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a b s t r a c t

Nested oscillation occurs when the amplitude of a faster rhythm is coupled to the phase of a slower
rhythm. It has been proposed to underlie the discrete nature of perception and the capacity of working
memory and is a phenomenon observable in human brain imaging data. This paper compares three pub-
lished methods for detecting nested oscillation and a fourth method proposed in this paper. These are: (i)
the modulation index, (ii) the phase-locking value (PLV), (iii) the envelope-to-signal correlation (ESC) and
(iv) a general linear model (GLM) measure derived from ESC. We applied the methods to electrocortico-
graphic (ECoG) data recorded during a working-memory task and to data from a simulated hippocampal
Cross-frequency coupling
Oscillations

interneuron network. Further simulations were then made to address the dependence of each measure on
signal to noise level, coupling phase, epoch length, sample rate, signal nonstationarity, and multi-phasic
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nested oscillation.

. Introduction

Nested oscillation, otherwise referred to as phase-amplitude
oupling (PAC), occurs when the amplitude of a faster rhythm
s coupled to the phase of a slower rhythm. This phenomenon
as received an increasing amount of attention in recent years,
Buzsaki, 2006; Jensen and Colgin, 2007; Cohen, 2008) and
as been proposed as a mechanism for the capacity of work-

ng memory, the discrete nature of perception and plays a
ole in sleep (Steriade, 2006) and olfaction (Kepecs et al.,
006).

Lisman and Idiart (1995) have suggested that nested theta and
amma oscillations underlie the specific capacity limits of working
emory (WM). The approximately seven gamma cycles that can

t into a theta cycle are proposed to correspond to the seven plus
r minus two items that can be stored in working memory. See
ensen (2006) for a recent discussion of the computational models
nd physiological evidence supporting this idea.

In a recent review, VanRullen and Koch (2003) postulated that

lpha and nested gamma cycles produce ‘discrete perception’ in
hich gamma waves contain the information of each snapshot,
ith the organization of the ensemble of snapshots mediated by

he alpha waves. That is, those events represented within the same

∗ Corresponding author. Tel.: +44 207 833 7475; fax: +44 207 813 1420.
E-mail address: w.penny@fil.ion.ucl.ac.uk (W.D. Penny).
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n is that the GLM measure is the best all-round approach for detecting

© 2008 Elsevier B.V. All rights reserved.

lpha cycle form part of the same percept. The finding that approx-
mately four objects can be perceived at a glance is proposed to be
result of such alpha–gamma nesting. See Palva and Palva (2007)

or a recent review.
Reports of nested oscillations are also now emerging from

uman brain imaging studies. Vanhatalo et al. (2004) describe
infra-slow oscillations’ (ISOs) in human EEG during sleep at fre-
uencies between 0.02 and 0.2 Hz. These ISOs modulate cortical
xcitability such that increases in power above 1 Hz occur at ISO
roughs. Also, the frequency of discrete EEG events such as K-
omplexes and intra-ictal epileptic spikes are increased at the
roughs. In addition to their primary findings, Vanhatalo et al.
2004) also found increase in theta (4–8 Hz) and alpha (7–18 Hz)
ower, again, at ISO troughs.

Schack et al. (2002) detected nested oscillations in human
EG during the delay period of a working memory task. They
ound strong instantaneous coherence between frontal theta activ-
ty (4–8 Hz) and the envelope of pre-frontal beta/gamma activity
20–40 Hz). Demiralp et al. (2007) have also found evidence for
ested oscillation in EEG recordings made whilst subjects perceived
nown and unknown objects. The oscillations were in the theta
average 5.9 Hz) and gamma bands (average 40.1 Hz).
Mormann et al. (2005) analysed ECoG from the medial tempo-
al lobes of epilepsy patients during a continuous word recognition
aradigm. Words were presented visually and half of them were

ater repeated. They found PAC between 4 Hz theta oscillations
nd beta activity (10–20 Hz) in hippocampus and rhinal cortex. In

http://www.sciencedirect.com/science/journal/01650270
mailto:w.penny@fil.ion.ucl.ac.uk
dx.doi.org/10.1016/j.jneumeth.2008.06.035
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Canolty et al. (2006) define a ‘modulation index’ based on the
complex variable

z[n] = a� [n] exp(i��[n]) (3)

Fig. 1. Instantaneous phase and amplitude. This figure shows the quantities nec-
W.D. Penny et al. / Journal of Neu

ddition, they found a modulation of gamma activity (40–50 Hz) by
6 Hz theta cycle.

More recently, Canolty et al. (2006) recorded ECoG from a grid of
lectrodes over a left fronto-temporal region and found that high
amma (80–150 Hz) amplitude peaked at the trough of ongoing
heta oscillations. This occurred during a broad range of cognitive
nd motor tasks, and the spatial coupling patterns showed a greater
egree of similarity for more similar tasks.

At a recent conference, Osipova et al. (2007) presented PAC
esults on MEG data. During eyes-closed resting behaviour the
ower of gamma oscillations (30–80 Hz) was found to be coupled
o the phase of alpha activity (8–13 Hz). Subjects with strong alpha
lso showed strong PAC and gamma activity was maximal at the
eak of alpha oscillation. Osipova et al. (2007) hypothesize that the
isual system is inhibited during most of the alpha cycle except at
certain phase (the peak).

The concept of nested oscillation is perhaps most fully devel-
ped in the work of Lakatos et al. (2005) who propose an oscillatory
ierarchy underlying the EEG in which theta amplitude is driven
y delta phase and gamma amplitude by theta phase. This proposal
as supported by recordings from the primary auditory cortex of

wake macaques where the frequency and phase of ongoing delta
aves adapted to match stimulus properties, over a set of repeated

rials.
Whilst there have therefore been many reports of nested oscil-

ation in the literature, the methods used to test for them have been
ather heterogeneous. One might reasonably ask: What is the best
ethod for detecting nested oscillation? This is the question we

ddress in this paper.
We compare three different methods that have been proposed

n the literature and a fourth proposed in this paper. These are:
i) the modulation index method of Canolty et al. (2006), (ii)
he phase-locking value approach of Vanhatalo et al. (2004) and

ormann et al. (2005), (iii) the envelope-to-signal correlation (ESC)
ethod of Bruns and Eckhorn (2004) and (iv) a new general lin-

ar model (GLM) approach derived from ESC. We initially apply
he methods to electrocorticographic (ECoG) data recorded dur-
ng a working-memory task, and then to data from a simulated
ippocampal interneuron network. Further simulations are then
ade to address the dependence of each measure on signal to

oise level, coupling phase, epoch length, sample rate, signal non-
tationarity, and multi-phasic coupling. Throughout the paper we
se the terms nested oscillation and phase-amplitude coupling

nterchangeably.

