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Mixtures of General Linear Models for
Functional Neuroimaging

Will Penny* and Karl Friston

Abstract—We set out a new general framework for making in-
ferences from neuroimaging data, which includes a standard ap-
proach to neuroimaging analysis, statistical parametric mapping
(SPM), as a special case. The model offers numerous conceptual
and statistical advantages that derive from analyzing data at the
“cluster level” rather than the “voxel level” and from explicit mod-
eling of the shape and position of clusters of activation. This pro-
vides a natural and principled way to pool data from nearby voxels
for parameter and variance-component estimation. The model can
also be viewed as performing a spatio-temporal cluster analysis.
The parameters of the model are estimated using an expectation
maximization (EM) algorithm.

Index Terms—Functional MRI, mapping, mixture models,
spatio-temporal clustering, statistical parametric.

I. INTRODUCTION

WE PROPOSE a new approach to the analysis of func-
tional neuroimaging data [8]. The approach is based on

a family of models called mixtures of general linear models
(MGLMs), which include a standard approach to neuroimaging
data analysis, statistical parametric mapping (SPM) [10], as a
special case. The central tenet of these models is that the funda-
mental quantities of interest to the neuroimager are the location,
shape, and temporal signature ofclustersof voxels showing
task-related activity. In these models, data are analyzed at the
“cluster level.” This is to be contrasted with established method-
ologies in which data are analyzed at the “voxel level.”

Our work is inspired by the notion of “borrowing strength,”
described by Genovese as follows [11]. The shape and magni-
tude of the hemodynamic response and the impact of physiolog-
ical variations tend to be consistent across localized groups of
voxels. These localized groups represent regions with common
physiological and/or functional properties. These consistencies
induce dependencies among the model parameters associated
with different voxels. By identifying these “dependence neigh-
borhoods,” we can borrow strength in estimating the model pa-
rameters. That is, we use data from multiple voxels to estimate
common parameters. Genovese suggests that these neighbor-
hoods are best identified using an adaptive partitioning of the
data based on the temporal signal at each voxel. This idea is

Manuscript received November 30, 2001; revised November 10, 1002. This
work was supported by the Wellcome Trust. The Associate Editor responsible
for coordinating the review of this paper and recommending its publication was
M. W. Vannier.Asterisk indicates corresponding author.

*W. Penny is with the Wellcome Department of Imaging Neuroscience,
University College, 12 Queen Square, London WC1N 3BG, U.K. (e-mail:
wpenny@fil.ion.ucl.ac.uk).

K. Friston is with the Wellcome Department of Imaging Neuroscience, Uni-
versity College, London WC1N 3BG, U.K.

Digital Object Identifier 10.1109/TMI.2003.809140

readily captured using a Markov random field (MRF) model,
and a number of MRF approaches have appeared in the litera-
ture. Descombeset al. [7], for example, use a spatio-temporal
MRF in which both the spatial and temporal smoothness of the
hemodynamic response are modeled. Svensenet al. [25] use a
spatial MRF to cluster images into regions with homogeneous
responses, and Rajapakse and Piyaratna [22] use a spatial MRF
to cluster maps of statistical parameters.

The MGLM approach sits outside the MRF framework. The
most fundamental difference is that MGLMs explicitly model
the positions and shapes of activated regions. This offers the
potential of making formal inferences about the location, size,
and spatial variability of responses. The MGLM approach may
also be viewed as a spatio-temporal clustering algorithm, and as
such, generalizes existing cluster-based methods for analyzing
functional data (see, for example, [4]).

In Section II-A, we describe statistical parametric mapping,
a dominant paradigm for analyzing functional imaging data.
In Section II-B, we describe the generative process underlying
MGLM and use it to generate “fMRI-like” time series. In
Section II-C, we show how the parameters of an MGLM can
be estimated from real fMRI time series and how inferences
about clusters of activation are made. We then describe how the
models are initialized and, in Section III, apply the models to
two fMRI data sets, a block-design paradigm and an event-re-
lated paradigm [17]. The results are compared with those from
SPM.

