inner walls and
four boundary walls. The agent is equipped with whiskers that detect the minimum Euclidian distance to a wall, yt. It is also equipped with a nose
that detects the signal from an olfactory source placed at l1~7, l2~7 in the south-west corner of the maze (white circle). The agent also has a retina
that is fixed in orientation and always aligned with the direction of heading, w. The retina provides one-dimensional visual input, y v (displayed as a
one-dimensional image in the right panel), from 245 to +45 degrees of visual angle around w and comprising J~20 pixels.
doi:10.1371/journal.pcbi.1003383.g001

Forward and Backward Inference in Navigation
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state vector x~½l1,l2,s,w�T . The control signals u1 and u2 change

the agent’s speed and direction. We can write

dx

dt
~f(x,u) ð4Þ

which can be integrated to form a discrete-time representation

xn~Fn xn{1z H nun{1 ð5Þ

using local linearisation as described in Text S1. If the

deterministic component of the dynamics is originally described

using differential equations, the flow terms F n and H n can be

computed as shown in Text S1. Here F n describes how the

current hidden state depends on the previous hidden state, and

H n how it depends on the previous input. An example of using the

above equations for implementing path integration is described in

the ‘Sensory Imagery’ simulation section below. Errors in path

integration, perhaps due to inaccuracies in the representation of

time or in local linearisation, can also be included, i.e.

xn~ Fn xn{1zHn un{1zzn ð6Þ

where zn is a random variable. This corresponds to a locally

linearised version of equation 2. For the results in this paper we

used a local regression method, due to Schaal et al. [28], to

compute F n and H n as this resulted in more robust estimates.

This is described in TextS1.

Multisensory input. We consider agents with sensory states,

yn~½yo
n,yt

n, y v
n�

T
having olfactory, somatosensory and visual

components. Sensory states will typically be low-dimensional codes

that index richer multimodal representations in sensory cortices.

During navigation and model selection these will correspond to

inputs from the environmental model, ~yyn. During decision

making and motor planning these will correspond to internally

generated sensory goals. The agent associates hidden states with

sensory states using the mapping g(xn), a nonlinear function of the

state variables. We have

yn~ g (xn)z en ð7Þ

where en is zero-mean Gaussian noise with covariance R .

During localisation and model selection g(xn) corresponds to the

agent’s prediction of its sensory input, and R specifies the

covariance of the prediction errors. These predictions can be split

Figure 2. Generative model for spatial cognition. The agent’s dynamical model is embodied in the red arrows, p(xN Dxn{1, un{1), and its
observation model in the blue arrows, p(yN DxN ,E). All of the agent’s spatial computations are based on statistical inference in this same probabilistic
generative model. The computations are defined by what variables are known (gray shading) and what the agent wishes to estimate. Sensory
Imagery Given a known initial state, x1 , and virtual motor commands UN~fu1,:: uNg, the agent can generate sensory imagery YN~fy1,::, yNg.
Decision Making Given initial state x1 , a sequence of putative motor commands UN (eg. left turn), and sensory goals YN , an agent can compute
the likelihood of attaining those goals given UN and x1 , p(YN DUN , x1,E). This computation requires a single sweep of forward inference. The agent
can then repeat this for a second putative motor sequence (eg. right turn), and decide which turn to take based on the likelihood ratio. Model
Selection Here, the agent has made observations YN and computes the likelihood ratio under two different models of the environment. Planning
can be formulated as estimation of a density over actions p(UN Dx1, YN ,E) given current state x1 and desired sensory states, YN . This requires a
forward sweep to compute the hidden states that are commensurate with the goals, and a backward sweep to compute the motor commands that
will produce the required hidden state trajectory.
doi:10.1371/journal.pcbi.1003383.g002
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into modality-specific components g (xn)~½go
n, gt

n, g v
n� with asso-

ciated prediction errors having (co-)variances Ro, Rt and R v.

Equation 7 defines the likelihood

p(ynDxn,E)~N(yn; g (xn), R ) ð8Þ

We assume the different modalities are independent given the state

so that

p(ynDxn,E)~p(yo
nDxn,E)p(yt

nD x n,E)p(y v
nDxn,E) ð9Þ

where

p(yo
nDxn,E)~N(yo

n; go,Ro)

p(yt
nDxn,E)~N(yt

n; gt,Rt)

p( y v
nDxn,E)~N(y v

n; g v, R v)

ð10Þ

so that R~blkdiag(R0,Rt, R v). We now describe the agent’s

model for generating the predictions go, gt and g v. Olfactory

input is predicted using a basis set

go(xn)~wo(1)z
XNo

i~2

wo(i)pi( l n) ð11Þ

where No is the number of basis functions, l n is the location, and

wo are parameters of the olfactory model. Here we use a local

basis function representation where

pi( l )~exp {
DD l { m i DD2

2s2

� �

is the response of the ith basis cell. Following Foster et al. [29]

pi( l ) may be viewed as an idealised place cell output, where m i is

the spatial location of the centre of cell i’s place field, and s its

breadth. We assume that the parameters governing the location

and width of these cells have been set in a previous learning phase.

In this paper we used s~2:4 and the centres of the place fields m i

were arranged to form a 10-by-10 grid in allocentric space. The

same set of cells were used as a basis for predicting olfactory,

somatosensory and visual input.

The parameters w o will have to be learnt for each new

environment. For the results in this paper they are learnt using a

regression approach, which assumes knowledge of the agent’s

location. More generally, they will have to be learnt without such

knowledge and on a slower time scale than (or after learning of) the

place cell centres and widths. This is perfectly feasible but beyond

the scope of the current paper. We return to this issue in the

discussion.

In the agent’s model, somatosensory input is predicted using a

basis set

gt(x n)~wt(1)z
XNt

i~2

wt(i)pi( l n) ð12Þ

where w t are the parameters of the somatosensory model. Here

we envisage that processing in somatosensory cortex is sufficiently

sophisticated to deliver a signal yt that is the minimum distance to

a physical boundary. If the agent had whiskers, a simple function

of yt would correspond to the amount of whisker-related neural

activity. More sophisticated generative models of somatosensory

input would have a directional, and perhaps a dynamic

component. But this is beyond the scope of the current paper.

The agent’s retina is aligned with the direction of heading, w.

The retina provides one-dimensional visual input, y v, from 245

to +45 degrees of visual angle around w and comprising J~20
pixels. An example of retinal input is shown in the right panel of

Figure 1. The agent’s prediction of this visual input is provided by

a weighted conjunction of inputs from populations of place/grid

and head direction cells. The head direction cells are defined as

hj(w)~exp(k cos(w{wj)) ð13Þ

where wj is the preferred angle of the jth basis function and k

defines the range of angles to which it is sensitive. The output for

retinal angle wr is given simply by hj(wzwr). Visual input at retinal

angle wr is then predicted to be

gv
r (xn)~

X
ij

wv
ijpi( l n)hj(wnzwr) ð14Þ

This sort of conjunctive representation is widely used to provide

transformations among coordinate systems and, for sensorimotor

transforms, is thought to be supported by parietal cortex [30]. The

above mapping is adaptable and can be optimised by choosing

appropriate weights w v and these will have to be learnt for each

new environment.

It is a gross simplification to predict retinal input, or egocentric

views, with a single stage of computation as in the above equation.

More realistic models of this process [31,32] propose separate

representations of the spatial and textural components of

landmarks, with bilateral connectivity to cells in a parietal network

which effect a transform between allocentric and egocentric

coordinates. Egocentric view cells are then also connected to this

parietal network. This level of detail is omitted from our current

model, as our aim is to focus on temporal dynamics.

Overall, the agent’s model of multisensory input has parameters

w~½wo, w t, w v�T . For each new environment, E, the agent has a

separate set of parameters. Experiments on rats have found that

changes to the environment cause changes in the pattern of firing

of place cells [33,34]. This could happen in our model if the cells

fire at rates go(xn), gt(xn) and g v(xn) and the parameters w are

updated to reflect changes in sensory features. In the simulations

that follow the w parameters are set using a separate learning

phase prior to spatial cognition. More detailed models of this

learning process propose that cells in the dentate gyrus select

which CA3 cells will be engaged for encoding a new environment

[35]. Connections from EC to selected CA3 cells are then updated

to learn the relevant place-landmark associations.

Spatial Cognition as Statistical Inference
This section describes, initially at the level of manipulations of

probability densities, how the various computations underlying

spatial cognition can be implemented. It then describes a practical

algorithm based on local linearisation. If an agent has a

probabilistic model of its environment, E, then the various tasks

that together comprise spatial cognition are optimally implement-

ed using statistical inference in that model. These inferences will be

optimal in the sense of maximising likelihood. The various tasks -

localisation, imagery, decision making, model selection and

planning - all rely on the same statistical model. They are

differentiated by what variables are known and what the agent

wishes to compute. This is depicted in the panels in Figure 2 where

shaded circles denote known quantities. Additionally, for each
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task, the information entering the system may be of a different

nature. For example, for imagery, the inputs, U n, are virtual

motor commands and for localisation they are motor efference

copies. Similarly, during localisation and model selection the agent

receives inputs from sensory cortices. For the simulations in this

paper these come from the environmental model, ~YY n. However,

during decision making and motor planning these inputs do not

derive from the agent’s environment but are generated internally

and correspond to the agent’s goals Y n.