. Methods

All of the methods for detecting nested oscillation rely on band-
ass filtering and the Hilbert transform. Firstly, a univariate time
eries x[n], sampled at times tn for n = 1, . . . , N is bandpass filtered
nto the two frequency bands of interest. For the rest of the paper

e assume that these are the � (e.g. 4–8 Hz) and � (e.g. 30–80 Hz)
ands, but the approaches are of course generically applicable to
ny two frequency bands. Filtering then produces the signals x�[n]
nd x� [n].

In this paper we designed finite impulse response (FIR) fil-
ers using Matlab’s signal processing toolbox function firls.m. To
emove any phase distortion the filters were applied to the origi-
al time series in the forward and then the reverse direction (using

atlab’s function filtfilt.m).
The Hilbert transform (Papoulis, 1991)

[t] = H(x[t]) = 1
�

∫ ∞

−∞

x[�]
t − �

d� (1)

e
fi
f
t
o
t
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s then applied to each resulting time series. This transform con-
erts a cosine wave into a sine wave and, more generally, delays the
riginal signal by �/2 at each frequency. The instantaneous phase
an then be computed using the relative ratios of the original and
ransformed signal. Application of the transform to our two filtered
ime series allows us to form the complex variables, or ‘analytic
ignals’

z�[n] = x�[n] + iy�[n] = a�[n] exp(i��[n])
z� [n] = x� [n] + iy� [n] = a� [n] exp(i�� [n])

(2)

here ��[n] and �� [n] are the instantaneous phases, and a�[n]
nd a� [n] are the instantaneous amplitudes of the � and � oscilla-
ions. One can also apply a second Hilbert transform to the gamma
mplitude and from it compute the phase of the gamma ampli-
ude, �a� [n]. We then remove the first and last w� samples from
ach phase and amplitude time series, where w� is the order of the
lter for the theta band. This eliminates edge effects introduced
y filtering and was found to improve the specificity of all PAC
easures.
To obtain the results in this paper we used a filter order for the

heta band, w� , equivalent to two cycles of the central theta period.
he order of the gamma band filter w� was set to three cycles of
he central gamma period.

Fig. 1 illustrates the filtering and Hilbert transform steps
equired to produce the quantities necessary for computing the PAC
easures. The above phases and amplitudes can also be estimated

sing a wavelet transform approach which produces similar results
e Van Quyen et al. (2001). The following subsections define three
easures found in the literature to test for nested oscillation. The

hird subsection also describes the new GLM measure.

.1. Modulation index
ssary for computing the PAC measures. Firstly, the original signals are bandpass
ltered to produce the time series x� and x� . Hilbert transforms are then applied

rom which one can estimate the gamma amplitude, a� (shown in red) and the
heta phase, �� . One can then apply a Hilbert transform to the gamma amplitude to
btain the phase of the gamma amplitude, �a� . (For interpretation of the references
o color in the artwork, the reader is referred to the web version of the article.)
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he absolute value of the mean vector is then given by

raw =
∣∣∣∣∣ 1

N

N∑
n=1

z[n]

∣∣∣∣∣ (4)

here || denotes the absolute value. Assuming that ��[n] is uni-
ormly distributed, any departure of the distribution of z[n] from
adial symmetry will indicate a dependence of a� [n] on ��[n].
herefore, a non-zero value of Mraw will indicate PAC.

A significance value can be attached to Mraw using a surrogate
ata approach. By introducing an arbitrary time lag between ��

nd a� we can compute the surrogate complex variable zs[n]. The
ean of this over n = 1, . . . , N is then given as Ms. This procedure

s repeated to produce s = 1, . . . , S surrogate values. From this sur-
ogate data set we then compute the mean, � and variance, �2, and
ompute a normalized modulation index

= Mraw − �

�
(5)

nd the p-value that corresponds to the standard Gaussian variate.
his will only be an approximate p-value, however, as these sam-
les are unlikely to be normally distributed. Our implementation
f this method is based on the Matlab code provided in the sup-
lementary material of Canolty et al. (2006). For the results in this
aper, however, we used M = Mraw, rather than the normalized ver-
ion in Eq. (5), since simulations showed it to have better statistical
roperties.

.2. Phase-locking value

The phase-locking value (PLV), proposed by Lachaux et al. (1999)
see Tass et al., 1998 for a similar method), was developed to look
t phase-locking between trials. Phase-locking factors have been
reviously used in neuroscience, for example, by Sinkkonen et al.
1995). Vanhatalo et al. (2004) and Mormann et al. (2005) have
sed the PLV in a different context; to look at PAC within a trial. In
his context the two phases of interest are the phase of the theta
scillation, ��[n], and the phase of the � amplitude, �a� [n]. This
atter phase is obtained with a second Hilbert transform from which

e can produce the complex variable

a� [n] = aa� [n] exp(i�a� [n]) (6)

he PLV is then defined as

LV =
∣∣∣∣∣ 1

N

N∑
n=1

exp(i(��[n] − �a� [n]))

∣∣∣∣∣ (7)

here a value of unity indicates perfect phase-locking (in this con-
ext PAC), and a value of zero indicates no locking (no PAC).