II. M ATERIALS AND METHODS

A. Statistical Parametric Mapping (SPM)

SPM [10] has been adopted by a large contingent of the neu-
roimaging community and, in this sense, may be viewed as a
standard approach to neuroimaging analysis. SPM is based on a
general linear model (GLM) operating at each voxel in a func-
tional image. This is termed a “mass-inivariate” approach. This
model consists of a design matrix, common to all voxels, and
a set of parameter estimates that are voxel-specific. The de-
sign matrix contains information about the activation paradigm
and possible confounding variables. The parameter estimates
indicate the strength of the activations and confounds at each
voxel. After basic preprocessing, data are spatially smoothed
and GLMs are fitted to each voxel. To detect voxels that are
significantly active, a statistic is then computed for each voxel.
However, because there are so many voxels, it is likely that some
will appear active by chance. To account for this, a correction for
multiple comparisons, based on Gaussian random field (GRF)
theory, is then made. The product of this analysis is a map of
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Fig. 1. Generative model underlying MGLM. Voxeli is chosen
deterministically. For time pointt, we choose componentk with probability
p(kjv ). A data point is then selected with probabilityp(y jk). This is then
repeated for all voxels and all time points. The probabilistic dependence means
that we can writep(y ; kjv ) = p(y jk)p(kjv ). Summing overk gives (1).

a statistic showing which voxels are significantly active. Two
such maps are shown in Figs. 4 and 8. Notice that although the
analysis has proceeded at the voxel level, the end result is a map
containing a small number of blobs that constituteclustersof
voxels showing task-related activity. It is this structure that is
exploited in the MGLM model.

B. Generative Model

A key feature of MGLMs is that they are based on a “gen-
erative model.” The model consists of active components and
null components. Active components define spatially localized
clusters of activity that are temporally correlated with the activa-
tion paradigm, and null components define spatially distributed
background activity that is temporally uncorrelated with the
paradigm. Active components are characterized spatially by a
Gaussian with a mean defining the center of the cluster and
a covariance defining its shape and width. Examples of active
components are given in Figs. 5, 6, and 9. They are temporally
characterized by a GLM, defining the activation and possible
confounds. Time series defined by GLMs are shown as the solid
lines in Figs. 7 and 10. In this paper, we have a single null com-
ponent, although generally this need not be the case. It is defined
spatially by a uniform distribution and temporally by a Gaussian
process, with mean and variance that do not vary over time.

The model for how the time series are generated is as follows
(see Fig. 1). At each voxel, at each time point, a probabilistic
decision is made as to which component to draw a sample from.
This decision is based on a spatial prior—components nearer
to that voxel are more likely to be chosen. A sample is then
drawn from the GLM corresponding to the chosen component.
In this way, voxel time series consist of amixtureof samples
from different GLMs at different time points. This mixing
process couples the spatial and temporal domains—voxels at
the very edge of a “signal” (active) component nearly always
draw “noise” (null) samples, but occasionally draw signal
samples. More signal samples are drawn as we get closer to
the local activation center. In this way, the overall correlation
of voxels with the activation paradigm can vary smoothly
over the image—as observed empirically. A sample of images
from such a generative model is shown in Figs. 2 and 3. The
spatio-temporal model underlying this process is separable in
the sense that the spatial prior is the same at all time points.

(a)

(b)

Fig. 2. Images from generative model at times (a)t = 8 and (b)t = 9. This
model comprises a null component (k = 1) and two active components (top
left, k = 2; bottom right,k = 3). Note that the shape of the active regions is
consistent between scans, but it is not identical. This is due to the mixing process
operating at each time point. The arrow in figure (b) indicates the voxels whose
time series are plotted in Fig. 3.