Localisation. The use of dynamic models with hidden states

for spatial localisation is well established in the literature [20,36,37].

Estimation of spatial location requires motor efference copy U n,

and sensory input Y N . The initial location x1 may be known or

specified with some degree of uncertainty. Forward inference over

states (in time) can then be used to optimally combine probabilistic

path integration with sensory input to estimate location. This

produces the density p(xnDU n, x1, ~YY n,E). A Gaussian approxi-

mation to this density based on a local linearisation is described

below in the section on forward inference over states (see equation

24). The agent’s best estimate of its location is then given by the

maximum likelihood estimate

x̂xn~ arg max
x n

p(xnDU n, x1, ~YY n,E) ð15Þ

We refer to this as a maximum likelihood estimate because there is

no distribution over xn prior to observing the sequence ~YY n. This

is commensurate with standard terminology [38]. However, one

could also think of this as a posterior estimate, due to the sequential

nature of the estimation process (see below), in that there is a

distribution over xn prior to the observation at a single time point
~yn. For the Gaussian approximation to this density, we have

x̂xn~ mn where mn is the mean of the Gaussian.

It is also possible to improve the above estimates retrospectively

x̂xn~ arg max
x n

p(xnDU N , x1, ŶY N ,E) ð16Þ

where nvN . For example, upon leaving an underground metro

system and turning left you may not know that you are heading

north until you encounter a familiar landmark. You can then use

this observation to update your estimate about where you have

been previously. Estimation of p(xnDU N , x1, ~YY N ,E) requires

forward and backward inference over hidden states (see equation

30). The Gaussian approximation to this density has mean m̂mn, so

that under the local linear approximation we have x̂xn~ m̂mn.

Decision making. Given initial state x1, a sequence of

putative motor commands U 1
N (eg. left turn), and sensory goals

Y N , an agent can compute the likelihood of attaining those goals,

p(Y N DU 1
N , x1,E). This computation requires a single sweep (or

‘replay’ - see discussion) of forward inference (see equation 29 in

the section on ‘Likelihood’ below). The agent can then repeat this

for a second putative motor sequence (eg. right turn), U 2
N , and

decide which turn to take based on the likelihood ratio.

LR(U 1
N , U 2

N )~
p(Y N DU 1

N , x1,E)

p(Y N DU 2
N , x1,E)

ð17Þ

Here Y N are internally generated task goals rather than sensory

input from the environment ~YY N . Decisions based on the

likelihood ratio are statistically optimal [38]. In probabilistic

models of sequential data the likelihood can be computed by a

single forward pass of inference, as described below. We would

therefore need two forward passes to compute the LR, one for

each putative motor sequence.

This formulation of decision making is based on sets of motor

primitives being combined to form actions such as ‘turn left’ or

‘turn right’. This can therefore also be regarded as motor planning

(see below) at some higher level. Additionally, the generation of

sensory imagery can be viewed as a component of decision making

because, to evaluate the likelihood, sensory goals must be

compared with sensory predictions from the agent’s generative

model. In later sections we consider sensory imagery in its own

right.

Model selection. Given motor efference copy U N , and

sensory input ~YY N the agent computes the likelihood ratio under

two different models of the environment. The agent’s best estimate

of which environment it is in, is given by the maximum likelihood

estimate

ÊE~ arg max
Ei

p( ~YY N DU N , x1,Ei) ð18Þ

For consistency with terminology in statistics, we refer to this as

model selection. This can be implemented using multiple sweeps

of forward inference, one for each potential environment. The

likelihood can be computed, for example, for two maze models E1

and E2 each hypothesising that the agent is in a particular

environment. To decide which environment the observations are

drawn from one can compute the likelihood ratio

LR(E1,E2)~
p( ~YY N DUN , x1,E1)

p( ~YY N DUN , x1,E2)
ð19Þ

where each probability is computed using equation 29 in the

section on ‘Likelihood’ below.

Motor planning. Given current state x 1 and sensory goals,

Y N , planning can be formulated as estimation of a density over

actions p(U nDx1,Y N ,E), as depicted in Figure 2. This requires a

forward sweep to compute the hidden states that are commensu-

rate with the goals, and a backward sweep to compute the motor

commands that will produce the required hidden state trajectory.

This is described in the section below on ‘Inference over Inputs’

and can be implemented using equations 33 and 34. The agent’s

best estimate of the motor commands needed to attain sensory

goals Y N is given by the maximum likelihood estimate

ÛU n~ arg max
U n

p(U nDx1,Y N ,E) ð20Þ

Here Y N are internally generated task goals rather than sensory

input from the environment ~YY N .

Forward and Backward Inference
Text S2 describes how the required probability densities can be

computed at the very general level of manipulations of probability

densities. However, these operations cannot be implemented

exactly. They can only be implemented approximately and there

are basically two types of approximate inference methods. These

are based either on sampling [39] or Local Linearization (LL) [40].

In this paper we adopt an LL approach although this is not

without disadvantages. We return to this important issue in the

discussion. The following subsections describe the forward and

backward inference algorithms under LL assumptions. Readers

unfamiliar with statistical inference for dynamical systems models

may benefit from textbook material [38].
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Forward inference over hidden states. The problem of

estimating the hidden states given current and previous sensory

states is solved using Forward Inference. This produces the

marginal densities p(xnDU n,x1,Yn). Estimation of the state xn is

based only on information up to that time point. For Linear

Dynamical Systems (LDS), forward inference corresponds to the

Kalman Filter, and for nonlinear dynamical systems under LL,

forward inference can be instantiated using an Extended Kalman

Filter (EKF) [40]. After local linearisation the state-space model

can be written as

xn~ F n xn{1z H n un{1z zn

yn~ G n xnz en

ð21Þ

where F n, H n and G n are Jacobian matrices (see TextS1 and

below). There is a long history of applying KFs, EKFs and related

state-space models to the problem of localisation [20,36]. Indeed

one of the key implementations of the KF is for solving the

localisation problem. These probabilistic algorithms have been

used in a formalism known as Simultaneous Localisation and

Mapping (SLAM) [37]. The goal of SLAM research is to develop

an algorithm that would allow an agent to explore and map novel

environments.

In the context of localisation, forward inference allows

information from path integration and sensory input to be

combined in an optimal way. Under a local linear approximation

the state estimates are Gaussian

p(xnDU n,x 1,Y n,E)~N(x n; mn,P n) ð22Þ

and these quantities can be estimated recursively using an EKF.

Here mn is the agent’s estimate of x n based only on information

up to time index n. The covariance P n quantifies the agent’s

uncertainty about x n, again based on information up to that time

point. The agent’s best estimate of location, based on forward

inference, is then given by the first two entries in mn (the third and

fourth entries are speed and direction, see equation 3). The EKF

equations can be expressed in two steps. The first is a prediction step

p(x nDU n,x 1,Y n{1,E)~N(xn; m n,Q n)

mn~F n mn{1z H n un{1

Q n~ F n P n{1 F T
n z Q

ð23Þ

where Q is the state noise covariance defined earlier. During

localisation this corresponds to probabilistic path integration. The

second is a correction step

p(x nDU n,x 1,Y n,E)~N(x n; mn,P n)

mn~ mnz K n(yn{ g (mn))

P n~(I {K n G n)Q n

ð24Þ

where the ‘Kalman Gain’ is

K n~ Q n G T
n (G n Q n G T

n z R){1 ð25Þ

and the i, jth entry in G n is given by

Gn(i, j)~
dg(x )i

dxj

ð26Þ

evaluated at x ~ mn. The correction step provides optimal

combination of probabilistic path integration with sensory input.

More specifically, probabilistic path integration produces an

estimate of the current state mn. The agent produces a prediction

of sensory input g (mn) and compares it with actual sensory input

yn. The final estimate of the current state is then m n plus the

Kalman gain times the prediction error yn{ g (mn). This very

naturally follows predictive coding principles, as described below in

the section on Neuronal Implementation. Together, the above

updates implement an EKF and these recursions are initialised by

specifying the initial distribution over hidden states.

p( x 1DE)~N(x1; m1, P 1) ð27Þ

Likelihood. As described in Text S2, we can use the

predictive densities to compute the likelihood of a data sequence.

Under local linearisation the predictive density is given by

p(ynDU n, x1, Y n{1,E)~N(yn; g (mn), Sn)

Sn~G n Q n G T
n z R

ð28Þ

The log-likelihood of a sequence of observations is then

log p(Y N DU N , x1,E)~
XN

n~1

log p(ynDU n, x1, Y n{1,E)

~{
1

2

XN

n~1

eT
n S{1

n en{
1

2

XN

n~1

log D SnD

ð29Þ

where en~ yn{ g ( mn) is the prediction error. The (log)

likelihood of sensory input Y N can thus be computed using

equation 29. The first term in this equation corresponds to an

accumulation of sum-squared prediction errors weighted by the

inverse variance (precision). During decision making, the likeli-

hood of attaining sensory goals Y N under a proposed control

sequence U N is computed using this method. During model

selection, the likelihood of sensory observations ~YY N , under a

proposed model of the environment, E, is also computed using this

method.