As a� [n] may contain non-theta-related components, these are
rst filtered out before extracting �a� [n], i.e. before the second
ilbert transform. In this paper, the filtering is implemented using

he same bandpass filter used to obtain x�[n].
Phase-locking statistics (PLS) can then be derived using a

tandard surrogate data approach (Lachaux et al., 1999). This is
mplemented by randomly permuting a� to produce surrogate time
eries as

� where s = 1, . . . , S. PLV is then computed for each surro-
ate s resulting in a distribution of PLVs. The p-value of the original
LV can then be read off from this histogram.
.3. Correlation and general linear model

Bruns and Eckhorn (2004) define an ESC measure as

ESC = Corrn(x�[n], a� [n]) (8)

a

w
a
c

nce Methods 174 (2008) 50–61

n this paper we compute the correlation in the standard way

Corrn(x[n], y[n]) = 1
N

N∑
n=1

(x[n] − x̄)(y[n] − ȳ)

�x�y

�2
x = 1

N − 1

N∑
n=1

(x[n] − x̄)2

�2
y = 1

N − 1

N∑
n=1

(y[n] − ȳ)2

x̄ = 1
N

N∑
n=1

x[n]

ȳ = 1
N

N∑
n=1

y[n]

(9)

e stress that ESC is a very different measure than the correlation
etween a�[n] and a� [n]. This latter measure detects co-modulation
f the amplitude envelopes and is referred to by Bruns and Eckhorn
2004) as amplitude envelope correlation (AEC). We denote it as

AEC = Corrn(a�[n], a� [n]) (10)

imilarly, a correlation between a2
�
[n] and a2

� [n] characterises cor-
elations in power between the different frequency bands. This
as been used before, by Friston (1996) for MEG data recorded
uring unilateral self-paced joystick movements, who observed
hat gamma frequency (35–40 Hz) oscillations in prefrontal cortex
orrelated with beta (18–20 Hz) frequency oscillations in parietal
ortex.

The difference between the ESC and AEC measures is that, for
SC, the amplitude of the lower frequency oscillation is signed. As
uch, phase information is preserved. If for example a� is largest
hen x� is most negative, and a� is smallest when x� is most positive
e have gamma peaks at theta troughs. This is PAC and will result

n large negative ESC values.
We also note that large values of rAEC will not necessarily result

n large values of rESC, particularly in cases of phase cancellation.
onversely, processes which generate large rESC values will not nec-
ssarily produce large rAEC values. If PAC is intermittent, however,
hen one would expect a large overall rAEC and intermittently high
ESC.

Because ESC can be confounded with amplitude co-modulations
ne could define an amplitude-normalized ESC measure as follows:

NESC = Corrn(cos(��[n]), a� [n]) (11)

his uses cos(��[n]) instead of x�[n] and so is invariant to amplitude
odulations in x�[n], and hence to co-modulations in amplitude.

he measure rNESC bears some similarity to the modulation index.
f one takes the absolute operator inside the summation term in
he definition of the modulation index in Eq. (4) and subtracts the

ean from each term then one is left with rNESC, up to a constant.
The above measure, rNESC, however will still share a deficiency

ith ESC. This is an inability to detect coupling at 1/4 or 3/4 of
theta cycle (the so-called ‘null phases’ as, e.g. cos((1/4)2�) = 0)

Cohen, 2008). To ameliorate this, we propose a generalization of
he above measure using the GLM framework used widely in neu-
oimaging (Friston et al., 2006). Gamma amplitude is modeled via
multiple regression
� = Xˇ + e (12)

here ˇ are regression coefficients, e is additive Gaussian noise
nd the design matrix X is comprised of three columns, the first
os(��[n]), the second sin(��[n]) and the third is a column of 1s.
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Fig. 2. Task-related differences in nested oscillation. Maps of t-values for two-sample t-tests comparing PAC measures from ECoG data between target and non-target trials
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ne can then compute the proportion of variance explained by the
odel as

2
GLM = SS(a� ) − SS(e)

SS(a� )
(13)

here SS(a� ) is the sum of squares of the data and SS(e) is the sum of
quares due to error. These can be computed in the usual way after
odel fitting (Christensen, 2002). As we shall see, the rGLM measure
ill be able to detect coupling at all theta phases, whereas this is
ot the case for rESC or rNESC.

When referring to the correlation measure in the rest of the
aper, we mean the original ESC measure defined by Eq. (8), unless
therwise stated.

. Results

.1. ECoG data

This section describes application of the PAC measures to
n ECoG data set. This data was recorded from a subject with
ntractable epilepsy who underwent temporary placement of an
× 8 grid of subdural electrodes placed over a fronto-temporal

egion including parts of sensorimotor cortex. The subject gave
nformed consent and the study was approved by the Institutional
eview Board of the University of Washington School of Medicine.
he electrode grid consisted of flat electrodes with an exposed
iameter of 2.3-mm, inter-electrode distance of 1-cm and all elec-
rodes were referred to an inactive electrode.

The subject took part in a working memory experiment in which
e was presented with images of houses and indicated whether an

mage was the same as the previous one (a ‘target’) by closing their
and. For non-targets he was instructed to keep his hand relaxed
nd open. The subject was told there were a maximum of two of
ach image, therefore, after viewing a target knew the image did

ot have to be remembered for subsequent matching. Images were
isplayed for 600 ms and there was a 1600 ms delay before the next
as presented. One hundred such images were presented and there
ere 20 ‘targets’, i.e. images that were the same as the previous one.

here were therefore 80 non-target trials and 20 target trials.

m
b
f
s
m

. In each image electrodes are numbered from bottom right (number 1) to top left
trial types. Both ESC and GLM indicate significant PAC differences at electrodes 63
on index. (For interpretation of the references to color in the artwork, the reader is

The ECoG data was then processed as follows. The signals were
mplified, bandpass filtered between 0.15 and 200 Hz and digitised
t fs = 1000 Hz. Signals were later re-referenced to a common mean
nd notch filters applied to remove mains artefact at 60 and 120 Hz.
e then filtered the data at each sensor into two bands: (i) theta

4–8 Hz) and (ii) the �-band, using the bandpass filters described
arlier. The �-band is specified following the definition of a scale-
ree power law, has been found to correlate well with local cortical
unction (Miller et al., 2007, submitted for publication), and corre-
ponds to frequencies between 76 and 200 Hz.

