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ABSTRACT

Nested oscillation occurs when the amplitude of a faster rhythm is coupled to the phase of a slower
rhythm. It has been proposed to underlie the discrete nature of perception and the capacity of working
memory and is a phenomenon observable in human brain imaging data. This paper compares three pub-
lished methods for detecting nested oscillation and a fourth method proposed in this paper. These are: (i)
the modulation index, (ii) the phase-locking value (PLV), (iii) the envelope-to-signal correlation (ESC) and
(iv) a general linear model (GLM) measure derived from ESC. We applied the methods to electrocortico-
graphic (ECoG) data recorded during a working-memory task and to data from a simulated hippocampal
interneuron network. Further simulations were then made to address the dependence of each measure on
signal to noise level, coupling phase, epoch length, sample rate, signal nonstationarity, and multi-phasic
coupling. Our overall conclusion is that the GLM measure is the best all-round approach for detecting

nested oscillation.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Nested oscillation, otherwise referred to as phase-amplitude
coupling (PAC), occurs when the amplitude of a faster rhythm
is coupled to the phase of a slower rhythm. This phenomenon
has received an increasing amount of attention in recent years,
(Buzsaki, 2006; Jensen and Colgin, 2007; Cohen, 2008) and
has been proposed as a mechanism for the capacity of work-
ing memory, the discrete nature of perception and plays a
role in sleep (Steriade, 2006) and olfaction (Kepecs et al.,
2006).

Lisman and Idiart (1995) have suggested that nested theta and
gamma oscillations underlie the specific capacity limits of working
memory (WM). The approximately seven gamma cycles that can
fit into a theta cycle are proposed to correspond to the seven plus
or minus two items that can be stored in working memory. See
Jensen (2006) for a recent discussion of the computational models
and physiological evidence supporting this idea.

In a recent review, VanRullen and Koch (2003) postulated that
alpha and nested gamma cycles produce ‘discrete perception’ in
which gamma waves contain the information of each snapshot,
with the organization of the ensemble of snapshots mediated by
the alpha waves. That is, those events represented within the same
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alpha cycle form part of the same percept. The finding that approx-
imately four objects can be perceived at a glance is proposed to be
a result of such alpha-gamma nesting. See Palva and Palva (2007)
for a recent review.

Reports of nested oscillations are also now emerging from
human brain imaging studies. Vanhatalo et al. (2004) describe
‘infra-slow oscillations’ (ISOs) in human EEG during sleep at fre-
quencies between 0.02 and 0.2 Hz. These ISOs modulate cortical
excitability such that increases in power above 1Hz occur at ISO
troughs. Also, the frequency of discrete EEG events such as K-
complexes and intra-ictal epileptic spikes are increased at the
troughs. In addition to their primary findings, Vanhatalo et al.
(2004) also found increase in theta (4-8 Hz) and alpha (7-18 Hz)
power, again, at ISO troughs.

Schack et al. (2002) detected nested oscillations in human
EEG during the delay period of a working memory task. They
found strong instantaneous coherence between frontal theta activ-
ity (4-8 Hz) and the envelope of pre-frontal beta/gamma activity
(20-40Hz). Demiralp et al. (2007) have also found evidence for
nested oscillation in EEG recordings made whilst subjects perceived
known and unknown objects. The oscillations were in the theta
(average 5.9 Hz) and gamma bands (average 40.1 Hz).

Mormann et al. (2005) analysed ECoG from the medial tempo-
ral lobes of epilepsy patients during a continuous word recognition
paradigm. Words were presented visually and half of them were
later repeated. They found PAC between 4Hz theta oscillations
and beta activity (10-20 Hz) in hippocampus and rhinal cortex. In
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addition, they found a modulation of gamma activity (40-50 Hz) by
a 6 Hz theta cycle.

More recently, Canolty et al. (2006) recorded ECoG from a grid of
electrodes over a left fronto-temporal region and found that high
gamma (80-150Hz) amplitude peaked at the trough of ongoing
theta oscillations. This occurred during a broad range of cognitive
and motor tasks, and the spatial coupling patterns showed a greater
degree of similarity for more similar tasks.

At a recent conference, Osipova et al. (2007) presented PAC
results on MEG data. During eyes-closed resting behaviour the
power of gamma oscillations (30-80 Hz) was found to be coupled
to the phase of alpha activity (8-13 Hz). Subjects with strong alpha
also showed strong PAC and gamma activity was maximal at the
peak of alpha oscillation. Osipova et al. (2007) hypothesize that the
visual system is inhibited during most of the alpha cycle except at
a certain phase (the peak).

The concept of nested oscillation is perhaps most fully devel-
oped in the work of Lakatos et al. (2005) who propose an oscillatory
hierarchy underlying the EEG in which theta amplitude is driven
by delta phase and gamma amplitude by theta phase. This proposal
was supported by recordings from the primary auditory cortex of
awake macaques where the frequency and phase of ongoing delta
waves adapted to match stimulus properties, over a set of repeated
trials.

Whilst there have therefore been many reports of nested oscil-
lation in the literature, the methods used to test for them have been
rather heterogeneous. One might reasonably ask: What is the best
method for detecting nested oscillation? This is the question we
address in this paper.

We compare three different methods that have been proposed
in the literature and a fourth proposed in this paper. These are:
(i) the modulation index method of Canolty et al. (2006), (ii)
the phase-locking value approach of Vanhatalo et al. (2004) and
Mormann et al. (2005), (iii) the envelope-to-signal correlation (ESC)
method of Bruns and Eckhorn (2004) and (iv) a new general lin-
ear model (GLM) approach derived from ESC. We initially apply
the methods to electrocorticographic (ECoG) data recorded dur-
ing a working-memory task, and then to data from a simulated
hippocampal interneuron network. Further simulations are then
made to address the dependence of each measure on signal to
noise level, coupling phase, epoch length, sample rate, signal non-
stationarity, and multi-phasic coupling. Throughout the paper we
use the terms nested oscillation and phase-amplitude coupling
interchangeably.