Backward inference over hidden states. Forward infer-

ence over the states is used to estimate a distribution over x n

using all observations up to time point t(n). Backward inference

over the states can then be used to improve these estimates by

using observations up to time point t(N) i.e. future observations.

The resulting estimates are therefore retrospective. An example of

when this retrospective updating is beneficial is when the

observation of a new landmark disambiguates where you have

previously been located. For locally linear systems, Backward

Inference over states is implemented using

p(xnDU N ,x1,Y N ,E)~N(xn; m̂mn, P̂P n)

m̂mn~ mnz J n(m̂mnz1{ m nz1)

P̂P n~ P nz J n(P̂P nz1{ Q nz1) J T
n

J n~ P n F T
n Q {1

nz1

ð30Þ

Here, m̂mn is the optimal state estimate given all sensory data up to

time N. Intuitively, the state estimate based on data up to time n,

mn, is improved upon based on state estimates at future time
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points (mn for n~nz1,::,N). The resulting sequence m̂mn will

provide more accurate state estimates than those based on purely

forward inference, mn.

The above formulae are known as the ‘gamma recursions’

(see Text S2). An alternative algorithm for computing

p(xnDU N , x1, Y N ,E), based on the ‘beta recursions’, requires

storage of the data sequence Y N and so is not an online

algorithm. The gamma recursions may therefore have a simpler

neuronal implementation (see below).

The above recursions depend on a number of quantities from

forward inference. These are mn, mn, Q n and P n. The gamma

recursions are initialised with m̂mN~ mN and P̂P N~ P N . For an

LDS the above equations constitute the well-known Rauch-Tung-

Striebel (RTS) smoother. Various reparameterisations can be

made to remove computation of matrix inverses [41]. A predictive

coding interpretation is readily applied to the second row of the

above equation. The backward estimate m̂mn is equal to the

forward estimate mn plus a correction term which is given by a

learning rate matrix J n times a prediction error. This prediction

error is the difference between the estimate of the next state based

on the entire data sequence, m̂mnz1, minus the prediction of the

next state based only on data up to the current time point, mnz1.

Inference over inputs. This section describes forward and

backward inference over hidden states and inputs. If the controls

are unknown we can estimate them by computing

p(mnD x 1,Y N ,E) where x1 is the current state and Y N are the

desired sensory states. This probability can be computed via

forward and backward inference in the following locally linearised

model

xn~ Fn xn{1z H n un{1z zn

yn~ Gn x nz en

ð31Þ

with zn*N(zn; 0, Q x), un*N(un; 0, Q u) and en*N

(en; 0, R ). The initial control values are distributed as

p(u1DE)~N(u1; r1, B 1) ð32Þ

Informally, the forward sweep is necessary to compute the hidden

states that are commensurate with sensory goals, and the

backward sweep for computing the inputs that will produce the

required state trajectory. Text S3 shows how inferences about the

unknown controls can be made by creating an augmented state-

space model and using the previously described equations for

forward and backward inference over the states. The density over

estimated inputs is a Gaussian

p(unD x1,Y N ,E)~N(un; ûun, B̂B n) ð33Þ

with mean ûun and covariance B̂B n. In the absence of correlations

between inputs and hidden states the backward inference formulae

have the simplified form

ûun~ Ln(m̂mnz1{ m nz1)

Ln~ B n H T Q {1
nz1

B̂B n~ B nz Ln( P̂P nz1{Q nz1)LT
n

ð34Þ

Effectively, the optimal inputs are estimated using a model-

based deconvolution of the desired sensory states.

Results

This section describes computer simulations showing how the

agent’s model can be used to generate visual imagery, and how

inference in that model can implement decision making, model

selection and motor planning. Here, ‘model selection’ refers to

estimating which model of the environment is most likely given

sensory data. An agent would use this to figure out what maze it

was in.

In what follows we assume the agent is already equipped with

the correct dynamical model p(xnDxn{1, un{1). The first section

below describes a preliminary learning phase in which the sensory

mapping p(ynDxn,E) is learnt for a given environment E. Once

the agent has a dynamical and a sensory mapping it is in effect

equipped with a model of its environment which can be thought of

as its own virtual reality system. It can then predict the sensory

consequences of the control signals it receives.

The degree to which each sensory modality is used in the following

simulations is determined by the relative values of observation noise

covariance (see TextS4 for details). Here we set Ro~0:125, Rt~0:1
and R v~100I (see equation 10). This means that the agent is

guided most by olfaction and touch, and least by vision. Note,

however, that as there are many more visual than somatosensory or

olfactory inputs this differential weighting is perhaps less distinct than

it might first appear. All the simulations use N~1000 time points

with a time step of dt~0:01. The simulations also used a very low

level of dynamical noise, Q~10{12 I , except for the planning

example where we used Q~10{6 I .

Sensory Imagery
This section describes a preliminary learning phase in which an

agent is exposed to an environment to learn the sensory mapping

from states xn to observations yn. Here the agent is provided

with the observations yn and also exact knowledge of the hidden

states xn. More realistic simulations would also require the agent

to infer the hidden states xn whilst learning. This is in principle

straightforward but is beyond the scope of the current paper, as

our focus is on temporal dynamics. We return to this point in the

discussion.

The olfactory and sensorimotor models use a 10-by-10 grid of

basis cells giving 100 cells in all. We assume that the parameters

governing the location and width of these cells have been set in a

previous learning phase. The weight vectors wo and w t (see

equations 11 and 12) were optimised using least squares regression

and 225 training exemplars with uniform spatial sampling. The

retinal model used the same number and location of basis cells. It

additionally used 32 head direction cells each having a directional

precision parameter k~3. The conjunctive representation com-

prised 3200 basis cells. The weight vector w v (see equation 14)

was optimised using least squares and a training set comprising

10,575 exemplars. These were generated from spatial positions

taken uniformly throughout the maze. Visual input from the

environmental model for multiple directions at each spatial

location was used to create the training examples. At the end of

this learning phase the agent is exquisitely familiar with the

environment.

A trained model can then be used to generate visual imagery.

This is implemented by specifying a synthetic control sequence,

running path integration and generating predictions from the

model. For example, Figure 3A shows a control sequence that is

used to generate the ‘north-east’ trajectory shown in Figure 3C.

We also generated ‘north-west’, ‘south-west’ and ‘south-east’

trajectories by changing the sign of direction change, u2, and/or

the initial direction, w1.
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To quantitatively assess the accuracy of these imagery

sequences, f g 1, g 2,:::, g Ng, we compared them to the sequence

of visual inputs that would have been received from the

environmental model, f ~yy1, ~yy2,:::, ~yyNg. Figure 3D plots the

proportion of variance explained by the agent’s model as a

function of retinal angle. These plots were computed separately for

each trajectory, and show that only activity in the central retina is

accurately predicted. This is due to the increased optic flow in

peripheral regions of the agent’s retina. The asymmetry in

Figure 3D is due to the particular spatial arrangement and

numerical values of the visual cues. These results suggest that it

would be better to have a retina with lower spatial resolution in the

periphery.

Localisation
This simulation shows how an agent can localise itself in an

environment. The agent was located centrally and moved

according to the south-east trajectory. Its exact path was computed

using noiseless path integration and the appropriate environmental

inputs were provided to the agent.

In the discussion section below we propose a mapping of the

forward and backward inference equations onto the hippocampal-

entorhinal complex. We now report the results of two simulations.

The first used the standard forward inference updates in equations

23 and 24. This corresponds to the algorithm that an agent with

an intact hippocampus would use. The second, however, had a

‘lesioned hippocampus’ in that only the path integral updates in

equation 23 were used (we set mn~mn). This in effect removed the

top down input from hippocampus to MEC (see ‘Localisation’

subsection in the discussion) so that path integral errors are not

corrected by sensory input. In both cases the agent’s path updates,

mn, were subject to a small amount of noise (with standard

deviation 0.01) at each time step.

Figure 4 shows the results for single and multiple trials. Here,

localisation with an intact hippocampus results in better tracking of the

agent’s location. Localisation accuracy was assessed over multiple

trials (n~10) and found to be significantly more accurate with, rather

than without, a hippocampus (pv0:001, t~7:15, df ~9). The mean

localisation error was 60 per cent smaller with a hippocampus.

For the above simulations we disabled somatosensory input by

setting Rt~100. This was found to be necessary as this input is not

a reliable predictor of location (the distance from a boundary is the

same at very many locations in an environment).