We then used the Hilbert transform as described earlier and for
ach trial, j, computed the Correlation measure, rj

ESC, GLM measure,
j
GLM, PLV measure, PLVj , and modulation index, mj . The PAC mea-
ures were then transformed into approximately Gaussian variates
s follows. For the ESC and GLM measures we used Fisher’s z-
ransformation

zC
j

= 1
2

log

(
1 + rj

ESC

1 − rj
ESC

)

zG
j

= 1
2

log

(
1 + rj

GLM

1 − rj
GLM

) (14)

or the PLV, following Mormann et al. (2005), we used an arcsine
ransform

P
j = sin−1(2PLVj − 1) (15)

nd for the modulation index we used a log-transform

M
j = log mj (16)

e also repeated the modulation index analysis without the log-
ransform and found little difference in results. We then compared
he above z-scores for the target trials to the non-target trials using
wo-sample t-tests at each electrode. The t-tests for the correlation
easures were applied to the absolute value of the z-scores. This is
ecause we were not initially interested in whether condition dif-
erences were between negative or positive correlations. With this
ign information removed, our significance scores are then com-
ensurate with the GLM, PLV and modulation indices, that is, a
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ig. 3. ECOG time series for non-target trial. Example non-target trial at electrode 63
howing the original time series (top), activity in the �-band (middle) and activity
n the theta band (bottom). The PAC measures are rESC = −0.42, rGLM = 0.32, PLV =
.57 and M = 12.7.

ositive PLV difference between conditions will correspond to a
ositive difference in correlation scores.

The p-values associated with the t-tests were then corrected
or multiple comparisons using a Bonferonni procedure. Only
lectrodes with p < 0.05 (corrected) were deemed to contain sig-
ificant differences. This corresponds to a t-score of 3.25. Fig. 2
hows the results for the ESC, GLM, PLV and modulation index
easures. Both ESC and GLM indicate significant PAC differences

t electrodes 63 and 45, and PLV at electrode 63. No significant
ifferences were revealed by the modulation index.

The first difference in the ESC measure, at electrode 63 (Talairach

o-ordinates x = 42, y = −15, z = 59 mm) arises from no correla-
ion for target trials but strongly negative correlation for non-target
rials. Time series for each trial type are shown in Figs. 3 and 4. For
he non-target trials one can see gamma bursts at theta troughs.

ig. 4. ECOG time series for target trial. Example target trial at electrode 63 showing
he original time series (top), activity in the �-band (middle) and activity in the
heta band (bottom). The PAC measures are rESC = 0.02, rGLM = 0.06, PLV = 0.07
nd M = 6.8.
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or the target trials there is no such pattern. The PAC measures for
he non-target trial are rESC = −0.42, rGLM = 0.32, PLV = 0.57 and

= 12.7. For the non-target trial the PAC measures are rESC = 0.02,
GLM = 0.06, PLV = 0.07 and M = 6.8. Thus the modulation index
oes detect a difference over these two particular trials, but this
ffect did not reach statistical significance when all trials were
onsidered.

For the second difference, at electrode 45 (Talairach co-ordinates
= 52, y = 5, z = 39 mm), the pattern is reversed. That is, there

s stronger coupling (at the theta trough) for target trials than for
on-target trials. These between-trial differences may reflect hand
ovement rather than working memory processes, however, as

ubjects were instructed to close their hands for the target trials
nd keep them open for non-targets.

A concern with the ESC measure is that it is also sensitive to
mplitude co-modulations. This is especially relevant for the ECoG
ata as amplitude co-modulations are clearly visible, for example,
t the beginning of the non-target trial in Fig. 3. However, as the
LM measure also detects coupling changes we can be sure that

here is significant phase-amplitude coupling in addition to any
mplitude co-modulation.

.2. Hippocampal interneuron network

This section describes application of the PAC measures to bio-
hysically realistic simulated data. A network of Hippocampal

nterneurons was simulated following the approach described in
hite et al. (2000). Interneurons were partitioned into two popu-

ations, those with fast or slow GABAA synapses, such that the slow
eurons generate a theta rhythm and the fast neurons a gamma
hythm. Neurons within each population are coupled together and,
dditionally, neurons in the slow population are coupled to those
n the fast population, as shown in Fig. 5(a). This latter coupling
auses the gamma rhythm to pause periodically every theta cycle
nd so generate a nested theta–gamma oscillation.

Details of the network parameters are described in Appendix A
nd broadly follow the simulations described in White et al. (2000).
or the simulations in this paper we considered two scenarios.
irstly, we assumed perfect synchronization within each popula-
ion. This allowed us to represent each population using the update
quations for a single neuron. Secondly, we considered partial syn-
hronization within each population and implemented this using
he distributions of applied current described in Appendix A and
y using five cells per population.

Fig. 5(b) shows the inhibition of the faster cells by the slower
ells that leads to phase-amplitude coupling, which occurs for cer-
ain choices of the coupling parameter a. These time series were
reated as described in Appendix A. Simulated local field potentials
LFPs) were then created as the sum of the membrane potentials.
he resulting signals were then downsampled, with appropriate
nti-aliasing filters, to fs = 512 Hz, and normalized to zero-mean
nd unit variance. Different time series were created by different
ealizations of noise added on to the applied currents, as described
n Appendix A. To these time series, we then added zero-mean
aussian noise with variance �2

e .
In this and subsequent sections we quantify the performance of

he various PAC measures using a receiver operating characteristic
ROC) approach (Swets, 1995). ROC curves plot the false positive
ersus the false negative rate as a decision threshold is varied. In
his paper the decision thresholds were based on the PAC mea-

ures themselves rather than the corresponding p-values (for each
easure, e.g. PLV, one can compute both the PLV and its associated