Mathematically, the fundamental assumption of our model is
that the likelihood of an observation at theth voxel and theth
time point, , is given by the mixture model

(1)

where the spatial location of theth voxel is
and the parameters of the model (introduced below) are collec-
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Fig. 3. Time series from generative model. Going down the page, we see time series from voxels at positions indicated by the arrow in Fig. 2, that is, leaving
the center of the bottom right cluster atv = [40; 40] and going down tov = [40;50]. Time series are plotted every two voxels. As we leave the cluster, the time
series gradually become more noisy.

tively written as . Note that this is a conditional probability,
with the fundamental dependence being on spatial location. The
first factor on the right-hand side of (1) is the probabilistic pre-
diction from the th component, and the second factor is the
prior probability. The generative model is shown graphically in
Fig. 1.

In what follows, the notation N denotes a -variate
Gaussian distribution with meanand covariance .

The spatial prior is specified by the likelihood ratio

(2)

where

N (3)

and is the spatial location of the cluster and
is its spatial covariance. This says that the probability that

voxel belongs to cluster falls as a Gaussian function of
distance from the cluster’s center. The ensuing probability of
sampling from given voxel is this renormalized “belonging”
probability.

In the experiments in this paper, we have a single null com-
ponent with a uniform spatial prior , where is
the number of voxels in the image. Importantly, this means that
voxels are by default assigned to the nonactivating class. That
is, if falls below for all of the active components,
then the voxel isa priori assigned to the null component.

For an active component, we have

N (4)

where is the prediction from theth GLM at time . If we let
where is the number of time points,

then

(5)

where is the “design matrix” and are the regression coef-
ficients. This is the same as the usual GLM model used in SPM.
The design matrix contains, for example, details of when the
various experimental stimuli were given and information about
possible confounds (see, for example, [8] for more details). For
a null component, we have

N (6)

where is the average activity and is the temporal variance.
This can be viewed as a GLM with a single column of ones in
the design matrix and .

The parameters of the overall MGLM model are
. We again stress that we are

not analyzing the data at the voxel level. That is, we do not
have a separate GLM model for each voxel—we have a single
GLM model for all voxels in cluster , and information from
all of these voxels is used to estimate the parameters, ,

, and (i.e., we are borrowing strength).
In this paper, we consider the design matrix to be known

and to be the same for all(except for the null component). In
the limit that each voxel comprises a cluster , we then
recover the voxel-wise GLM approach that underlies SPM. SPM
is, in this sense, a limiting case of the MGLM model.

Figs. 2 and 3 show data generated from an MGLM model
with a null component ( ) and two active components
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( ). The active components are Gaussian in shape (see
Fig. 2) and have a temporal activation given by the regressor at
the top of Fig. 3. This consists of a boxcar that has been passed
through a “canonical hemodynamic response function” (HRF)
comprising two overlaid gamma functions [10]. This captures
the temporal aspects of the HRF. In [20], it is surmised that the
variability of the magnitude of the HRF from voxel to voxel
arises because of differences in the diameter of the local vas-
culature or the proximity of the voxel to neurally active tissue.
This latter component is captured by the Gaussian nature of our
spatial prior. The overall MGLM model is, therefore, capable of
capturing both the temporal and spatial aspects of the HRF.

An important feature of MGLM models is that they have
far fewer parameters than mass-univariate models. Given
columns in each design matrix and three-dimensional (3-D)
imaging data, we require parameters per active com-
ponent (three for , six for , for and one for ).
For, say, and active components, we
have a total of 400 model parameters. Mass-univariate models,
however, require parametersper voxel. Typical sized 3-D
fMRI images (of dimension 48 64 64) contain roughly
200 000 voxels giving approximately 2 000 000 parameters.
The difference is stark; the MGLM model provides a much
more parsimonious representation of the data.

C. Parameter Estimation

The generative model underlying MGLM assumes that the
observation noise is independent over voxels and time points.
The likelihood of the data under the model is therefore

(7)

where . Note that although the observation noise
shows this independence, the deterministic component of the
observations, the signal, will show strong regularities both over
time, due to the temporal regularity of , and over space, due
to the spatial smoothness of the prior probabilities.