2. Methods

All of the methods for detecting nested oscillation rely on band-
pass filtering and the Hilbert transform. Firstly, a univariate time
series x[n], sampled at times t, forn = 1, ..., N is bandpass filtered
into the two frequency bands of interest. For the rest of the paper
we assume that these are the 6 (e.g. 4-8 Hz) and y (e.g. 30-80Hz)
bands, but the approaches are of course generically applicable to
any two frequency bands. Filtering then produces the signals xg[n]
and x,[n].

In this paper we designed finite impulse response (FIR) fil-
ters using Matlab’s signal processing toolbox function firls.m. To
remove any phase distortion the filters were applied to the origi-
nal time series in the forward and then the reverse direction (using
Matlab’s function filtfilt.m).

The Hilbert transform (Papoulis, 1991)
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is then applied to each resulting time series. This transform con-
verts a cosine wave into a sine wave and, more generally, delays the
original signal by 7r/2 at each frequency. The instantaneous phase
can then be computed using the relative ratios of the original and
transformed signal. Application of the transform to our two filtered
time series allows us to form the complex variables, or ‘analytic
signals’

zg[n] = xg[n] + iyy[n] = ag[n] exp(igy[n]) 2)
zy[n] = xy[n] + iy, [n] = ay[n]exp(igy[n])

where ¢y[n] and ¢y [n] are the instantaneous phases, and ag[n]
and ay[n] are the instantaneous amplitudes of the ¢ and y oscilla-
tions. One can also apply a second Hilbert transform to the gamma
amplitude and from it compute the phase of the gamma ampli-
tude, ¢q,[n]. We then remove the first and last wy samples from
each phase and amplitude time series, where wy is the order of the
filter for the theta band. This eliminates edge effects introduced
by filtering and was found to improve the specificity of all PAC
measures.

To obtain the results in this paper we used a filter order for the
theta band, wy, equivalent to two cycles of the central theta period.
The order of the gamma band filter w,, was set to three cycles of
the central gamma period.

Fig. 1 illustrates the filtering and Hilbert transform steps
required to produce the quantities necessary for computing the PAC
measures. The above phases and amplitudes can also be estimated
using a wavelet transform approach which produces similar results
Le Van Quyen et al. (2001). The following subsections define three
measures found in the literature to test for nested oscillation. The
third subsection also describes the new GLM measure.

2.1. Modulation index

Canolty et al. (2006) define a ‘modulation index’ based on the
complex variable

z[n] = ay[n] exp(igg[n]) (3)
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Fig. 1. Instantaneous phase and amplitude. This figure shows the quantities nec-
essary for computing the PAC measures. Firstly, the original signals are bandpass
filtered to produce the time series x, and x,,. Hilbert transforms are then applied
from which one can estimate the gamma amplitude, a, (shown in red) and the
theta phase, ¢y. One can then apply a Hilbert transform to the gamma amplitude to
obtain the phase of the gamma amplitude, ¢a, . (For interpretation of the references
to color in the artwork, the reader is referred to the web version of the article.)
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The absolute value of the mean vector is then given by

N
Moaw = | > In] (4)
n=1

where || denotes the absolute value. Assuming that ¢y[n] is uni-
formly distributed, any departure of the distribution of z[n] from
radial symmetry will indicate a dependence of ay[n] on ¢y[n].
Therefore, a non-zero value of M;,w will indicate PAC.

A significance value can be attached to M, using a surrogate
data approach. By introducing an arbitrary time lag between ¢y
and a, we can compute the surrogate complex variable zs[n]. The
mean of this overn =1, ..., N is then given as Ms. This procedure
is repeated to produces =1, ..., S surrogate values. From this sur-
rogate data set we then compute the mean, u and variance, 62, and
compute a normalized modulation index
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o

M (5)
and the p-value that corresponds to the standard Gaussian variate.
This will only be an approximate p-value, however, as these sam-
ples are unlikely to be normally distributed. Our implementation
of this method is based on the Matlab code provided in the sup-
plementary material of Canolty et al. (2006). For the results in this
paper, however, we used M = M;,w, rather than the normalized ver-
sion in Eq. (5), since simulations showed it to have better statistical
properties.

2.2. Phase-locking value

The phase-locking value (PLV), proposed by Lachaux et al. (1999)
(see Tass et al., 1998 for a similar method), was developed to look
at phase-locking between trials. Phase-locking factors have been
previously used in neuroscience, for example, by Sinkkonen et al.
(1995). Vanhatalo et al. (2004) and Mormann et al. (2005) have
used the PLV in a different context; to look at PAC within a trial. In
this context the two phases of interest are the phase of the theta
oscillation, ¢y[n], and the phase of the y amplitude, ¢,,[n]. This
latter phase is obtained with a second Hilbert transform from which
we can produce the complex variable

Za,[n] = aq, [n] exp(iga, [n]) (6)
The PLV is then defined as

N
PV = | =" explisln] ~ ga, In]) (7)
n=1

where a value of unity indicates perfect phase-locking (in this con-
text PAC), and a value of zero indicates no locking (no PAC).

As ay[n] may contain non-theta-related components, these are
first filtered out before extracting ¢a,[n], i.e. before the second
Hilbert transform. In this paper, the filtering is implemented using
the same bandpass filter used to obtain xy[n].