Decision Making
This simulation shows how an agent can make a decision about

which direction to turn by computing likelihood ratios. To

demonstrate this principle, we selected the ‘north-west’ and ‘north-

east’ trajectories as two possible control sequences. The sensory

goal Y N was set equal to the sensory input that would be received

at the end of the ‘north-east’ trajectory. This goal was set to be

identical at all time points n~1::N .

The agent’s starting location was l1~13 and l2~12 with initial

speed set to zero. The log of the likelihood ratio (see equation 28),

LogLR, for model 1 versus model 2 was then computed at each

time step. Figure 5 shows the accumulated LogLR as a function of

the n~1 to 1000 time points along the trajectory. A LogLR of 3

corresponds to a probability of 95% [42]. This indicates that a

Figure 3. Visual imagery. (A) Control sequence used to generate visual imagery for the ‘north-east’ trajectory. The input signals are acceleration,
u1 , and change in direction, u2 . These control signals change the agent’s state according to equation 3. (B) The state variables speed s and direction w
produced by the control sequence in A. (C) The state variables l1 and l2 shown as a path (red curve). This is the ‘north-east’ trajectory. The state
variable time series in B and C were produced by integrating the dynamics in equation 3 using the local linearisation approach of equation 5. (D)
Accuracy of visual imagery produced by agent as compared to sensory input that would have been produced by the environmental model. The
figure shows the proportion of variance, R2 , explained by the agent’s model as a function of retinal angle, wr . This was computed separately for the
north-east (black), north-west (red), south-east (blue) and south-west (green) trajectories. Only activity in the centre of the retina is accurately
predicted.
doi:10.1371/journal.pcbi.1003383.g003
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confident decision can be made early on in the hypothesized

trajectories.

The degree to which each sensory modality is used in the above

computations is determined by the relative values of observation

noise covariances (see Text S4). These were initially fixed to the

values described at the beginning of the simulations section. Whilst

a confident decision could soon be reached using the above default

values, decomposition of the LR into modality specific terms

showed a strong contribution from both olfactory and visual

modalities, but a somatosensory contribution that was initially

rather noisy. This is due to small idiosyncrasies in the predictions

of somatosensory values. We therefore experimented with the level

of somatosensory noise covariance. Figure 5 was produced using a

value of Rt~100 which means LR effectively ignores this

contribution (although we also have R v~100I , there are 20

visual inputs).

Model Selection
This simulation shows how likelihood ratios can also be used to

estimate what environment an agent is located in. We first trained

an agent on the maze as described in the imagery section. We

refer to this as environment one and the model, described by the

set of estimated weights w , as model one. We then trained the

agent on a second environment and allowed it to develop a

separate model. These are referred to as environment two and

model two. The second environment was exactly the same as the

first except that the east and west boundary walls had their

colours swapped.

Figure 4. Localisation. Left: Representative result from a single trial showing true route computed using noiseless path integration (black curve),
localisation with a noisy path integrator and no Hippocampus (blue curve) and localisation with a noisy path integrator and a Hippocampus (red
curve). Right: Boxplots of localisation error over trials with medians indicated by red bars, box edges indicating 25th and 75th percentiles, whiskers
indicating more extreme points, and outliers plotted as red crosses.
doi:10.1371/journal.pcbi.1003383.g004

Figure 5. Decision making. The task of decision making is to decide whether to make a left or a right turn (hence the question mark in the above
graphic). Top Left: Locations on the route of the ‘left turn’ or north-west trajectory (red curve) Top Right: The markers A, B, C, D and E denote
locations on the ‘right turn’ or north-east trajectory corresponding to time points n~0, 200, 400, 600 and 800 respectively. Bottom: The log likelihood
ratio (of north-east versus north-west), LogLR, as a function of the number of time points along the trajectory.
doi:10.1371/journal.pcbi.1003383.g005
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We then placed the agent in the first maze and used the ‘north-

east’ control trajectory, U N , and allowed the agent to compute

the likelihood of observed data under its two models, E1 and E2, as

described earlier. The log of the likelihood ratio, LogLR for model

1 versus model 2 was then computed at each time step. Figure 6

shows the LogLR as a function of the number of time points along

the trajectory.

The degree to which each sensory modality is used in the above

computations is determined by the relative values of observation

noise covariances. These were fixed to the values described at the

beginning of the simulations section. However, because the only

difference between the two models is in their predictions of retinal

input (due to the swapping of wall colours), the above computation

is driven solely by vision.

For the decision making example, described above, the

likelihood of reaching the goal given the two trajectories is also

differentiated by the olfactory inputs at the goal location (as the

olfactory source is located in the south west corner and diffuses

isotropically, there will be weaker input in the north east than

north west corner). This explains the scaling differences in the

likelihood ratios - decision making is easier, in this example, as it is

guided by olfaction as well as vision. This is not generally the case,

however, and only occurred here due to the specifics of the

environments and goals (same olfactory sources at same locations

in both mazes, different olfactory inputs at the two goals).

Route and Motor Planning
This simulation gives an example of how route and motor

planning can be implemented. The agent is placed in maze 1 at

starting location l1~20, l2~15 with initial speed s~0 and

direction w~0:9p. This initial state, m1, is known with high

precision P{1
1 ~106I (see equation 27). The initial distribution

over motor controls has mean r1~0 and precision B {1
1 ~106 I

(see equation 32). The covariance of the noise on the motor

controls is set to Q u~diag½1, 0:05� (see equation 31). This

specifies that the control signals for changes in acceleration (first

element) are expected to be larger than those for direction (second

element). For this simulation we augmented the sensory vector y
with observations of the agent’s speed ys~xn(3).

The sensory goal yg~½yo,yt, y v,ys�T is multimodal with

components for olfaction, touch, vision and speed. For olfaction,

touch and speed we set yo~10, yt~4 and ys~0. The goal is

therefore to navigate to the point in space with olfactory code most

similar to yo~10. The environmental location with this value is

l1~7, l2~7. The observation noise covariance for speed was set to

R s~10. A second aim is that the distance to the nearest boundary

should be close to yt~4. A third aim is that the speed should be as

near to ys~0 as possible. That is, the agent should be stationary at

the target. The visual component y v is set to correspond to an

image of the left wall with all ‘yellow’ values. The desired goal

trajectory, Y N , is set to be equal to the goal yg at all time points.

The degree to which each sensory modality is used in motor

planning is determined by the relative values of observation noise

covariance. We used the values described at the beginning of the

simulations section. This means that motor planning is guided

most by olfaction and touch, and least by vision. The estimated

hidden states and inputs were then computed as shown in the

earlier section on ‘Inference over Inputs’.

Figure 7 shows the planned route traced out by forward and

backward inference. For forward inference we are plotting the l1
and l2 elements of mn (see equation 24), and for backward

inference the l1 and l2 elements of m̂mn (see equation 30). The paths

Figure 6. Model selection. The task of model selection is for the agent to decide which environment it is in (hence the question mark in the above
graphic). Top Left: North-east trajectory in maze 2, Top Right: North-east trajectory in maze 1. The mazes have different coloured east and west walls.
The markers on the trajectories (A, B, C, D and E) denote locations corresponding to different time points (n~0, 200, 400, 600 and 800). Bottom: The
log likelihood ratio (of maze 1 versus maze 2), LogLR, as a function of the number of time points along the trajectory. At n = 1000, the LogLR is
approximately 3. This allows the agent to infer, with 95% probability, that it is located in maze 1 rather than maze 2.
doi:10.1371/journal.pcbi.1003383.g006
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for backward inference are smoother and more direct. Figure 7 also

shows the estimated motor control sequence. These sequences

correspond to the mean from backward inference, ûun, as described

in the section on ‘Inference over Inputs’ (see equation 33).

Simple decisions such as ‘turn left’ or ‘turn right’ can be

implemented using the ‘decision making’ procedure described in

the above section. This is a rudimentary form of planning. The

route and motor planning described here is a more powerful

approach that we envisage is engaged when the optimal route to a

goal involves the chaining together of multiple decisions (eg. ‘turn

left’, ‘straight on’, ‘turn right’).

Discussion

This paper has illustrated how the various computations

underlying goal-directed spatial cognition can be implemented

using statistical inference in a single probabilistic model. This

extends previous work which has focussed on single computations

such as localisation [20] or model selection [21]. Here we use a

single model, and show that inference based on different

combinations of known and unknown variables can additionally

implement goal-based planning and decision making, and have

shown how a specific implementation based on a continuous state

space model and local linearisation can achieve these ends. In

what follows we describe a neuronal implementation of our

approach and discuss how the underlying forward and backward

algorithms may relate to recent empirical findings of pattern

replay. We close by describing a number of experimental

predictions suggested by the model.

Neuronal Implementation
This section discusses how and where in the brain the above

computational processes might be implemented. Our starting

point here is Figure 8 which describes a candidate set of brain

regions. Entorhinal cortex is partitioned into Lateral (LEC) and

Medial (MEC) components, with the latter representing spatial

and the former non-spatial information [43]. The LEC receives

substantial input from perirhinal cortex which in turn receives

major projections from temporal cortices, whereas the MEC

receives substantial input from parahippocampal cortex which in

turn receives projections from parietal cortices. The anatomical

connectivity supporting this architecture is described in Figure 3 of

[44]. We assume that temporal, parietal, parahippocampal and

perirhinal cortices and the machinery that feeds into them,

together produce a compact coding of spatial and non-spatial

aspects of the agent’s environment. These processes are not

explicitly modelled in this paper.