An important feature of fMRI time series, however, is that the
observation noise is temporally autocorrelated. In the MGLM
model, we believe there is no need to take this into account (see
Section IV).

If we imagine that a given data set has been generated by an
MGLM model, then at each voxel and at each time point it will
have been decided which component was used to produce that
sample. Let us denote this by. For example, for all
for voxel at the top of Fig. 3 (i.e., all samples were generated
from the active component ). If we were given the variable

along with each data set, then parameter estimation would be
easy (the th GLM, for example, would be inferred by simply
fitting it to all data points for which ). But of course, this
variable is not generally available and we must regard it as a
hiddenvariable. Fortunately, we can use a general procedure for
parameter estimation in models with hidden variables. This is
the expectation maximization (EM) algorithm [6]. In the E-step,
we compute the probability distribution over hidden variables,
and in the M-step, we maximize the joint log-likelihood of the
data and hidden variables under that distribution. EM is a proven

Fig. 4. Auditory Data SPM showing active voxels (p � 0:05, corrected for
multiple comparisons). The bright pixels correspond to the SPMt values and
are scaled so thatt = 5:23 (this corresponds top = 0:05, corrected) is gray
and the maximumt value is white.

method for finding the parameters, which maximize the model
likelihood.

An EM algorithm for the MGLM model is derived in the
Appendix and results in the following update rules. The E-step
simply consists of computing the posterior probability of voxel

at time having been sampled from component, that is
, which we also write as . This is given by

Bayes’ rule as

(8)

For brevity, we have dropped the dependence on the model
parameters given in (2) and (4). We then also compute

and . In the M-step
of the EM algorithm, the parameters of the spatial and temporal
models are updated.

The parameters of the temporal model are estimated as fol-
lows. If we let be a di-
agonal matrix with entries being the temporal weights for that
voxel and be the time series for voxel,
then, for cluster , we can define

(9)

If we also let , then the regression coefficients
are estimated as

(10)
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This is equivalent to iteratively reweighted least squares (IRLS)
[19] but with the addition that the voxel time series receive dif-
ferent weightings at different locationsand at different time
points. This arises because the mixing process operates at each
voxel and at each time point. The observation noise can then be
reestimated using

(11)

The means and covariances of the spatial parameters are up-
dated using gradient ascent. To ensure that the covariances re-
main positive definite, we use the decomposition (see, for ex-
ample, [27])

(12)

with the constraint that . This effectively renders the spa-
tial density of active componentan ellipsoid with major and
minor axes pointing along the columns of. The parameters
are then updated using

(13)

where is the “EM auxiliary function” for the spatial param-
eters. The function and the gradients are given in the Ap-
pendix. Each gradient ascent step is implemented with Brent’s
line search algorithm (see [21, p. 402]), which implicitly finds
the optimal step size . A small, positive minimal value for

is naturally enforced in the initial bracketing used in Brent’s
algorithm.

To summarize, the EM algorithm operates as follows. In the
E-step, the posterior probabilities are updated using (8). In the
M-step, , , , and are updated using (10), (11), (12),
and (13). The E and M steps are iterated until the proportionate
increase in model log-likelihood from one step to the next is less
than , an arbitrary convergence criterion.

The main computational overheads of the EM algorithm are
in the gradient ascent steps of (13). Within these updates, the
main bottleneck is in the evaluations of in the line search
algorithm. This can be speeded up by noting that the Gaussians
have only local support; changing and will only make
a difference to in a small region. Therefore, by restricting
the domain in which is computed, we can greatly reduce the
amount of computation required.

The algorithm we have described is, strictly speaking, a gen-
eralized EM algorithm, since each M-step does not maximize
the auxiliary function but merely increases it (see, for example,
[14]). We have also considered the use of a conditional EM
algorithm as described in [16], but found no computational
advantage.