Phase-locking statistics (PLS) can then be derived using a
standard surrogate data approach (Lachaux et al., 1999). This is
implemented by randomly permuting a,, to produce surrogate time
series a, wheres =1, ...,S. PLV is then computed for each surro-
gate s resulting in a distribution of PLVs. The p-value of the original
PLV can then be read off from this histogram.

2.3. Correlation and general linear model

Bruns and Eckhorn (2004) define an ESC measure as

resc = Corry(xg[n], ay[n]) (8)

In this paper we compute the correlation in the standard way
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We stress that ESC is a very different measure than the correlation
between ag[n] and a, [n]. This latter measure detects co-modulation
of the amplitude envelopes and is referred to by Bruns and Eckhorn
(2004) as amplitude envelope correlation (AEC). We denote it as

OxOy

raec = Corrp(ag[n], ay[n]) (10)

Similarly, a correlation between ag[n] and alz,[n] characterises cor-
relations in power between the different frequency bands. This
has been used before, by Friston (1996) for MEG data recorded
during unilateral self-paced joystick movements, who observed
that gamma frequency (35-40 Hz) oscillations in prefrontal cortex
correlated with beta (18-20 Hz) frequency oscillations in parietal
cortex.

The difference between the ESC and AEC measures is that, for
ESC, the amplitude of the lower frequency oscillation is signed. As
such, phase information is preserved. If for example a,, is largest
when xy is most negative, and a, is smallest when x4 is most positive
we have gamma peaks at theta troughs. This is PAC and will result
in large negative ESC values.

We also note that large values of ragc will not necessarily result
in large values of rgsc, particularly in cases of phase cancellation.
Conversely, processes which generate large rgsc values will not nec-
essarily produce large ragc values. If PAC is intermittent, however,
then one would expect a large overall ragc and intermittently high
TESC-

Because ESC can be confounded with amplitude co-modulations
one could define an amplitude-normalized ESC measure as follows:

'Nesc = Corrn(cos(¢p[nl), ay[n]) (11)

This uses cos(¢g[n]) instead of xy[n] and so is invariant to amplitude
modulations in xy4[n], and hence to co-modulations in amplitude.
The measure rygsc bears some similarity to the modulation index.
If one takes the absolute operator inside the summation term in
the definition of the modulation index in Eq. (4) and subtracts the
mean from each term then one is left with rygsc, up to a constant.

The above measure, rygsc, however will still share a deficiency
with ESC. This is an inability to detect coupling at 1/4 or 3/4 of
a theta cycle (the so-called ‘null phases’ as, e.g. cos((1/4)27) = 0)
(Cohen, 2008). To ameliorate this, we propose a generalization of
the above measure using the GLM framework used widely in neu-
roimaging (Friston et al., 2006). Gamma amplitude is modeled via
a multiple regression

ay=XB+e (12)

where B are regression coefficients, e is additive Gaussian noise
and the design matrix X is comprised of three columns, the first
cos(¢y[n]), the second sin(¢y[n]) and the third is a column of 1s.
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Fig. 2. Task-related differences in nested oscillation. Maps of t-values for two-sample t-tests comparing PAC measures from ECoG data between target and non-target trials
for ESC (top left), GLM (top right), PLV (bottom left) and modulation index (bottom right). In each image electrodes are numbered from bottom right (number 1) to top left
(number 64). Electrodes marked with filled circles show significant differences between trial types. Both ESC and GLM indicate significant PAC differences at electrodes 63
and 45, and PLV at electrode 63. No significant differences were revealed by the modulation index. (For interpretation of the references to color in the artwork, the reader is

referred to the web version of the article.)

One can then compute the proportion of variance explained by the
model as

5 SS(ay,) —SS(e)

Tém = 55(a) (13)

where SS(ay ) is the sum of squares of the data and SS(e) is the sum of
squares due to error. These can be computed in the usual way after
model fitting (Christensen, 2002). As we shall see, the rg s measure
will be able to detect coupling at all theta phases, whereas this is
not the case for rgsc or rngsc.

When referring to the correlation measure in the rest of the
paper, we mean the original ESC measure defined by Eq. (8), unless
otherwise stated.

3. Results
3.1. ECoG data

This section describes application of the PAC measures to
an ECoG data set. This data was recorded from a subject with
intractable epilepsy who underwent temporary placement of an
8 x 8 grid of subdural electrodes placed over a fronto-temporal
region including parts of sensorimotor cortex. The subject gave
informed consent and the study was approved by the Institutional
Review Board of the University of Washington School of Medicine.
The electrode grid consisted of flat electrodes with an exposed
diameter of 2.3-mm, inter-electrode distance of 1-cm and all elec-
trodes were referred to an inactive electrode.

The subject took part in a working memory experiment in which
he was presented with images of houses and indicated whether an
image was the same as the previous one (a ‘target’) by closing their
hand. For non-targets he was instructed to keep his hand relaxed
and open. The subject was told there were a maximum of two of
each image, therefore, after viewing a target knew the image did
not have to be remembered for subsequent matching. Images were
displayed for 600 ms and there was a 1600 ms delay before the next
was presented. One hundred such images were presented and there
were 20 ‘targets’, i.e. images that were the same as the previous one.
There were therefore 80 non-target trials and 20 target trials.

The ECoG data was then processed as follows. The signals were
amplified, bandpass filtered between 0.15 and 200 Hz and digitised
at f; = 1000 Hz. Signals were later re-referenced to a common mean
and notch filters applied to remove mains artefact at 60 and 120 Hz.
We then filtered the data at each sensor into two bands: (i) theta
(4-8Hz) and (ii) the x-band, using the bandpass filters described
earlier. The x-band is specified following the definition of a scale-
free power law, has been found to correlate well with local cortical
function (Miller et al., 2007, submitted for publication), and corre-
sponds to frequencies between 76 and 200 Hz.