Our simple and tentative mapping onto hippocampal neuro-

anatomy currently does not distinguish between CA3 and CA1,

instead we consider a single hippocampal node encompassing the

activity of CA3-CA1 place cells. Our model then comprises two

hippocampal-entorhinal loops, one spatial and one non-spatial, as

shown in Figure 8 (top left). The spatial loop proceeds from

superficial MEC layers to CA3-CA1, and returns to deep layers of

MEC. This partitioning into deep and superficial layers is

consistent with known anatomy and previous functional models

[45]. Anatomically, entorhinal-hippocampal connectivity is more

complex with, for example, direct connections from EC layer three

to CA1 [46], and return connections via proximal CA1 (CA1p)

and distal Subiculum (SUBd) [47], but our model does not have

this level of detail.

The non-spatial loop proceeds from superficial LEC layers to

CA3-CA1, and returns to deep layers of LEC. The sensory states

of our spatial model, yn, are compact codes representing non-

spatial information in the superficial layers of LEC. Predictions of

these sensory states from the agent’s model, g (mn), are made via

the CA3-CA1 to LEC pathway. In our model, the function of

CA3-CA1 is to integrate spatial input from MEC with non-spatial

input from LEC. This is consistent with a recent schematic model

[48], where it is argued that this functionality is preserved across

mammals.

The mapping from CA3-CA1 to LEC generates the agent’s

predictions of sensory states, whereas the mapping from LEC to

CA3-CA1 implements the (approximate) inverse of this mapping.

Together, these recurrent connections constitute the agent’s model

of its environment, E, and different models will be instantiated in

different subsets of these connections. That populations of cells in

LEC encode sensory prediction errors, yn{ g (mn), is supported

by recent recordings in rats [49]. This study identified cells that

fired at locations where objects had been located on previous trials

(high prediction error), but did not respond when the object was

actually present (no prediction error).

Figure 7. Route and motor planning. Right: The figure shows the planned route traced out by forward (red) and backward (green) inference. For
forward inference we are plotting the l1 and l2 elements of mn , and for backward inference the l1 and l2 elements of m̂mn . The agent is located at
l1~20, l2~15 (white cross) and the goal is at l1~7, l2~7 (white circle). Left: The figure shows the estimated motor control sequence for producing
the desired sensory goals. This sequence corresponds to the mean from backward inference, ûun , as described in the theory section on ‘Inference
over Inputs’.
doi:10.1371/journal.pcbi.1003383.g007
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Grid, place and direction cells. Our model assumes that

path integration takes place in the Entorhinal Cortex. A number of

computational models of the underlying processing have appeared

in the literature [45,50,51] and assume that allocentric space,

direction and velocity are represented by populations of grid cells.

These grid cells were originally discovered in rat Entorhinal

Cortex (EC) and represent space using a Fourier-like basis set [52].

More recently, an fMRI study has found evidence of grid-cell-like

representations in human EC [53].

Our model also assumes representations of space in CA3-CA1

which we envisage are supported by the activity of place cells.

These place cells fire bursts of action potentials when a rat passes

through a particular location in their environment [54]. Place cells

have also been found in humans using intracranial unit recordings

[55], and neuroimaging of human subjects has implicated the

hippocampus in navigation [56] and the representation of spatial

location [57]. A representation of spatial distance has also been

identified in left hippocampus [58]. Hidden state representations

of direction, in our model, are perhaps encoded by head direction

cells. These neurons fire in relation to an animal’s direction of

heading regardless of its current location, and have been found in

postsubiculum, retrosplenial cortex, anterior thalamus, striatum

and entorhinal cortex [59]. Additionally, directionally modulated

grid cells have been found in entorhinal cortex [60].

In summary, the speed, location and direction variables that

comprise the agent’s hidden state are most likely represented in a

highly distributed manner in the brain, using basis representations

built on cell types with multiple dependencies. In EC these will be

grid cells and in CA3-CA1 these will be place cells. This level of

detail is omitted from our model, as our focus is on temporal

dynamics.

Figures 8 and 9 refer to a ‘prefrontal’ module containing

representations of model inputs un which are changes in heading

direction and changes in speed. We envisage that this is a

distributed circuit involving both cortical and subcortical brain

regions. The subcortical regions would include for example those

parts of the head direction circuit receiving proprioceptive

feedback and motor efference copy [59].

Localisation. The architecture in Figure 8 (top left) assumes

that path integration takes place in MEC, as discussed in a recent

review [51]. MEC contains multi-scale grid cells which provide a

basis set representation of allocentric space. In our model of spatial

localisation, path integration combines previous state estimates

mn{1 and motor efference copy mn to get a new state estimate,

with mean mn~ Fn mn{1z H n un{1 as described in equation

23.

We assume that networks in CA3-CA1 implement Bayes rule

such that location estimates from path integration computed in

Figure 8. Neuronal implementation. Here n indexes time and we have control signals un , path integral hidden state estimates mn , Bayesian
state estimates, mn , non-spatial sensory states, yn and predictions of non-spatial sensory states g (mn). During Localisation, path integration in
MEC combines previous state estimates and motor efference copy to produce a new state estimate, with mean mn~ Fn mn{1z H n un{1 as
described in equation 23. Bayesian inference in CA3-CA1 combines path integration with sensory input to get an improved state estimate
mn~ mnz K n½yn{ g (mn)� as described in equation 24. LEC sends a prediction error signal yn{ g (mn) to CA3-CA1. The computations underlying
‘sensory imagery’, ‘decision making’ and ‘model selection’ are discussed in the main text in the section on ‘Neural Implementation’. CA: Cornu
Ammonis, LEC/MEC: Lateral/Medial Entorhinal cortex.
doi:10.1371/journal.pcbi.1003383.g008
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MEC, mn, are combined with non-spatial information to form an

improved estimate of location, mn. The new estimate is given by

mn~ mnz K n(yn{ g (mn)) and is described more fully in

equation 24. This new estimate is then fed back to MEC to be

incorporated into the next iteration of path integration.

A more detailed mapping onto neuroanatomy, which is

consistent with our proposal, can be motivated by concerns for

how grid and place cells keep in register [61]. It has been suggested

[62] that CA1 combines grid cell outputs from MEC with cue

information from CA3 place cells. In our model this would

correspond to CA3 computing Kn(yn{ g (mn)) and CA1

computing mn~ m nz Kn(yn{ g (mn)). Region CA1 would

then signal mn back to MEC, and the CA1 to LEC pathway

could compute g (mn) using a representation based on place cells

in CA1.

The above iterative updates capture the circular nature of

estimating position and direction. The activity of head direction

cells [59], for example, is known to be dependent on the

identification of landmarks, and on self-motion cues, such as

vestibular and proprioceptive cues. Here, we envisage that

vestibular cues, proprioceptive cues and self-motion contribute to

probabilistic path integration and that forward inference then

combines path integration with sensory input regarding land-

marks. The relative contribution of path integration and sensory

input, during spatial localisation, is discussed in more detail in

Text S4.

The integration of sensory cues with path integral estimates of

location has previously been considered in a model by Arleo and

Gerstner [63]. In this model, once the error in path integration has

reached a certain level the path integrator is reset using

information from sensory cues. This is to be contrasted with the

algorithm proposed in this paper and, for example, work by

Mhatre et al. [45] in which top down predictions from CA1 to

MEC continually update path integral information.

A key quantity in the combined estimate of hidden state, in

equation 24, is the Kalman gain Kn. This acts as a multiplier for

the prediction errors such that sensory modalities that are more

predictive of hidden state have higher gain. By changing the

sensory observation noise R one can change elements of the

Kalman gain. Indeed, our simulations on localisation showed that

it was necessary to increase the somatosensory noise Rt to the

extent that this modality was effectively ignored during localisation

(the component of the Kalman gain tended towards zero). In the

brain this would be manifested by a modulation of the connection

strength between somatosensory LEC and hippocampus.

Sensory imagery. During sensory imagery the architecture

in Figure 8 (top right) is used as the agent’s virtual reality engine.

The MEC receives virtual motor commands, un, from prefrontal

cortex, and uses path integration to update states, m n. The CA3-

CA1 to LEC pathway then produces predictions of sensory codes,

g (mn). This would therefore be consistent with recent findings that

the imagination of coherent scenes is hippocampus dependent

[64].