Fig. 5. Auditory Data PPM from an MGLM model with two active
components. The bright pixels correspond to voxels for which
 > 0:95.

D. Inference

The probability that a voxel belongs to an active cluster is
given by

(14)

where are the active components. An image of consti-
tutes a “posterior probability map” (PPM). Three such maps are
shown in Figs. 5, 6, and 9, which superimpose PPMs, thresh-
olded at , on structural MRI images. Voxels can be
declared active by comparing to some threshold.

We can also define a likelihood ratio as the ratio of the
likelihood of the data under the active models to the likelihood
of the data under the null model. The posterior probabilities and
likelihood ratios are related as follows:

(15)

Now, if we know the prior probability of observing an active
voxel , then the optimum threshold for the likelihood ratio is

[5]. This then implicitly defines the optimum value
for . For example, in a sensory study, we maya priori expect
5% of voxels to activate. This corresponds to .

A second quantity of interest is the number of active com-
ponents. This can, in principle, be found using Bayesian model
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Fig. 6. Auditory Data PPM from an MGLM model with three active
components.

order selection methods (see, for example, [23]), but this is be-
yond the scope of the present paper. Instead, we use the fol-
lowing heuristic. We fit a family of MGLM models with in-
creasing and for each compute a value that is
the statistic corresponding the inferred values for and .
If , then we declare that at least com-
ponents are active ( is the null component), and proceed
to fit an MGLM model with active components. Otherwise,
the model order selection process stops.

By noting that the mean activity of voxels in clusteris given
by

(16)

we can extract an “unsupervised” or a “semisupervised” esti-
mate of the temporal activity underlying each cluster. By this,
we mean that inference could also proceed on the basis of
rather than on the basis of parameters from the GLM. This
would be in the spirit of cluster-based analyses of fMRI (see,
for example, [4]).

E. Initialization

One potential problem with the MGLM model is the possi-
bility that there may be many local maxima in the likelihood
landscape. The current optimization approach does not warrant
that the global maximum is found, especially with a large
number of mixture components. The empirical work in this
paper concedes that only a local maxima will be reached, but

to guarantee that this is a useful solution, the spatial priors
are set so that the active components are initially centered
on voxels strongly correlated with the activation paradigm.
More principled solutions include the use of split and merge
heuristics where components are divided or combined and the
resulting model kept, depending on whether a probabilistic
fitness criterion is met [28]. A fully Bayesian solution to this
problem can be implemented using reversible jump Markov
chain Monte Carlo (RJ-MCMC) [12]. These approaches can,
in principle, be applied to the MGLM model and will be the
subject of future work.

The current initialization method proceeds as follows. We
first find the voxel positions of the largest maxima in the cor-
relation or -statistic image that are at least 15 mm apart. These
are used as “seed points.” We then fit GLMs to the data at
these voxels and so infer and . The mean is set to the
seed position and the diagonal terms in the covarianceare set
so as to correspond to a full-width at half-maximum (FWHM)
of 6 mm. The initial solutions thus correspond to strong, focal
activations. By optimizing , , and , we can find weaker
or stronger, more or less diffuse activations. The extent to which
the MGLM homes in on each is decided by the model likelihood
and the EM optimization process.

F. Data Sets

We use two fMRI data sets.1 Both were acquired on a
2T VISION system (Siemens, Erlangen, Germany), which
produces T2-weighted transverse echo-planar images (EPIs)
with blood oxygen level dependent (BOLD) contrast. The
first was recorded during an auditory stimulation task. This
consisted of bisyllabic words (e.g., “motor,” “robust”) being
presented at a rate of 60/min. The data set is made up of six
blocks of auditory stimulation alternated with six blocks of
rest, each block lasting 30 s (this block structure is reflected
in the time series in Fig. 7). Whole-brain fMRI images were
acquired every 7 s using 30 transverse slices.