We then used the Hilbert transform as described earlier and for
each trial, j, computed the Correlation measure, r{-:so GLM measure,
r’GLM, PLV measure, PLV;, and modulation index, m;. The PAC mea-
sures were then transformed into approximately Gaussian variates
as follows. For the ESC and GLM measures we used Fisher’s z-
transformation

z?:llog 714_’41?“
72 1-1
;SC (14)
1+
zj@:%log —_ GIM
1-Tgm

For the PLV, following Mormann et al. (2005), we used an arcsine
transform

2= sin™!(2PLV; - 1) (15)

and for the modulation index we used a log-transform
sz = logm; (16)

We also repeated the modulation index analysis without the log-
transform and found little difference in results. We then compared
the above z-scores for the target trials to the non-target trials using
two-sample t-tests at each electrode. The ¢t-tests for the correlation
measures were applied to the absolute value of the z-scores. This is
because we were not initially interested in whether condition dif-
ferences were between negative or positive correlations. With this
sign information removed, our significance scores are then com-
mensurate with the GLM, PLV and modulation indices, that is, a
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Fig.3. ECOG time series for non-target trial. Example non-target trial at electrode 63
showing the original time series (top), activity in the x-band (middle) and activity
in the theta band (bottom). The PAC measures are rgsc = —0.42, rgpy = 0.32, PLV =
0.57and M = 12.7.

positive PLV difference between conditions will correspond to a
positive difference in correlation scores.

The p-values associated with the t-tests were then corrected
for multiple comparisons using a Bonferonni procedure. Only
electrodes with p < 0.05 (corrected) were deemed to contain sig-
nificant differences. This corresponds to a t-score of 3.25. Fig. 2
shows the results for the ESC, GLM, PLV and modulation index
measures. Both ESC and GLM indicate significant PAC differences
at electrodes 63 and 45, and PLV at electrode 63. No significant
differences were revealed by the modulation index.

The first difference in the ESC measure, at electrode 63 (Talairach
co-ordinates x = 42, y = —15, z = 59 mm) arises from no correla-
tion for target trials but strongly negative correlation for non-target
trials. Time series for each trial type are shown in Figs. 3 and 4. For
the non-target trials one can see gamma bursts at theta troughs.
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Fig.4. ECOG time series for target trial. Example target trial at electrode 63 showing
the original time series (top), activity in the x-band (middle) and activity in the
theta band (bottom). The PAC measures are rgsc = 0.02, rgpy = 0.06, PLV = 0.07
and M = 6.8.

For the target trials there is no such pattern. The PAC measures for
the non-target trial are rgsc = —0.42, rgm = 0.32, PLV = 0.57 and
M = 12.7. For the non-target trial the PAC measures are rgsc = 0.02,
reim = 0.06, PLV = 0.07 and M = 6.8. Thus the modulation index
does detect a difference over these two particular trials, but this
effect did not reach statistical significance when all trials were
considered.

For the second difference, at electrode 45 (Talairach co-ordinates
x =52,y =5, z=39 mm), the pattern is reversed. That is, there
is stronger coupling (at the theta trough) for target trials than for
non-target trials. These between-trial differences may reflect hand
movement rather than working memory processes, however, as
subjects were instructed to close their hands for the target trials
and keep them open for non-targets.

A concern with the ESC measure is that it is also sensitive to
amplitude co-modulations. This is especially relevant for the ECoG
data as amplitude co-modulations are clearly visible, for example,
at the beginning of the non-target trial in Fig. 3. However, as the
GLM measure also detects coupling changes we can be sure that
there is significant phase-amplitude coupling in addition to any
amplitude co-modulation.

3.2. Hippocampal interneuron network

This section describes application of the PAC measures to bio-
physically realistic simulated data. A network of Hippocampal
interneurons was simulated following the approach described in
White et al. (2000). Interneurons were partitioned into two popu-
lations, those with fast or slow GABA,4 synapses, such that the slow
neurons generate a theta rhythm and the fast neurons a gamma
rhythm. Neurons within each population are coupled together and,
additionally, neurons in the slow population are coupled to those
in the fast population, as shown in Fig. 5(a). This latter coupling
causes the gamma rhythm to pause periodically every theta cycle
and so generate a nested theta-gamma oscillation.

Details of the network parameters are described in Appendix A
and broadly follow the simulations described in White et al. (2000).
For the simulations in this paper we considered two scenarios.
Firstly, we assumed perfect synchronization within each popula-
tion. This allowed us to represent each population using the update
equations for a single neuron. Secondly, we considered partial syn-
chronization within each population and implemented this using
the distributions of applied current described in Appendix A and
by using five cells per population.

Fig. 5(b) shows the inhibition of the faster cells by the slower
cells that leads to phase-amplitude coupling, which occurs for cer-
tain choices of the coupling parameter a. These time series were
created as described in Appendix A. Simulated local field potentials
(LFPs) were then created as the sum of the membrane potentials.
The resulting signals were then downsampled, with appropriate
anti-aliasing filters, to f; = 512 Hz, and normalized to zero-mean
and unit variance. Different time series were created by different
realizations of noise added on to the applied currents, as described
in Appendix A. To these time series, we then added zero-mean
Gaussian noise with variance o2.