The above predictions (and state estimates mn) are then

(separately) propagated back down cortical hierarchies, creating

egocentric sensory imagery in lower-level regions of scene

construction networks [65]. In the simulations described earlier,

we (unrealistically) reduced these multiple stages of processing to a

single mapping g (mn).
Decision making. During decision making we envisage that

the architecture operates as in Figure 8 (bottom left). LEC receives

sensory goals, yn, and MEC receives virtual motor commands,

un, from prefrontal cortex. Sensory goals are then compared with

predicted sensory input, g (mn) from the CA3-CA1 to LEC

pathway. The likelihood of the data given the model is then

proportional to the sum-squared difference between yn and gn

(see equation 29). Previously, Fox and Prescott [66] have proposed

that septal regions, or projections to them, represent such

accumulated disparities. To compute a likelihood ratio this whole

process would have to happen twice, once for virtual motor

commands corresponding to a left turn and once for a right turn,

as described earlier. This is indicated by the thick line from

prefrontal to MEC in Figure 8 (bottom left).

Experimental data [67] shows that, when rats reach decision

points, potential routes are explored serially rather than in

parallel, which therefore suggests that evidence for a left versus a

right turn will be computed serially. To compute log-likelihood

ratios it will therefore be necessary to use working memory, as in

other delayed discrimination tasks. A possible neural subtrate for

this are mutual inhibition circuits that can encode the alternative

likelihoods [68], store them and make an appropriate decision

[69].

Figure 9. Motor and route planning. Route planning can be implemented using Forward inference, in which sensory goals are instantiated in
LEC (or projections to it), and the recurrent circuitry produces state estimates from path integration mn , and Bayesian estimation mn , that are
consistent with those goals. Backward inference takes as input the result of the forward sweep. It produces improved estimates of the hidden
states, given by the recursion m̂mn~ mnz J n(m̂mnz1{ mnz1), and estimates of control signals given by ûun~ Ln(m̂mnz1{ mnz1). We propose that
the prediction error m̂mnz1{ mnz1 is computed in MEC and propagated to CA3-CA1 for computation of m̂mn and to prefrontal regions for
computation of ûun . See equation 34 for more details.
doi:10.1371/journal.pcbi.1003383.g009
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Although we have modelled sensory goals as being represented

in LEC, it may well be the case that they are represented at lower

levels of cortical hierarchies. If this is the case, then the

discrepancy between sensory goals and predicted sensory input

would also occur at lower levels. The coarseness of these

representations, and thus their anatomical instantiation, are likely

to vary as a function of task requirements.

Model selection. During model selection we envisage that

the architecture operates as in Figure 8 (bottom right). LEC

receives observed sensory data, yn, and MEC receives efference

copy, un, from prefrontal cortex. Sensory observations are then

compared with predicted sensory input, g (mn), from the CA3-

CA1 to LEC pathway, to produce the prediction error signal

yn{ g (mn). The likelihood of the data given the model is then

proportional to the sum-squared prediction errors as shown in

equation 29. As described above for the decision making

simulations, these likelihoods may be represented in lower level

sensory cortices or as accumulated discrepancy signals projecting

to septal regions. Ratios of these likelihoods are used for deciding

which environment an agent is in, as described above.

The recurrent connections between CA3-CA1 and LEC (thick

lines in Figure 8 - bottom right) implement the agent’s model of its

environment. Different models will be instantiated in different

subsets of these connections. To compute likelihood ratios for

model selection, the above computations would have to be run

twice, once for each model (we propose that this happens in

parallel during ‘theta flickering’ - see below). The thick lines in

Figure 8 indicate that different subsets of these connections will be

engaged, corresponding to the different models.

Route and motor planning. During route and motor

planning we envisage that the underlying neural architecture

operates as described in Figure 9. This comprises separate phases

of forward and backward inference. During forward inference

LEC receives sensory goals, yn, and the CA3-CA1 to LEC

pathway produces predictions, g (mn). As there is no input at this

stage (virtual or efference copy), MEC state estimates are driven

solely by state dynamics mn~ Fn mn{1 eg. location estimates are

updated based on velocity and direction. The entorhinal-

hippocampal loop then iteratively updates the hidden state

estimates mn, using Bayesian estimation, so as to minimise the

discrepancy between sensory goals and predictions. The result is a

sequence of estimates mn for n~1::N which contains a putative

sequence of spatial locations that will lead to the sensory goal.

Backward inference then proceeds using just the spatial loop, as

shown in Figure 8 (right panel). That sensory goals do not need to be

instantiated at this stage is a consequence of using the gamma rather

than the beta form of the backward recursions (see Text S2). In the

absence of correlations between inputs and hidden states the update

formulae for these backward recursions are straightforward, and

given by equation 34. The backward estimates of the hidden states

are given by the recursion m̂mn~ mnz J n(m̂mnz1{mnz1) and the

control signals are estimated as ûun~ Ln(m̂mnz1{mnz1). One

possibility is that the prediction error (m̂mnz1{mnz1) is computed

in MEC and propagated to CA3-CA1 for computation of mn and

to prefrontal regions for computation of ûun, as depicted in Figure 9

(right panel). This proposed architecture is consistent with a

previous suggestion that, during navigation, cue information is

provided by LEC and action information by MEC [70].

Population Codes
As with other proposals that the brain may implement some

form of approximate Bayesian inference [71], to formally test this

idea it is necessary to have a proposal for how neural populations

represent uncertainty. Ma et al. [72], for example, have shown

how populations of cells can represent probability distributions

using probabilistic population codes in which simple linear

combinations of firing rates can implement Bayesian inference.

Beck at al. [73] have shown how such a scheme can implement

Kalman filtering.

As we have locally linearised the dynamic and observation

nonlinearities, the forward inference step in this paper closely

corresponds to Kalman filtering. It therefore seems plausible that

forward inference using EKF can be implemented using similar

principles. Thus, although equations 23 to 26 perhaps seem rather

removed from neurobiology there may well be a plausible neural

implementation.

It has yet to be demonstrated how the gamma recursions

underlying backward inference could be implemented using

probabilistic population codes. However, given that the gamma

recursions comprise an implementation of Bayes rule followed by a

marginalisation (see Text S2) whereas Kalman filtering is a

marginalisation followed by Bayes rule (see Text S2) we imagine a

similar instantiation is possible.

The Beck at al. [73] approach assumes that trial-to-trial

variability in population firing rates is in a class of distributions

from the linear-exponential family. This includes distributions

where cells have independent Poisson rates. There is good

evidence to suggest that MTL cell firing is not independent and

Poisson [74], but it is not known if their activity falls into the more

general linear-exponential family.

Other proposals as to how the brain might implement Bayesian

inference are specific to the hippocampus. One proposal [75]

suggests that higher certainty is encoded by spike patterns

containing more spikes and where the spikes are closer together.

If this is true then our perspective makes a number of simple

predictions. For example, because backward inference produces

higher certainty estimates than forward inference, backward

replays should produce burstier spike trains. This should be

simple to test using existing data [76].

Planning as Inference
An important part of our proposal is that the multiple tasks that

together comprise spatial cognition can all be implemented using

probabilistic inference in a single model. A caveat here is that our

approach is restricted to goal-direction navigation. Whilst the

forward inference in nonlinear dynamical systems that gives rise to

the EKF algorithm, has a long history in estimates of localisation,

there have been no proposals, to our knowledge, that also consider

planning. However, in the machine learning literature, similar

approaches for solving planning or control problems have been

developed under the generic term ‘Planning as Inference’. For

example, Attias [77] has proposed that planning problems can be

solved using Bayesian inference.

The central idea is to infer the control signals, un, conditioned

on known initial state, x1 and desired goal states xn. Similarly,

Toussaint [78] describes the estimation of control signals using a

Bayesian message passing algorithm which defaults to the classic

Linear Quadratic Regulator (LQR) for linear Gaussian dynamics.

Proposals have been made regarding how this Planning as

Inference framework maps onto neural architectures in the brain

[79,80].

A key difference to our proposal is that Toussaint solves a

closed-loop (feedback) control problem. This finds a mapping from

state-space to the optimal action, also known as the ‘policy’. In

terms of the underlying generative model in Figure 2, this requires

extra links from x n to un. In this paper we solve an open-loop

control problem. Our estimated control trajectory ûun is a set of

ballistic commands that cannot be updated in light of future
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information regarding the state of the system. Nevertheless, these

commands can be rapidly computed at arbitrary time scales ‘on

the fly’, and this type of control strategy may be sufficient for a

compliant motor system.

Learning
In our simulations the agent learnt to predict sensory input

using a pre-developed set of place cells with fixed centres and

widths. This allowed us to use a simple regression approach for

learning the basis function weights, which is similar to the standard

two-stage optimisation process in machine learning. In the first

stage basis functions are estimated in an initial unsupervised

learning phase (eg. based purely on MEC input), and basis

function weights are learnt in a second, supervised learning phase

[81].

Our simulations also assumed the agent had exact knowledge of

its hidden state during learning, whereas more realistic simulations

would also require the agent to infer these states. In principle this

requires a straightforward implementation of the Expectation-

Maximisation (EM) algorithm [38,82] for learning in dynamical

systems.

A more powerful alternative which integrates out the depen-

dence on model parameters in the forward and backward passes is

Variational Bayes (VB) [83,84]. Implementation of these VB

schemes would mean that the maximum likelihood approach

described in this paper would be replaced by a maximum evidence

approach. Agents would implement decision making, model

selection and motor planning by maximising the model evidence.