The second data set was recorded during an experiment con-
cerned with the processing of images of faces [15]. This was an
event-related study in which grayscale images of faces were pre-
sented for 500 ms, replacing a baseline of an oval checkerboard
that was present throughout the interstimulus interval (ISI). The
ISI followed a stochastic distribution with a minimal interval of
4.5 s. In this paper, we focus on only a subset of this data con-
cerned with the differential activation of voxels subsequent to
the presentation of face trials versus baseline trials. Differen-
tially activated areas will be involved in face processing rather
than the processing of images per se. Whole-brain EPIs con-
sisting of 24 transverse slices were acquired with an effective
repetition time of 2 s.

All functional images were realigned to the first functional
image using a six-parameter rigid-body transformation [9].
Functional images were then spatially normalized to a standard
EPI template using a nonlinear warping method [1]. The images
were then scaled to remove global effects using proportional
scaling.

1These data sets and a full description of the experiments and data prepro-
cessing are available from http://www.fil.ion.ucl.ac.uk/spm/data.
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Fig. 7. Auditory Data Time series for the right-hemisphere component of the MGLM model. The solid lines show the responses estimated under the GLM,^Y ,
and the dotted lines show the mean voxel activity,�Y . The boxcar at the bottom is high when the auditory stimulus was present (this demarcates a 30-s period).

We then created two different sets of images. For analysis
using SPM, the images were spatially smoothed using a
Gaussian with FWHM mm (this is necessary to ensure that
GRF theory is not too conservative [8]). Importantly, however,
images to be analyzed using the MGLM model werenot
spatially smoothed. Instead, they were processed so that each
voxel had zero mean and unit variance. This is necessary as
the signal components will only be driven to areas containing
signals if the residual error in the signal areas is less than the
error in the noise areas; otherwise, the overall model would not
have a higher likelihood. Note that this normalization does not
affect the values in a conventional SPMmap.

For both data sets, we focus on single slices. For the auditory
data, we chose a transverse slice at mm and for the face
data a transverse slice at mm (these positions are given
in Talairach coordinates [26]).

For the auditory data, the design matrices, for both SPM and
MGLM, contained a column of ones and a variable indicating
the experimental condition. This variable consisted of a boxcar,
with ones indicating the presence of an auditory stimulus and
zeros indicating its absence, convolved with a hemodynamic
response function [10], a standard way of modeling the hemo-
dynamic response. For the face data, the design matrices con-
tained a column of ones and four other columns indicating when
the face images were presented. There were four such columns
rather than one as there were two types of images—famous and
nonfamous—and each face was presented twice. Modeling the
response in this way, rather than with a single variable, results in
a more accurate model fit. It also allows for the investigation of
repetition effects [15], although this is not explored in the cur-
rent paper.

III. RESULTS

The results of a standard SPM analysis are given in Fig. 4. The
results are displayed in the form of a-statistic image overlaid
on a structural fMRI scan from that subject. The plot shows
diffuse bilateral activation of primary auditory cortex. We then
applied a series of MGLM models to the data with increasing.
Our model order selection heuristic (see Section II-D) stopped
at a model with three active components: two covering the left
activation and one covering the right. The corresponding PPM
is shown in Fig. 6. We also show the MGLM model with two
active components in Fig. 5. The PPMs have been thresholded
at .

The PPMs and SPMs are in general agreement, with the PPMs
being somewhat more conservative. This is, however, an artifact
due to the choice of thresholds for which the images are plotted,
i.e., SPMs corrected at rather than show a
similarly conservative pattern.

Fig. 7 shows the corresponding time course of activations for
the right active component, the block structure reflecting the
block-like nature of the stimulus and the peaks and troughs re-
flecting the hemodynamic over- and under-shoot. The consis-
tent excessive undershoot in later blocks shows that the fit of
the GLM could be improved by adding regressors to the design
matrix (e.g., a time effect).