In this and subsequent sections we quantify the performance of
the various PAC measures using a receiver operating characteristic
(ROC) approach (Swets, 1995). ROC curves plot the false positive
versus the false negative rate as a decision threshold is varied. In
this paper the decision thresholds were based on the PAC mea-
sures themselves rather than the corresponding p-values (for each
measure, e.g. PLV, one can compute both the PLV and its associated
p-value, as described above). ROC-curves based on the p-values pro-
duced almost identical results. For the simulations in this paper we
computed ROC curves by first generating data from 100 PAC trials
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Fig. 5. Hippocampal interneuron network. (a) Network model comprising a slow spiking population of GABA-A cells that causes a fast population of GABA-A cells to pause
periodically and so generate a nested theta-gamma oscillation. All cells are driven with an externally applied current and the strength of the inhibition from the slow to
the fast population is determined by the coupling parameter a. (b) Exemplar membrane potentials for fully synchronized slow spiking population (top) and fast spiking
population (bottom) for a = 0.6. The plots in the bottom row show the area under the curve (AUC) as a function of observation noise, oe, for the correlation measure (red),
GLM measure (green), phase-locking value (black) and modulation index (blue) for (c) fully synchronized and (d) partially synchronized populations. (For interpretation of
the references to color in the figure legend, the reader is referred to the web version of the article.)

and 100 null trials, and varying the threshold over all empirically
observed PAC values to compute the false positive and false nega-
tive rates. The AUC metric was then computed from these values
(Swets, 1995) with a value of 0.5 indicating discrimination at the
chance level and a value of 1 indicating perfect discrimination.

Fig. 5(c) and (d) shows how the AUC values fall off with increas-
ing noise level for the different PAC measures. Each AUC value
in these curves was derived by generating 100 trials of PAC data
using coupling parameter a = 0.6 and 100 trials of null data using
a = 0. The results were obtained using a ‘theta’ band from 5 to 20
Hz and a ‘gamma’ band from 50 to 130 Hz. The AUC curves have
been smoothed for presentation purposes using a first-order bi-
directional moving average filter. The modulation index performs
significantly worse than the GLM, PLV or ESC measures for both
fully and partially synchronized network dynamics.

The following subsections systematically examine the depen-
dence of the PAC measures on signal to noise level, coupling phase,
epoch length, sample rate, signal nonstationarity, and multi-phasic
coupling. This examination takes place using a variety of synthetic
signals which provide control over the type of coupling produced,
e.g. preferred phase.

3.3. Sigmoidal coupling

We first generate a stationary theta oscillation

xp[n] = ag sin(27fyt[n]) (17)

for samplesn =1, ..., N and then relate the amplitude of a gamma
oscillation to it via the following sigmoidal nonlinearity

k
ay[n] = (18)

1+ exp(—c(xg[n] — tc))

The gamma oscillation is given by

xy[n] = ay[n]sin(27fy t[n]) (19)
and an observed time series is then formed as follows:
x[n] = xg[n —no] +xy[n] +e[n] (20)

where e[n] is zero mean Gaussian noise of standard deviation oe.
The observed theta oscillation is delayed by a number of samples
ng = ¢o(fs/fp) which corresponds to a fraction, ¢, of a cycle. This
allowed us to generate gamma bursts at different phases of the
theta cycle. For the simulations in this section we use the following
parameters. Theta amplitude and frequency are settoag =1, fy =
6 Hz, gamma frequency to f, = 35Hz and sigmoidal parameters to
¢ =1,t. = 0.95.Fig. 6 shows an example time series of epoch length
L = 3 sand its spectrogram computed using a Morlet-wavelet time-
frequency method. This data was generated using parameters k = 2,
0e = 1,ng = 0and fs = 240Hz.

Fig. 7 shows, for each of the measures, how the AUC varies as
a function of observation noise, coupling phase, epoch length and
sample rate. Each AUC value in these curves was derived by gener-
ating 100 trials of PAC data using gamma amplitude k = 2 and 100
trials of null data using k = 0. Parameters that were not varied for
each plot were set to the default values of epochlength L = 3 s, noise
level 0. = 1.5, coupling phase ¢y = 0 and sample rate f; = 256 Hz.
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Fig. 6. Sigmoidal coupling time series. A single trial of sigmoidal coupling data. The
top plot shows a 3-s time series, the middle plot the corresponding spectrogram, and
the bottom plot the theta oscillation used in generating the data. Note the gamma
bursts at theta peaks. (For interpretation of the references to color in the figure
legend, the reader is referred to the web version of the article.)

These AUC curves, and all others that follow, have been smoothed
for presentation purposes using a first-order bi-directional moving
average filter.

For low noise values, all methods are able to detect PAC almost
perfectly. As the noise level increases the AUC falls, but there is a
clear and consistent ordering, ESC having the highest AUC, followed
by the GLM, PLV and then the modulation index. The simulation
results show that the AUC for the ESC measure falls to chance levels
at phases of 1/4 and 3/4 cycle, as expected, whereas the PLV and
modulation indices are unaffected.

The lower plots in Fig. 7 show that all measures asymptote to
the same AUC value of unity given sufficiently long epoch lengths
or sufficiently high sampling rate. Before the asymptote, the ESC
measure is consistently the most accurate, followed by GLM, PLV
and the modulation index.

AUC

2 4 6 8 10
L

3.4. Von-Mises coupling

In this set of simulations the amplitude of gamma oscillations is
given by
c

a0 (21)

ay[n] = 5 exp(A cos(gy[n] — 27¢ho))
where c controls the maximum gamma amplitude, 27 ¢y the theta
phase at which gamma is maximal and A the phase concentration.
In effect, A controls the duty cycle, with large values causing gamma
to be large only at phases very close to 27¢g, and a value of zero
causing equally large gamma at all phases.