-value, as described above). ROC-curves based on the p-values pro-
uced almost identical results. For the simulations in this paper we
omputed ROC curves by first generating data from 100 PAC trials
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Fig. 5. Hippocampal interneuron network. (a) Network model comprising a slow spiking population of GABA-A cells that causes a fast population of GABA-A cells to pause
periodically and so generate a nested theta–gamma oscillation. All cells are driven with an externally applied current and the strength of the inhibition from the slow to
t brane
p the cu
G (c) fu
t of th

a
o
t
(
c

i
i
u
a
H
b
d
s
f

d
e
c
s
e

3

x

f
o

a

T

x

a

x

w
T
n
a
t
p
6
c
L
f
�

a

he fast population is determined by the coupling parameter a. (b) Exemplar mem
opulation (bottom) for a = 0.6. The plots in the bottom row show the area under
LM measure (green), phase-locking value (black) and modulation index (blue) for

he references to color in the figure legend, the reader is referred to the web version

nd 100 null trials, and varying the threshold over all empirically
bserved PAC values to compute the false positive and false nega-
ive rates. The AUC metric was then computed from these values
Swets, 1995) with a value of 0.5 indicating discrimination at the
hance level and a value of 1 indicating perfect discrimination.

Fig. 5(c) and (d) shows how the AUC values fall off with increas-
ng noise level for the different PAC measures. Each AUC value
n these curves was derived by generating 100 trials of PAC data
sing coupling parameter a = 0.6 and 100 trials of null data using
= 0. The results were obtained using a ‘theta’ band from 5 to 20
z and a ‘gamma’ band from 50 to 130 Hz. The AUC curves have
een smoothed for presentation purposes using a first-order bi-
irectional moving average filter. The modulation index performs
ignificantly worse than the GLM, PLV or ESC measures for both
ully and partially synchronized network dynamics.

The following subsections systematically examine the depen-
ence of the PAC measures on signal to noise level, coupling phase,
poch length, sample rate, signal nonstationarity, and multi-phasic
oupling. This examination takes place using a variety of synthetic
ignals which provide control over the type of coupling produced,
.g. preferred phase.

.3. Sigmoidal coupling
We first generate a stationary theta oscillation

�[n] = a� sin(2�f�t[n]) (17)

s
a
t
e
l

potentials for fully synchronized slow spiking population (top) and fast spiking
rve (AUC) as a function of observation noise, �e, for the correlation measure (red),
lly synchronized and (d) partially synchronized populations. (For interpretation of
e article.)

or samples n = 1, . . . , N and then relate the amplitude of a gamma
scillation to it via the following sigmoidal nonlinearity

� [n] = k

1 + exp(−c(x�[n] − tc))
(18)

he gamma oscillation is given by

� [n] = a� [n] sin(2�f� t[n]) (19)

nd an observed time series is then formed as follows:

[n] = x�[n − n0] + x� [n] + e[n] (20)

here e[n] is zero mean Gaussian noise of standard deviation �e.
he observed theta oscillation is delayed by a number of samples
0 = �0(fs/f�) which corresponds to a fraction, �0, of a cycle. This
llowed us to generate gamma bursts at different phases of the
heta cycle. For the simulations in this section we use the following
arameters. Theta amplitude and frequency are set to a� = 1, f� =
Hz, gamma frequency to f� = 35 Hz and sigmoidal parameters to
= 1, tc = 0.95. Fig. 6 shows an example time series of epoch length
= 3 s and its spectrogram computed using a Morlet-wavelet time-

requency method. This data was generated using parameters k = 2,
e = 1, n0 = 0 and fs = 240 Hz.

Fig. 7 shows, for each of the measures, how the AUC varies as
function of observation noise, coupling phase, epoch length and
ample rate. Each AUC value in these curves was derived by gener-
ting 100 trials of PAC data using gamma amplitude k = 2 and 100
rials of null data using k = 0. Parameters that were not varied for
ach plot were set to the default values of epoch length L = 3 s, noise
evel �e = 1.5, coupling phase �0 = 0 and sample rate fs = 256 Hz.
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Fig. 6. Sigmoidal coupling time series. A single trial of sigmoidal coupling data. The
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op plot shows a 3-s time series, the middle plot the corresponding spectrogram, and
he bottom plot the theta oscillation used in generating the data. Note the gamma
ursts at theta peaks. (For interpretation of the references to color in the figure

egend, the reader is referred to the web version of the article.)

hese AUC curves, and all others that follow, have been smoothed
or presentation purposes using a first-order bi-directional moving
verage filter.

For low noise values, all methods are able to detect PAC almost
erfectly. As the noise level increases the AUC falls, but there is a
lear and consistent ordering, ESC having the highest AUC, followed
y the GLM, PLV and then the modulation index. The simulation
esults show that the AUC for the ESC measure falls to chance levels
t phases of 1/4 and 3/4 cycle, as expected, whereas the PLV and
odulation indices are unaffected.

The lower plots in Fig. 7 show that all measures asymptote to

he same AUC value of unity given sufficiently long epoch lengths
r sufficiently high sampling rate. Before the asymptote, the ESC
easure is consistently the most accurate, followed by GLM, PLV

nd the modulation index.

s
w
t

ig. 7. Sigmoidal coupling. The plots show the area under the curve (AUC) as a function of
orrelation measure (red), GLM measure (green), phase-locking value (black) and modula
he reader is referred to the web version of the article.)
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.4. Von-Mises coupling

In this set of simulations the amplitude of gamma oscillations is
iven by

� [n] = c

exp 	
exp(	 cos(��[n] − 2��0)) (21)

here c controls the maximum gamma amplitude, 2��0 the theta
hase at which gamma is maximal and 	 the phase concentration.

n effect, 	 controls the duty cycle, with large values causing gamma
o be large only at phases very close to 2��0, and a value of zero
ausing equally large gamma at all phases.

The form of the above equation was motivated by the Von-Mises
robability density for phases (Papoulis, 1991), where the param-
ter 	 is known as the ‘concentration parameter’ which, in turn, is
nalagous to the precision (inverse variance) parameter of a Gaus-
ian density. We have replaced probability density with gamma
mplitude, and chosen a normalization term such that the maximal
alue is c.