Given that VB approximates the model evidence using free

energy, the resulting scheme would then be broadly consistent

with the Free Energy Principle [85]. A further detail here is that in

previous applications of VB [83,84], backward inference was

implemented using the beta not the gamma recursions. In this

paper we propose that it is the gamma recursions that are

implemented in the brain, as they do not require storage of sensory

observation sequences.

Local Linearisation
The forward and backward algorithms are general purpose

computations which may be implemented in a number of ways

and this paper has focussed on an implementation based on local

linearisation. The benefit of this is that the state probability

distributions are Gaussian and so may be described with a small

number of parameters; means and covariances. Additionally, there

are analytic formulae for updating the parameters.

A drawback of the LL approach is that the true probability

distributions may be non-Gaussian. One possibility is that the

distribution over the agent’s location may be multimodal. This will

be the case when an agent is placed in a familiar environment at

an unknown location where there are multiple locations consistent

with sensory data. For this scenario inferential methods based on

sampling, such as particle filtering, would be more appropriate

[37].

A second concern is that a single iteration of forward and

backward inference may not be sufficient to find the controls that

maximise the planning likelihood p(unDx1,Y N ,E). It may be

possible to improve the estimated controls by running multiple

forward and backward replays such that the linearisation takes

place around a different and improved trajectory each time. This

iterated local linearisation would be analogous to the iterative

Local Quadratic Gaussian (iLQG) approach from control theory

[86].

This second concern may also be addressed by treating space as

discrete rather than continuous. In this perspective the agent is

currently located in one of a finite number of ‘bins’ each of which

may correspond to the support of a place cell. The optimal

trajectory through these bins can then be computed by solving a

discrete Bellman equation. Todorov has shown that this corre-

sponds to backward inference in a hidden Markov model [87].

This computation relies on a recursive high-dimensional update

that is perhaps readily suited to the massively recurrent nature of

CA3. These computations would be consistent with earlier

proposals that the hippocampus itself is suited for solving shortest

path problems [88].

Open-Loop Control
In regard to motor planning, this paper has described a forward

and backward inference procedure which allows an agent to solve

an open-loop control problem. This produces a control trajectory

that is a set of ballistic commands that cannot be updated in light

of future information regarding the state of the system. It is

possible to augment the generative model to include extra links

from states to actions, so that the agent instead learns a policy - a

mapping from states to actions, as in [78]. This would then

provide a solution to the closed-loop (feedback) control problem.

However, it may be the case that the mammalian brain solves

the closed-loop problem in two stages. First, the computational

power of recurrent networks in CA3 could be used to implement

forward and backward inference to solve the open-loop problem.

Estimated trajectories would then be replayed to ventral striatum

during quiet wakefulness or slow wave sleep. This is consistent with

an earlier model [89] and the observation of ripple activity

propagating to this region [90]. These replays would then be used

to train up a habitual dorsal striatal decision making system (see

[11] for a review of habitual versus flexible/deliberative systems

and their anatomy).

This is also consistent with proposals that for known environ-

ments, navigational control is gradually transferred from a flexible

inferential system to a habitual system based on a hippocampo-

striatal mapping [14]. Such a hippocampo-striatal model has

previously been proposed by Foster et al. [29].

Cognitive Control
This paper has described how the various aspects of spatial

cognition can be implemented using inference in a statistical

model. It has not, however, addressed the broader cognitive

control issues such as how internally generated goals are produced

or when to switch between localisation versus model selection

versus decision making modes. A recent computational framework

[22], called Information Foraging (IF), however, does address

some of these issues. This approach requires that agents compute

the information that will be gained by making spatial decisions,

which in turn requires the agent to have a probabilistic model of its

environment. Thus, it would be possible for both IF and the

Forward-Backward (FB) model to both use the same underlying

probabilistic model, with perhaps IF deciding when to run an

iteration of FB.

This paper has proposed how model-based control may be

implemented using spatial models implemented in hippocampal

circuits. But it has not addressed how the control of decision

making is arbitrated between, for example, model-based and

model-free controllers. An influential proposal here [15] is that

such arbitration is based on the confidence with which each system

can make a decision. Thus, model-based and model-free systems

can be combined by weighting each decision with their relative

confidence. The ‘Mixed Instrumental Controller’ [19] also makes

use of both types of decision making system. The model-based

system incurs a fixed computational penalty reflecting the fact that
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model-based decisions require time to reach. If the estimated

benefit of a model-based decision does not exceed this penalty then

control is given to the model-free controller.

Theta Sequences and Pattern Replay
The next and final section of this discussion summarises the

specific predictions of the model proposed in this paper. To put

these predictions in context we now briefly review two sets of

empirical findings. These are, firstly, the observations of ‘theta

sequences’ [91] which are sequential patterns of place cell firing

occurring whilst rats move about in their environment and theta

activity is recorded in hippocampus. The second set of observa-

tions are, again, sequential patterns of place cell firing but now

occurring during sleep or quiet wakefulness and when Sharp Wave

Ripples (SWRs) (henceforth ‘ripples’) [24] are recorded in

hippocampus.

The phenomenon of phase precession refers to the observation

[92,93] that place cells fire at gradually earlier phases of the

hippocampal theta rhythm as rats move through their place fields.

This is consistent with the notion of ‘theta sequences’ in which

place cells fire in sequence within a theta cycle. Theta sequences

have since been measured across cell-populations [91]. Addition-

ally, theta sequences which sweep forward in advance of a rat’s

current location have been observed and are especially noteworthy

at decision points in maze navigation. For example Johnson and

Redish [67] recorded the activity of neural ensembles in the dorsal

hippocampal CA3 region of awake behaving rats running in a T-

maze. They found that as rats reached a decision point,

representations swept predominantly forward from the current

location, first down the right path and then the left. This activity

did not occur in both forward directions simultaneously: the

representation first encoded one arm and then the other. Finally,

Gupta et al. [4] have shown that theta sequences represent

distances further ahead of a rat during acceleration and further

behind during deceleration, and that these sequences represent the

environment in ‘chunks’. A key feature of theta sequences is that

they are time-compressed, occurring at about 5 to 10 times the

speed of actual behaviour [91,93,94]. That is, were a rat to run

through an environment at a typical speed, it could activate the

same sequence of place cells, but would do so 5 to 10 times more

slowly.

We now turn to the discussion of ripple activity. In humans,

episodic memories are thought to be encoded by the Medial

Temporal Lobe (MTL) memory system. Information regarding

these memories can then be transferred to neocortex [95–97] and

a proposed mechanism of this transfer is the replay of episodes

during later waking or sleep [27] so that neocortical synaptic

plasticity can then act to strengthen cortico-cortical connections.

This replay activity has been observed primarily in rodents using

spatial navigation tasks [98] during ripples in Slow Wave Sleep

(SWS) [99] and quiet wakefulness. There is evidence that this

pattern replay is related to consolidation and transfer, as disrupting

ripples impairs performance in a spatial memory task [100].

Place cell sequences observed during awake ripples have been

observed to be played backwards. This is known as reverse replay.

Foster and Wilson [76], for example, recorded from cell ensembles

in dorsal CA1 hippocampus in awake behaving rats and detected

reverse replays after a rat had run the length of a 1D track. Similar

reverse replays that start immediately after navigation have been

observed on other 1D tracks [101], a linear path through a 2D

environment [102], a 2D open-field environment [103], and a two

choice T-maze [104]. Place cell sequences observed during awake

ripples have also been observed to be played forwards [101]. This

is known as forward replay.

Replay activity during ripples is also time-compressed, with

sequences being replayed within the duration of a single ripple

(50–250 ms). This corresponds to a compression factor of about 15

to 20 relative to the original behaviour [102].

The above forward and backward replays are also known as

‘local replays’ or ‘locally initiated replays’ so as to distinguish them

from another phenomenon known as ‘remote replay’ or ‘remotely

initiated replay’. This occurs when a rat replays an experience of

one place whilst being physically located in another. In one

experiment [105], rats were exposed to two different environments

which had the same physical structure (allocentric layout) but

differed in their set of visual cues. Replays of trajectories in one

maze were observed whilst the rat was located in the other.

Remote replay has also been observed [102,104] where rats

replayed activity corresponding to remote parts of the same

environment. As is the case with local replays, remote replays can

be forward or backward in time [104]. In general, replay activity

during ripples can be forward or backward, whereas theta

sequences are always forward.

Jadhav et al. [106] have interrupted awake ripples during

performance of a navigation task with alternating goals in a W-

shaped maze. Ripple disruption was found to affect decision

making on the outbound leg of the task, which required linking of

past information with current location. However, it did not affect

the inbound leg which required no such memory component

therefore providing evidence that awake ripples support spatial

working memory.

Finally, Dragoi and Tonegawa [107] have observed ‘preplay’

activity. Here, the sequence of place-cell firing during a novel

spatial experience occurred on a significant number of occasions

during the resting or sleeping period prior to that experience.