The form of the above equation was motivated by the Von-Mises
probability density for phases (Papoulis, 1991), where the param-
eter A is known as the ‘concentration parameter’ which, in turn, is
analagous to the precision (inverse variance) parameter of a Gaus-
sian density. We have replaced probability density with gamma
amplitude, and chosen a normalization term such that the maximal
value is c.

Fig. 8 shows, for each of the measures, how the AUC varies as
a function of observation noise, coupling phase, epoch length and
sample rate. Each AUC value in these curves was derived by gener-
ating 100 trials of PAC data using A = 1 and 100 trials of null data
using A = 0. Parameters that were not varied for each plot were set
to the default values of epoch length L = 2.2 s, noise level g, = 1.5,
coupling phase ¢y = 0 and sample rate f; = 256 Hz.

In these simulations the ESC measure performs best over a wide
range of noise levels, epoch lengths and sample rates, followed by
GLM, PLV and the modulation index. Again, it shows its character-
istic poor performance for coupling at null-phases. All measures
asymptote to an AUC of unity for long epoch lengths and high sam-
ple rates.

3.5. Nonstationary theta

The simulations so far have used theta oscillations which are
stationary throughout the examined epoch even though it is
well known that electrophysiological signals are often nonsta-
tionary. For example, a theta oscillation from the ECoG data set

AUC

200 400 600

Fig. 7. Sigmoidal coupling. The plots show the area under the curve (AUC) as a function of observation noise oe, coupling phase ¢, epoch length L, and sample rate f; for the
correlation measure (red), GLM measure (green), phase-locking value (black) and modulation index (blue). (For interpretation of the references to color in the figure legend,

the reader is referred to the web version of the article.)
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Fig. 8. Von-Mises coupling. The plots show the area under the curve (AUC) as a function of observation noise oe, coupling phase ¢g, epoch length L, and sample rate fs for the
correlation measure (red), GLM measure (green), phase-locking value (black) and modulation index (blue). (For interpretation of the references to color in the figure legend,

the reader is referred to the web version of the article.)

shown in Fig. 3 shows clear amplitude and frequency modula-
tion.

This section describes a set of simulations in which PAC data
is generated as described in the previous section, but coupling is
driven by a theta oscillation xy[n] that is derived from electrode 63
of the ECoG data described previously.

In these simulations the epoch length is fixed to 2.2 s, as defined
by the experiment. Fig. 9 shows, for each of the measures, how
the AUC varies as a function of observation noise, coupling phase
and sample rate. Each AUC value in these curves was derived by
generating 100 trials of PAC data using A = 1 and 100 trials of null
datausing A = 0. Parameters that were not varied for each plot were
set to the default values of noise level oe = 1.5, coupling phase ¢g =
0 and sample rate f; = 256 Hz.

In these simulations the ESC measure performs best over a
wide range of noise levels and sample rates, followed by GLM,
PLV and the modulation index. Interestingly, the AUC asymp-
totes to unity before the experimental sample rate of f; =
1000 Hz is reached. The point at which this occurs is, however,
a function of the noise level. For lower sample rates or higher
noise levels the correlation measure produces the highest AUC
scores.

Finally, Fig. 10 shows how AUC varies as a function of the con-
centration parameter, A, for synthetic stationary theta epochs, and
experimentally acquired nonstationary theta epochs. Each AUC
value in these curves was derived by generating 100 trials of PAC
data using the specified A-value and 100 trials of null data using
A = 0.Parameters that were not varied were set to the default values
described above.

The ESC measure performs best in all cases, followed by GLM,
PLV and the modulation index. The AUC peaks for a value of A ~ 1.
For low A there is little or no PAC to be detected and for high A the
duration of the gamma bursts becomes too short to have sufficient
SNR. The shape of these curves will also be determined by the length
of the filter used to pass the gamma band (in this paper we have
used filters of length three times the central gamma period).

Overall, Figs. 8-10 show lower AUC values for nonstationary
data, indicating that activity that is nested in nonstationary oscil-
lations is harder to detect than in stationary oscillations.

3.6. Biphasic coupling

This final section describes phase-amplitude coupled data gen-
erated according to a scenario similar to that described in Canolty
et al. (2006). The aim is to produce a ‘synthetic signal [that] can
be viewed as a very simple model of the activation and refractory
period of a local neuronal population in a given cortical area’.

This is implemented using two sigmoidal nonlinearities

k1

1+ exp(—c(xg[n] —t1))
2
1+ exp(—ca(xg[n] — t2))

ay[n] =
(22)

aZ[n] =

with parameters chosen so that the first gamma amplitude
increases at the theta trough, and the second at the theta peak. This
was achieved using parameter values ¢c; = —10,¢; = 10,t} = —0.95,
t2 = 0.95. Each type of gamma burst was then switched on with
probability 0.5 using binary switch variables s, and s,. This resulted
in gamma bursts at typically 50% of troughs and peaks and follows
the suggestion of Canolty et al. (2006). The gamma oscillation is
then given by

(23)

where the background gamma amplitude is a, = 2. A time series
was then formed as follows:

xy[n] = (s1ay[n] + sya%[n] + a,) sin(27f, t)

(24)

where ng = ¢o(fs/fy) as before. We generated 100 trials of PAC data
using gamma amplitudes k; = 8 and k, = 4 with noise level 0. = 1
and 100 trials of null data with identical parameters but gamma
amplitudes of k; = k; = 0. The amplitudes of the PAC data, k; and
k,, are deliberately set unequal so as to correspond to the proposed
simulation described in the supplementary material of Canolty et
al. (2006). AUC values were then computed as before.