Fig. 8 shows, for each of the measures, how the AUC varies as
function of observation noise, coupling phase, epoch length and

ample rate. Each AUC value in these curves was derived by gener-
ting 100 trials of PAC data using 	 = 1 and 100 trials of null data
sing 	 = 0. Parameters that were not varied for each plot were set
o the default values of epoch length L = 2.2 s, noise level �e = 1.5,
oupling phase �0 = 0 and sample rate fs = 256 Hz.

In these simulations the ESC measure performs best over a wide
ange of noise levels, epoch lengths and sample rates, followed by
LM, PLV and the modulation index. Again, it shows its character-

stic poor performance for coupling at null-phases. All measures
symptote to an AUC of unity for long epoch lengths and high sam-
le rates.

.5. Nonstationary theta
The simulations so far have used theta oscillations which are
tationary throughout the examined epoch even though it is
ell known that electrophysiological signals are often nonsta-

ionary. For example, a theta oscillation from the ECoG data set

observation noise �e, coupling phase �0, epoch length L, and sample rate fs for the
tion index (blue). (For interpretation of the references to color in the figure legend,
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ig. 8. Von-Mises coupling. The plots show the area under the curve (AUC) as a func
orrelation measure (red), GLM measure (green), phase-locking value (black) and m
he reader is referred to the web version of the article.)

hown in Fig. 3 shows clear amplitude and frequency modula-
ion.

This section describes a set of simulations in which PAC data
s generated as described in the previous section, but coupling is
riven by a theta oscillation x�[n] that is derived from electrode 63
f the ECoG data described previously.

In these simulations the epoch length is fixed to 2.2 s, as defined
y the experiment. Fig. 9 shows, for each of the measures, how
he AUC varies as a function of observation noise, coupling phase
nd sample rate. Each AUC value in these curves was derived by
enerating 100 trials of PAC data using 	 = 1 and 100 trials of null
ata using 	 = 0. Parameters that were not varied for each plot were
et to the default values of noise level �e = 1.5, coupling phase �0 =
and sample rate fs = 256 Hz.

In these simulations the ESC measure performs best over a
ide range of noise levels and sample rates, followed by GLM,

LV and the modulation index. Interestingly, the AUC asymp-
otes to unity before the experimental sample rate of fs =
000 Hz is reached. The point at which this occurs is, however,
function of the noise level. For lower sample rates or higher

oise levels the correlation measure produces the highest AUC
cores.

Finally, Fig. 10 shows how AUC varies as a function of the con-
entration parameter, 	, for synthetic stationary theta epochs, and
xperimentally acquired nonstationary theta epochs. Each AUC
alue in these curves was derived by generating 100 trials of PAC
ata using the specified 	-value and 100 trials of null data using
= 0. Parameters that were not varied were set to the default values

escribed above.
The ESC measure performs best in all cases, followed by GLM,

LV and the modulation index. The AUC peaks for a value of 	 ≈ 1.
or low 	 there is little or no PAC to be detected and for high 	 the
uration of the gamma bursts becomes too short to have sufficient
NR. The shape of these curves will also be determined by the length

f the filter used to pass the gamma band (in this paper we have
sed filters of length three times the central gamma period).

Overall, Figs. 8–10 show lower AUC values for nonstationary
ata, indicating that activity that is nested in nonstationary oscil-

ations is harder to detect than in stationary oscillations.

a
s
p
s

f observation noise �e, coupling phase �0, epoch length L, and sample rate fs for the
tion index (blue). (For interpretation of the references to color in the figure legend,

.6. Biphasic coupling

This final section describes phase-amplitude coupled data gen-
rated according to a scenario similar to that described in Canolty
t al. (2006). The aim is to produce a ‘synthetic signal [that] can
e viewed as a very simple model of the activation and refractory
eriod of a local neuronal population in a given cortical area’.

This is implemented using two sigmoidal nonlinearities

a1
� [n] = k1

1 + exp(−c1(x�[n] − t1
c ))

a2
� [n] = k2

1 + exp(−c2(x�[n] − t2
c ))

(22)

ith parameters chosen so that the first gamma amplitude
ncreases at the theta trough, and the second at the theta peak. This
as achieved using parameter values c1 = −10, c2 = 10, t1

c = −0.95,
2
c = 0.95. Each type of gamma burst was then switched on with
robability 0.5 using binary switch variables s1 and s2. This resulted

n gamma bursts at typically 50% of troughs and peaks and follows
he suggestion of Canolty et al. (2006). The gamma oscillation is
hen given by

� [n] = (s1a1
� [n] + s2a2

� [n] + a� ) sin(2�f� t) (23)

here the background gamma amplitude is a� = 2. A time series
as then formed as follows:

[n] = x�[n − n0] + x� [n] + e[n] (24)

here n0 = �0(fs/f�) as before. We generated 100 trials of PAC data
sing gamma amplitudes k1 = 8 and k2 = 4 with noise level �e = 1
nd 100 trials of null data with identical parameters but gamma
mplitudes of k1 = k2 = 0. The amplitudes of the PAC data, k1 and
2, are deliberately set unequal so as to correspond to the proposed
imulation described in the supplementary material of Canolty et
l. (2006). AUC values were then computed as before.
Fig. 11 shows, for each of the measures, how the AUC varies as
function of observation noise, coupling phase, epoch length and

ample rate. In these simulations, it is the modulation index which
erforms best over a wide range of noise levels, epoch lengths and
ample rates. This confirms the assertion of Canolty et al. (2006),
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ig. 9. Nonstationary theta. The plots show the area under the curve (AUC) as a fu
easure (red), GLM measure (green), phase-locking value (black) and modulation i

s referred to the web version of the article.)

hat the modulation index would be useful for detecting stochastic
iphasic coupling. The PLV results can in principle be improved by

ooking for 2:1 instead of 1:1 phase locking, as described in Tass et
l. (1998). However, no improvement was seen in these simulations.
his is because at the simulated signal-to-noise ratios and after the
elevant filtering and envelope extraction, only a change from high
k1 = 8) to low (k2 = 4) gamma activity could be extracted, and
his occurs at theta frequency. Again, as expected, the ESC mea-
ure dips to chance values for increases of gamma at null theta
hases.