As mentioned earlier, the MGLM model is a much more eco-
nomic model of functional activation than is the mass-univariate
approach underlying SPM. For this data set, the three-compo-
nent MGLM model has 24 parameters whereas the SPM model
has 15 010 parameters. If one were interested in finding efficient
codes for storing the data, then MGLM would offer a consider-
able advantage. We note that if this were truly the case, then a
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Fig. 8. Face DataSPM showing active voxels (p � 0:05, corrected for
multiple comparisons).

Fig. 9. Face DataPPMs from MGLM model with two active components. The
single active component model consisted of just the left-hemisphere activation.

finessed characterization of the null component would be ap-
propriate (see discussion).

The result of a standard SPM analysis of the event-related
study is given in Fig. 8. This shows bilateral activation of
fusiform cortex and earlier visual areas. We then applied a
series of MGLM models to the data with increasing. Our
model order selection heuristic stopped at a model with two
active components, one covering the left activation and one
covering the right. The PPM, thresholded at , is shown
in Fig. 9. Again, the PPM and SPM are in general agreement,
with the more conservative nature of the PPM being attributable
to differences in thresholding and possibly smoothing.

Fig. 10 shows the corresponding time course of activations
for the active component in the right hemisphere. The solid line
shows the estimated response from the GLM,, and the dotted
line shows the unsupervised estimate of temporal activity.
This is the quantity of interest in cluster-based analysis [4]. By
comparing s from different clusters, inferences can be made,
albeit informally, about differential delays in hemodynamic
response. We note, however, that this can also be achieved
by including the temporal derivates of the canonical HRF in
the design matrix and making formal inferences about the
corresponding regression coefficient. The middle time series
in Fig. 10 show how the estimated GLM responses can be
improved by including more regressors. We used a model with
19 regressors (as in [15]), and this led to a 20% reduction in
the fitted error.

For this data set, the MGLM model has 45 parameters
whereas the SPM model has 20 034. Again, a great saving.

IV. DISCUSSION

We have proposed a new approach to the analysis of func-
tional neuroimaging data. The central tenet of these models is
that the fundamental quantities of interest to the neuroimager
are the location, shape, and temporal signature ofclustersof
voxels showing task-related activity. SPM is a special case of
our model, recovered when the number of clusters equals the
number of voxels and all active clusters have the same design
matrix.

For each cluster of activation, we have a single representative
time series. This means that the MGLM model may be partic-
ularly helpful in the analysis of effective connectivity [3] that
examines the interactions among different brain regions. Previ-
ously, the requisite time series have been derived by defining a
region of interest using, for example, a sphere of arbitrary size
and then finding the principal eigen-time series [3]. MGLM of-
fers a much more precise and principled approach.

The model we have proposed is similar in spirit to the sto-
chastic geometry model (SGM) of Hartvig [13]. This models
the activations as a sum of Gaussians of unknown location and
scale whose parameters are estimated using Bayesian methods.
The generative models underyling MGLM and SGM are, how-
ever, very different. The most fundamental difference is that the
SGM Gaussians reflect the magnitude of activations, whereas
the MGLM Gaussians reflect the likelihood that a voxel belongs
to a cluster.
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Fig. 10. Face DataTime series for the right-hemisphere component of the MGLM model. A 400-s period is shown. The top time series show the estimated
responses (solid line),^Y , and the mean voxel activity (dotted line)�Y , for an MGLM model with five regressors in each design matrix. The middle time series
show how the estimated responses are improved when using 19 regressors in each design matrix. The spikes at the bottom indicate when the face images were
presented.

We also note similarities with the nonlinear spatio-temporal
(NST) model proposed by Soloet al.[24]. A common feature is
that information is pooled across voxels using an adaptive spa-
tial kernel. Again, the MGLM and NST generative models are
very different. For example, in NST, pooling is used to estimate
noise parameters rather than signal parameters.