Fig. 11 shows, for each of the measures, how the AUC varies as
a function of observation noise, coupling phase, epoch length and
sample rate. In these simulations, it is the modulation index which
performs best over a wide range of noise levels, epoch lengths and
sample rates. This confirms the assertion of Canolty et al. (2006),

x[n] = xg[n —ng] + xy[n] + e[n]
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Fig. 9. Nonstationary theta. The plots show the area under the curve (AUC) as a function of observation noise oe, coupling phase ¢y and sample rate fs for the correlation
measure (red), GLM measure (green), phase-locking value (black) and modulation index (blue). (For interpretation of the references to color in the figure legend, the reader

is referred to the web version of the article.)

that the modulation index would be useful for detecting stochastic
biphasic coupling. The PLV results can in principle be improved by
looking for 2:1 instead of 1:1 phase locking, as described in Tass et
al.(1998). However, no improvement was seen in these simulations.
This is because at the simulated signal-to-noise ratios and after the
relevant filtering and envelope extraction, only a change from high
(ky = 8) to low (k, = 4) gamma activity could be extracted, and
this occurs at theta frequency. Again, as expected, the ESC mea-
sure dips to chance values for increases of gamma at null theta
phases.

4. Discussion

This paper has compared four different methods for detecting
nested oscillation: (i) the modulation index of Canolty et al. (2006),
(ii) the phase-locking value approach of Vanhatalo et al. (2004) and
Mormann et al. (2005), (iii) the envelope-to-signal correlation (ESC)
measure of Bruns and Eckhorn (2004) and (iv) a new measure based
on a GLM. The GLM approach was motivated by improvements to

the ESC measure. Firstly, by removing sensitivity to amplitude co-
modulation and, secondly, by allowing coupling to be detected at
all phases of the slower oscillation.

Application of the measures to an ECoG data set revealed sig-
nificant differences in phase-amplitude coupling between target
and non-target trials for electrodes placed over sensorimotor cor-
tex. These were identified at two electrodes using the ESC and GLM
measures and at one electrode using PLV. The modulation index also
revealed differences but these did not reach statistical significance.

Application of the measures to biophysically realistic data from a
simulated hippocampal interneuron network revealed similar find-
ings. The ESC, GLM and PLV measures were better able to detect PAC
than the modulation index over a broad range of signal to noise
levels.

We then proceeded to characterise the dependence of the PAC
measures on epoch length, sample rate, noise level, and coupling
phase using two different simulation procedures. The first related
gamma amplitude to the theta signal using a sigmoidal nonlinear-
ity, and the second specified gamma amplitude using a nonlinearity
motivated by the Von-Mises density. The conclusions, similar for
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Fig. 10. Effect of concentration parameter. The plots show the area under the curve (AUC) as a function of concentration parameter A for: (a) Von-Mises coupling and
(b) Von-Mises coupling with nonstationary theta for the correlation measure (red), GLM measure (green), phase-locking value (black) and modulation index (blue). (For
interpretation of the references to color in the figure legend, the reader is referred to the web version of the article.)
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Fig. 11. Biphasic coupling. The plots show the area under the curve (AUC) as a function of observation noise oe, coupling phase ¢, epoch length L, and sample rate fs for the
correlation measure (red), GLM measure (green), phase-locking value (black) and modulation index (blue). (For interpretation of the references to color in the figure legend,

the reader is referred to the web version of the article.)

both coupling methods, were that the ESC measure performed best.
The caveat here, however, is that ESC is unable to detect PAC if the
coupling occurs at 1/4 or 3/4 theta cycle (the so-called ‘null phases’).
This is because the theta oscillation is equal to its mean level at
these phases, therefore resulting in zero-correlation. This has also
been remarked upon by Cohen (2008). The next best performing
measure was GLM, closely followed by PLV.

A further set of simulations then addressed the issue of nonsta-
tionarity. To this end, theta oscillations from the ECoG data set were
used and PAC data was generated using the Von-Mises method. The
conclusions were again similar, that the ESC measure performed
best, except for coupling at null phases. We also characterized the
dependence of the PAC measures on the coupling duty cycle. This
was implemented using Von-Mises coupling by varying the concen-
tration parameter. The results showed that activity that is nested
in nonstationary oscillations is harder to detect than in stationary
oscillations, and that the ESC measure was best across a broad range
of duty cycles. The next best performing measure was GLM, closely
followed by PLV.

Finally, we addressed the issue of multi-phasic coupling. This
refers to the possibility that gamma bursts may occur at multi-
ple phases of the theta rhythm, but with different strengths. This
issue was raised in the work of Canolty et al. (2006) who used it
to motivate the definition of the modulation index. To this end,
we generated biphasic PAC data using two sigmoidal nonlineari-
ties. Our simulations showed the modulation index to be the best
measure for detecting this sort of coupling.

Overall, our results suggest that ESC is the best measure for
detecting PAC. However, the fact that ESC is insensitive to coupling
at null phases presents a major drawback. In a recent rat electro-
physiology study, for example, Jones and Wilson (2005) found that
neurons in medial pre-frontal cortex spiked at approximately 1/4
of the hippocampal theta cycle. The ESC measure, applied to the
relevant local fields, would be unable to detect this.

Our results on the ECoG, Hippocampal network, sigmoidal/Von-
Mises coupling and nonstationary data sets show that GLM and
PLV are better methods than the modulation index for short-epoch
data. For this reason we recommend GLM, being slightly better than
PLV, as the method of choice for data with short epochs (e.g. a few

seconds) and the modulation index for longer epochs. The Jones
and Wilson (2005) study, for example, used epochs of 2-2.5 s and
our ECoG data epochs were 2.2 s. These are perhaps too short for the
modulation index to be effective. In contrast, Canolty et al. (2006)
applied the modulation index to very long data epochs, of duration
3-8 min.