. Discussion

This paper has compared four different methods for detecting

ested oscillation: (i) the modulation index of Canolty et al. (2006),
ii) the phase-locking value approach of Vanhatalo et al. (2004) and

ormann et al. (2005), (iii) the envelope-to-signal correlation (ESC)
easure of Bruns and Eckhorn (2004) and (iv) a new measure based

n a GLM. The GLM approach was motivated by improvements to

m
p
g
i
m

ig. 10. Effect of concentration parameter. The plots show the area under the curve (A
b) Von-Mises coupling with nonstationary theta for the correlation measure (red), GLM
nterpretation of the references to color in the figure legend, the reader is referred to the
of observation noise �e, coupling phase �0 and sample rate fs for the correlation
blue). (For interpretation of the references to color in the figure legend, the reader

he ESC measure. Firstly, by removing sensitivity to amplitude co-
odulation and, secondly, by allowing coupling to be detected at

ll phases of the slower oscillation.
Application of the measures to an ECoG data set revealed sig-

ificant differences in phase-amplitude coupling between target
nd non-target trials for electrodes placed over sensorimotor cor-
ex. These were identified at two electrodes using the ESC and GLM

easures and at one electrode using PLV. The modulation index also
evealed differences but these did not reach statistical significance.

Application of the measures to biophysically realistic data from a
imulated hippocampal interneuron network revealed similar find-
ngs. The ESC, GLM and PLV measures were better able to detect PAC
han the modulation index over a broad range of signal to noise
evels.

We then proceeded to characterise the dependence of the PAC

easures on epoch length, sample rate, noise level, and coupling

hase using two different simulation procedures. The first related
amma amplitude to the theta signal using a sigmoidal nonlinear-
ty, and the second specified gamma amplitude using a nonlinearity

otivated by the Von-Mises density. The conclusions, similar for

UC) as a function of concentration parameter 	 for: (a) Von-Mises coupling and
measure (green), phase-locking value (black) and modulation index (blue). (For

web version of the article.)
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ig. 11. Biphasic coupling. The plots show the area under the curve (AUC) as a funct
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oth coupling methods, were that the ESC measure performed best.
he caveat here, however, is that ESC is unable to detect PAC if the
oupling occurs at 1/4 or 3/4 theta cycle (the so-called ‘null phases’).
his is because the theta oscillation is equal to its mean level at
hese phases, therefore resulting in zero-correlation. This has also
een remarked upon by Cohen (2008). The next best performing
easure was GLM, closely followed by PLV.
A further set of simulations then addressed the issue of nonsta-

ionarity. To this end, theta oscillations from the ECoG data set were
sed and PAC data was generated using the Von-Mises method. The
onclusions were again similar, that the ESC measure performed
est, except for coupling at null phases. We also characterized the
ependence of the PAC measures on the coupling duty cycle. This
as implemented using Von-Mises coupling by varying the concen-

ration parameter. The results showed that activity that is nested
n nonstationary oscillations is harder to detect than in stationary
scillations, and that the ESC measure was best across a broad range
f duty cycles. The next best performing measure was GLM, closely
ollowed by PLV.

Finally, we addressed the issue of multi-phasic coupling. This
efers to the possibility that gamma bursts may occur at multi-
le phases of the theta rhythm, but with different strengths. This

ssue was raised in the work of Canolty et al. (2006) who used it
o motivate the definition of the modulation index. To this end,
e generated biphasic PAC data using two sigmoidal nonlineari-

ies. Our simulations showed the modulation index to be the best
easure for detecting this sort of coupling.
Overall, our results suggest that ESC is the best measure for

etecting PAC. However, the fact that ESC is insensitive to coupling
t null phases presents a major drawback. In a recent rat electro-
hysiology study, for example, Jones and Wilson (2005) found that
eurons in medial pre-frontal cortex spiked at approximately 1/4
f the hippocampal theta cycle. The ESC measure, applied to the
elevant local fields, would be unable to detect this.
Our results on the ECoG, Hippocampal network, sigmoidal/Von-
ises coupling and nonstationary data sets show that GLM and

LV are better methods than the modulation index for short-epoch
ata. For this reason we recommend GLM, being slightly better than
LV, as the method of choice for data with short epochs (e.g. a few

m
t
d
v
i

observation noise �e, coupling phase �0, epoch length L, and sample rate fs for the
tion index (blue). (For interpretation of the references to color in the figure legend,

econds) and the modulation index for longer epochs. The Jones
nd Wilson (2005) study, for example, used epochs of 2–2.5 s and
ur ECoG data epochs were 2.2 s. These are perhaps too short for the
odulation index to be effective. In contrast, Canolty et al. (2006)

pplied the modulation index to very long data epochs, of duration
–8 min.

A caveat to the above recommendation is that the modulation
ndex is better able to detect biphasic coupling. But the biological
elevance of such coupling remains to be established. On a more
ractical note perhaps our most useful finding is that one should
se as long an epoch length and as high a sampling rate as is possi-
le given the experimental constraints. This result is analagous to
tandard results in signal processing theory. For example, the accu-
acy with which the frequency of a single sinusoid in white noise
an be estimated, has been shown to be inversely proportional to
he epoch length and inversely proportional to the square root of
he sampling rate (see Eq. (2.11) in Bretthorst, 1988).

We now turn to the question as to why ESC and PLV have
etter statistical properties than the modulation index, for short-
poch data. A possible reason, suggested to us by a reviewer of
his paper, is related to the intrinsic dimensionality of each of the

easures. If one looks inside the summation terms of each of the
easures, then the ESC, defined in Eq. (8), concerns the product

f two real numbers which is therefore one-dimensional, the PLV,
efined in Eq. (7), is the product of conjugate complex exponen-
ials which is therefore constrained to lie on the one-dimensional
nit circle, whereas the modulation index, defined in Eq. (4), is

ntrinsically two-dimensional because it depends on the product
f a real number and a complex exponential. As the detection of
one-dimensional quantity is more difficult when projected into

wo dimensions this may explain our observed results.
That intrinsic dimensionality plays a such a role is perhaps

orne out by the following observation. We defined a simpler GLM
pproach using a single regressor, cos(��[n]) (due to the one-to-one

apping between regression and correlation this is equivalent to

he NESC measure defined in Section 2). Like ESC it was unable to
etect coupling at null phases but, also like ESC, it had higher AUC
alues at non-null phases (results not shown). We suggest that this
s because there are fewer regression coefficients to estimate for
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he simpler model. If one knows at what phase the coupling will or
ill not occur then one can devise a better test. This is analagous

o the well-known higher sensitivity of t-tests (that test for single
ffects) than F-tests (which test for linear combinations of multiple
ffects) in GLMs (Christensen, 2002).