An important feature of fMRI time series is that the observa-
tion noise is temporally autocorrelated. In the mass-univariate
approach, it is necessary to take this correlation into account, as
to neglect it would severely bias the subsequent inferences. Es-
sentially, instead of the degrees of freedom (DoF) being equal
to the length of each time series, it is much less. For MGLM
models, however, the DoF in each temporal model is equal to
the length of the time series times the number of voxels be-
longing to that cluster (because we have borrowed strength). As
this is so large, any reduction due to temporal autocorrelation
is likely to make little difference to the subsequent inferences.
Those not persuaded by this argument could alter the genera-
tive model underlying MGLM so that the mixing process takes
place at each voxel, rather than at each voxel and at each time
point. Standard time series models that allow for temporal auto-
correlation such as GLMs with autoregressive error terms could
then be implemented. We note that since the amount of auto-
correlation is dependent on space, the resulting cluster shapes
may be different. However, this is likely to be a subtle effect be-
cause, on average, weighted-least-squares parameter estimates
(which take into account error autocorrelation) are identical to
ordinary-least-squares estimates (which do not).

On a more critical note, the amount of computation required
to estimate the parameters in a MGLM model is an order of
magnitude greater than that for the mass-univariate approach,
taking several minutes per slice instead of several seconds. This

is, however, an attribute shared by other spatio-temporal models
[7], [24], [13], and appears to be the price we pay for more
parsimonious yet informed characterizations of fMRI data.

We also note that the MGLM model is closely related to
cluster-analysis methods. An important difference between the
PPMs from the MGLM model and the maps of spatial activation
produced by cluster analysis, however, is that the PPMs have
blobs whereas the cluster maps have speckles (see, e.g., [4]).
This is because for a voxel to belong to a cluster in the MGLM
model, it must have an appropriate time seriesand be in the
appropriate position. In essence, MGLM performs a semisuper-
vised spatio-temporal cluster analysis.

The model we have proposed could be usefully enhanced
by greater use of prior information. For example, instead of
having a single prior for the null class, being a uniform den-
sity over the whole brain, we envisage the use of tissue-spe-
cific priors describing the spatial distribution of white matter
and cerebro-spinal fluid would make a useful contribution. This
would increase the probability of functional activations being
identified in gray matter. This is in the spirit of previous work
in the area by Kiebel and Friston [18].

APPENDIX

EM ALGORITHM

The log-likelihood of the data is given by

(17)

The likelihood can be maximized by maximizing an EM auxil-
iary function . Maximizing provably maximizes the model
likelihood, as shown in [6]. For models with hidden variables,
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this function has a standard form: It is the log of the joint prob-
ability of observed and hidden variables averaged over the pos-
terior distribution of hidden variables. For the MGLM model,
we have

(18)

where the angled brackets denote expectation over the distri-
bution . For brevity, we write ,
which can be expressed as

(19)

and rewritten in terms of the temporal and spatial probabilities
[see Fig. 1 and (1)]

(20)

The E-step of the EM algorithm simply consists of computing
this distribution. We also compute and

.
The joint distribution in (18) is given by

(21)

Hence, its expectation over is

(22)

which can be written in terms of a temporal term (first) and a
spatial term (second)

(23)

The update rules are derived by finding the turning points of the
above function.

A. Spatial Model

The likelihood is given by

(24)

and

(25)

We can rewrite the above equation in terms of thesoftmaxfunc-
tion

(26)

where

(27)

We have

(28)

We can then use the standard result (see, for example, [2, pp.
237–240])

(29)

and combine it with

(30)

and

(31)

to get and . These gradients can
then be used in a line search to find updates for and .
Whilst this is straightforward for the mean, it does not ensure
positive definiteness for . We, therefore, decompose the spa-
tial covariance using and use gradient-based
line searches to optimize and . The required gradients can
be derived using the chain rule or estimated using central differ-
ences (see, for example, [2, p. 146]).

B. Temporal Model

We let be a diagonal
matrix with entries being the temporal weights for that voxel and

be the time series for voxel. For the
th component, we have

(32)

For the regression coefficients, we have

(33)
Letting

(34)
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we have

(35)

which has a turning point at

(36)
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