A caveat to the above recommendation is that the modulation
index is better able to detect biphasic coupling. But the biological
relevance of such coupling remains to be established. On a more
practical note perhaps our most useful finding is that one should
use as long an epoch length and as high a sampling rate as is possi-
ble given the experimental constraints. This result is analagous to
standard results in signal processing theory. For example, the accu-
racy with which the frequency of a single sinusoid in white noise
can be estimated, has been shown to be inversely proportional to
the epoch length and inversely proportional to the square root of
the sampling rate (see Eq. (2.11) in Bretthorst, 1988).

We now turn to the question as to why ESC and PLV have
better statistical properties than the modulation index, for short-
epoch data. A possible reason, suggested to us by a reviewer of
this paper, is related to the intrinsic dimensionality of each of the
measures. If one looks inside the summation terms of each of the
measures, then the ESC, defined in Eq. (8), concerns the product
of two real numbers which is therefore one-dimensional, the PLV,
defined in Eq. (7), is the product of conjugate complex exponen-
tials which is therefore constrained to lie on the one-dimensional
unit circle, whereas the modulation index, defined in Eq. (4), is
intrinsically two-dimensional because it depends on the product
of a real number and a complex exponential. As the detection of
a one-dimensional quantity is more difficult when projected into
two dimensions this may explain our observed results.

That intrinsic dimensionality plays a such a role is perhaps
borne out by the following observation. We defined a simpler GLM
approach using a single regressor, cos(¢y[n]) (due to the one-to-one
mapping between regression and correlation this is equivalent to
the NESC measure defined in Section 2). Like ESC it was unable to
detect coupling at null phases but, also like ESC, it had higher AUC
values at non-null phases (results not shown). We suggest that this
is because there are fewer regression coefficients to estimate for
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the simpler model. If one knows at what phase the coupling will or
will not occur then one can devise a better test. This is analagous
to the well-known higher sensitivity of t-tests (that test for single
effects) than F-tests (which test for linear combinations of multiple
effects) in GLMs (Christensen, 2002).

We also note two possible extensions to the GLM test. Firstly,
one could include extra regressors for higher order terms, e.g.
cos(2¢y[n]) and sin(2¢y[n]), although this did not improve AUC
scores for data sets in this paper. Secondly, for the analysis of
multiple trial data, instead of using a Fisher-transformation of the
correlation, rgpy, one could use the regression coefficients them-
selves as summary statistics. This would then more closely follow
the use of summary statistics for random effects analysis in neu-
roimaging (Friston et al., 2006).

Finally, the optimal method for detecting nested oscillation will
depend upon the underlying biological mechanism. If one could
construct a generative model that captures this mechanism, then
by the Neyman-Pearson lemma, one could construct a likelihood-
ratio test that has optimum detection performance. Recently, a
modelling framework has been developed which allows one to fit
differential equation models to neuroimaging data (Friston et al.,
2003). A phenomenological version of this approach (Chen et al.,
2008) has been applied to a class of M/EEG induced responses,
which includes nested oscillation as a special case. Biophysical
refinement of these models appears to be a fruitful direction for
further research.
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Appendix A. Neural network simulation

Neuron dynamics were modelled using single compartment
Hodgkin-Huxley models as described in White et al. (1998). The
membrane potential of the ith cell in the network evolves according
to the following current balance equation:

dv;
T;:Ii_INa—II(—IL—Is (25)
where C = 1 wFcm~2 and the currents are given by

Ina = gnam3 h(V; — VNa)
Ix = gxn*(Vi — Vi)

IL=g.(V;i-V
Is = Aygs/N)si(V; = Vs)
j=1

where Iy, and Ig are the Hodgkin-Huxley spike generating cur-
rents, Ip is the leak current and Is is the synaptic current.
The following conductances gy, = 30mScm—2, gx = 20mScm2,
gL =0.1mScm~2 and equilibrium potentials Vy, =45mV, Vi =
—-80mV, Vp = -60mV, Vs = -75mV were used. We used connec-
tivity values A;; = 2 fori, j in the same sub-network (i.e. fast or slow)
and Aj;; = 2a for the connections from the slow to the fast network.
Nested oscillation is only observed for certain values of the coupling
parameter a and this was varied as described in the main text so as
to test the statistical detection properties of each PAC measure.

The inactivation variable h and the activation variable n are gov-
erned by the dynamics

%_hwfh

dt — Th

@_nw_n 27)
dt = 1w

and the following voltage-dependent relations are used

1
T+ exp(0.13(V + 38))

hoo =

Moo =11 exp(~0.0045(V +10)

Moo =77 exp( 0.08(V +26))

T = T exp(=0.12(V + 67))
2
Thn =05+

1+ exp(0.045(V — 50))

The gating variable s; was assumed to obey first-order kinetics of
the form

dsj FVi)(1-s) s (29)
T
rise fall

where, for fast cells 7/, , = 1msand z,, = 9ms, forslow cells T/, =

Jj o _
5ms and Tgy = 150 ms, and

1

F(V;) = HTM (30)

In the network simulation with a single cell per population we used

tJfaH = 100 ms. The equations were integrated using a Runge-Kutta
method with a step size of 0.5ms. The applied currents I; were
set to 2 pA plus a uniformly distributed random variable e; with
maximum value oapp. Larger values of oapp correspond to a
more heterogeneous population, thus affecting the synchronization
properties of the network. We used oapp = 0.1.
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