They propose that this activity organises hippocampal assemblies

into dynamical structures ready for subsequent associations with

sensory episodes.

Model predictions
This section summarizes the predictions of our model (the ‘FB

model’). We indicate where these predictions are unique to the

proposed model and where they are shared by others.

The hippocampus optimally combines sensory cues with

path integration. This prediction is not unique to the FB

model. It is shared for example by the conception of the

Hippocampus as a Kalman Filter [20]. Evidence for the related

hypothesis that humans optimally combine sensory cues with path

integration is provided in a behavioural study [108]. Given

behaviorial data on a rat navigating in a simple environment in

darkness and then in light, it should be possible to develop a spatial

model (mapping location to sensory cues) and then infer the

precision of sensory cues with respect to path integral input (ie.

how much noisier one is than the other). The principles of such an

investigation are the same as for the study of Bayesian sensory

integration in other domains eg. visual and haptic (for a review, see

[71]).

Local changes to an environment will produce

hippocampal prediction errors. Local changes to an envi-

ronment, such as objects being moved or disappearing, will be

reflected in greater ‘prediction error’ activity in layer 2 LEC cells.

This observation has in fact already been made in the reported

activity of ‘trace cells’ in LEC [49]. This prediction is not unique

to the FB model, however. It is common to all predictive coding

models which posit that connections from hippocampus to LEC

layer 5 convey predictions, and connections from LEC layer 2

convey prediction errors [23]. The model in Mhatre et al. [45] also

has this structure, although only predictions of medial rather than
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lateral EC are considered. These predictive coding models can be

traced back to earlier formulations by Gray and McNaughton

[109] (p. 243).

Theta sequences during decision making are driven by

prefrontal circuits. The FB model predicts that theta

sequences during decision making (a la Johnson-Redish [67]) are

driven by activity in prefrontal circuits. Moreover, different

populations of neurons will be engaged during left-turn versus

right-turn theta sequences. This prediction could be confirmed

using cell assembly recordings of prefrontal cortex in rat, or using

pattern recognition methods for decoding neuroimaging data in

human. This prediction is similar to an earlier proposal [32] that

suggested prefrontal regions signal virtual motor efference copy to

a spatial cognition system during sensory imagery.

Different populations of CA3/CA1 cells will become

active during model selection. It has long been proposed

that different environments are encoded using different popula-

tions of CA3/CA1 cells. Thus, during model selection, when an

agent is trying to figure out which environment it is in, we envisage

that these different populations will become active as they compete

to explain sensory observations. This has been observed in a recent

study by Jezek et al. [110] who familiarized a rat with two different

environments, which had identical allocentric layouts but different

sensory cues (wall markings). They were then able to electronically

switch the sensory cues. Immediately following these switches, two

different populations of CA3 cells flickered on and off until one

representation became stable. This is referred to as ‘theta

flickering’. The FB perspective on theta flickering is as follows.

By using the models developed in the investigation of sensory cue

integration (see above), it should be possible to predict how long

the flickering period endures. The end of the flickering period will

correspond to an above threshold likelihood ratio (see Figure 5).

This prediction is not unique to the FB model but would be

common to any dynamic Bayesian model of hippocampal activity,

such as Kalman or particle filtering [20,111].

Remote replays are algorithmic and support route and

motor planning. The replays observed during ripples are often

considered to be of previously experienced sequences from

episodic memory. We refer to this as the ‘episodic’ view. In

contrast, the FB model predicts that replays are not merely

previous experiences played forwards or backwards but are the

result of computations (the forward and backward recursions).

This perspective, which we might term ‘algorithmic’ rather than

‘episodic’ makes a number of specific predictions.

1. Because the function of remote replay is hypothesised to be

planning of spatial and motor trajectories then the interruption

of remote replay should result in poorer subsequent navigation

performance (speed,accuracy). This prediction is specific to the

FB model.

2. Backward replays should be similar but not identical to time-

reversed forward replays. This is illustrated in Figure 7. More

specifically, the backward replays are more direct than the

corresponding forward replays. That is, they describe shorter

trajectories from beginning to end. This prediction is specific to

the FB model.

3. The FB model predicts that reverse replays encode location

with higher spatial precision than the corresponding forward

sequences. Here, decoded locations are computed in a

backward replay, and FB predicts that the associated spatial

precisions will be higher than for the corresponding forward

replay. If spatial precision is reflected in higher density spike

trains [75] then reverse replays should contain higher density

spike trains than the associated forward replay. To our

knowledge this prediction is unique to the FB model.

4. Forward and backward replays should be paired in that a

backward replay starts from the end point of a forward replay.

The backward replays must therefore be initiated immediately

after completion of the corresponding forward replay. This

‘temporal pairing’ is a key prediction of the FB model but has

so far not been reported in the literature.

The pairing of forward and backward replays, referred to

above, would be evident when the following conditions are

satisfied (i) the agent is familiar with the environment, (ii) the

optimal route requires a chaining together of decisions, rather than

a single decision. This is illustrated for example in Figure 7 which

depicts route and motor planning. Given that the agent is initially

facing south, two decisions have to be made to reach the goal (turn

right and continue, rather than eg. turn right then right again).

This is to be contrasted, for example, with ‘decision making’ in

Figure 5, where a single decision is required to reach the goal. The

agent needs to be familiar with the environment for it to have

developed a model and planning is then based on this model. The

above conditions would be satisfied following minor reconfigura-

tions of a familiar environment, such as blockage of a familiar

route [112] or appearance of a shortcut [113]. Having updated its

model of the environment, an agent could then use forward and

backward replays to plan a new optimal route to goal.

A plausible alternative functional role for remote replay is that it

is involved in maintaining a memory representation of paths that

have not recently been experienced [5,104]. For example, reverse

replay might provide a mechanism for developing a navigationally

complete representation of an environment - one reflecting not

only trajectories experienced, but also the corresponding reverse

trajectories. There is also evidence, referred to earlier, that replays

during awake ripples are involved in spatial working memory

[106].

Just as we predict that backward replays will be more direct

than preceding forward replays, we also predict that later forward

replays will be more direct than preceding forward replays. This is,

however, predicated on forward and backward replays being

repeated iteratively (see ‘Local Linearisation’ above) and being a

signature of route planning. Later forward replays can then

become quite different to earlier forward replays and correspond

to much more direct paths. This prediction is consistent with

recent findings [104] where novel shortcut trajectories were

constructed during replay activity. It is also more generally

consistent with recent research [114] that replay activity is

involved in planning and is a predictor of subsequent behaviour.

Changes in effective connectivity. We now describe

predictions of the FB model that posit a change in effective

connectivity from one brain region to another. In humans this can

be assessed using functional neuroimaging and measures of

effective connectivity [115,116]. These human neuroimaging

experiments would use previously developed virtual reality

environments. Additionally, it is becoming easier to make

simultaneous electrophysiological recordings from multiple brain

regions in rats. To our knowledge the following predictions are

unique to the FB model.

The FB model predicts that theta sequences during decision

making (a la Johnson-Redish [67]) are driven by populations of

neurons in prefrontal circuits. We would therefore expect to see

increased effective connectivity from prefrontal to hippocampal

regions at decision points. The FB model predicts that task goals

during decision making are instantiated by increased connectivity

from PFC to LEC. We would therefore also expect an increase in
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effective connectivity from PFC to LEC during these decisions.

Additionally, which way to turn would be based on the

computation of a likelihood ratio, which we hypothesise will

employ the same PFC machinery as for other delayed discrimi-

nation tasks (see earlier section on decision making). We would

therefore expect to see increased effective connectivity from

hippocampus to PFC during decisions. The above predictions are

consistent with recent findings of changes in theta coherence in

hippocampal-prefrontal networks [117].

During sensory imagery (and decision making) we expect

greater prefrontal to hippocampal connectivity, as virtual efference

copy is proposed to drive activity in hippocampus. This proposal

has also been made in a previous model of spatial memory and

imagery [32]. During route and motor planning we expect

prefrontal to LEC connectivity to be increased so as to instantiate

task goals (same as for decision making above). Additionally, we

expect MEC to prefrontal connectivity to be increased so that

control signals can be estimated from the computed reverse path.

Conclusion
We have shown that the various computations underlying

spatial cognition can be implemented using statistical inference in

a single probabilistic model. Inference is implemented using a

common set of ‘lower-level’ computations involving forward and

backward inference over time. We have proposed a mapping of

the above computational processes onto lateral and medial

entorhinal cortex and hippocampal regions CA3-CA1. This

proposed mapping is consistent with recent findings in rat

electrophysiology, and other proposals that one function of the

hippocampus that is preserved across mammalian species, is that it

integrates spatial and non-spatial information. We have also

proposed that these computations are reflected in recent findings

of pattern replay in the mammalian brain. Specifically, that theta

sequences reflect decision making, theta flickering reflects model

selection, and remote replay reflects route and motor planning.

Many of the underlying hypotheses can be tested using existing

data.
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