We also note two possible extensions to the GLM test. Firstly,
ne could include extra regressors for higher order terms, e.g.
os(2��[n]) and sin(2��[n]), although this did not improve AUC
cores for data sets in this paper. Secondly, for the analysis of
ultiple trial data, instead of using a Fisher-transformation of the

orrelation, rGLM, one could use the regression coefficients them-
elves as summary statistics. This would then more closely follow
he use of summary statistics for random effects analysis in neu-
oimaging (Friston et al., 2006).

Finally, the optimal method for detecting nested oscillation will
epend upon the underlying biological mechanism. If one could
onstruct a generative model that captures this mechanism, then
y the Neyman–Pearson lemma, one could construct a likelihood-
atio test that has optimum detection performance. Recently, a
odelling framework has been developed which allows one to fit

ifferential equation models to neuroimaging data (Friston et al.,
003). A phenomenological version of this approach (Chen et al.,
008) has been applied to a class of M/EEG induced responses,
hich includes nested oscillation as a special case. Biophysical

efinement of these models appears to be a fruitful direction for
urther research.
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ppendix A. Neural network simulation

Neuron dynamics were modelled using single compartment
odgkin–Huxley models as described in White et al. (1998). The
embrane potential of the ith cell in the network evolves according

o the following current balance equation:

dVi

dt
= Ii − INa − IK − IL − Is (25)

here C = 1 �F cm−2 and the currents are given by

INa = gNam3∞h(Vi − VNa)
IK = gKn4(Vi − Vk)
IL = gL(Vi − VL)

Is =
N∑

j=1

Aij(gs/N)sj(Vi − Vs)

(26)

here INa and IK are the Hodgkin–Huxley spike generating cur-
ents, IL is the leak current and Is is the synaptic current.
he following conductances gNa = 30 mS cm−2, gK = 20 mS cm−2,
L = 0.1 mS cm−2 and equilibrium potentials VNa = 45 mV, VK =
80 mV, VL = −60 mV, Vs = −75 mV were used. We used connec-
ivity values Aij = 2 for i, j in the same sub-network (i.e. fast or slow)
nd Aij = 2a for the connections from the slow to the fast network.
ested oscillation is only observed for certain values of the coupling
arameter a and this was varied as described in the main text so as
o test the statistical detection properties of each PAC measure.

J

K

L

nce Methods 174 (2008) 50–61

The inactivation variable h and the activation variable n are gov-
rned by the dynamics

dh

dt
= h∞ − h

�h
dn

dt
= n∞ − n

�n

(27)

nd the following voltage-dependent relations are used

h∞ = 1
1 + exp(0.13(V + 38))

n∞ = 1
1 + exp(−0.0045(V + 10))

m∞ = 1
1 + exp(−0.08(V + 26))

�h = 0.6
1 + exp(−0.12(V + 67))

�n = 0.5 + 2
1 + exp(0.045(V − 50))

(28)

he gating variable sj was assumed to obey first-order kinetics of
he form

dsj

dt
= F(Vj)(1 − sj)

�j
rise

− sj

�j
fall

(29)

here, for fast cells �j
rise = 1 ms and �j

fall = 9 ms, for slow cells �j
rise =

ms and �j
fall = 150 ms, and

(Vj) = 1
1 + exp(−Vj)

(30)

n the network simulation with a single cell per population we used
j
fall = 100 ms. The equations were integrated using a Runge–Kutta
ethod with a step size of 0.5 ms. The applied currents Ii were

et to 2 �A plus a uniformly distributed random variable ei with
aximum value �app. Larger values of �app correspond to a
ore heterogeneous population, thus affecting the synchronization

roperties of the network. We used �app = 0.1.

eferences

runs A, Eckhorn R. Task-related coupling from high- to low-frequency signals
among visual cortical areas in human subdural recordings. Int J Psychophysiol
2004;51:97–116.

retthorst L. Bayesian spectrum analysis and parameter estimation. Lecture notes
in statistics. New York: Springer-Verlag; 1988.

uzsaki G. Rhythms of the brain. New York: Oxford University Press; 2006.
anolty R, Edwards E, Dalal S, Soltani M, Nagarajan S, Kirsch H, et al. High

gamma power is phase-locked to theta oscillations in human neocortex. Science
2006;393:1626–8.

hen C, Kiebel S, Friston K. Dynamic causal modelling of induced responses. Neu-
roimage 2008;41(4):1293–312.

hristensen R. Plane answers to complex questions: the theory of linear models.
New York, USA: Springer-Verlag; 2002.

ohen M. Assessing transient cross-frequency coupling in EEG data. J Neurosci Meth-
ods 2008;168(2):494–9.

emiralp T, Bayraktaroglu Z, Lenz D, Junge S, Busch N, Maess B, et al. Gamma ampli-
tudes are coupled to theta phase in human EEG during visual perception. Int J
Psychophysiol 2007;64(1):24–30.

riston K. Another neural code? Neuroimage 1996;5:213–20.
riston K, Harrison L, Penny W. Dynamic causal modelling. NeuroImage

2003;19(4):1273–302.
riston K, Ashburner J, Kiebel S, Nichols T, Penny W. Statistical parametric mapping:

the analysis of functional brain images. London: Academic Press; 2006.
ensen O. Maintenance of multiple working memory items by temporal segmenta-

tion. Neuroscience 2006;139:237–49.
ensen O, Colgin L. Cross-frequency coupling between neuronal oscillations. Trends

Cogn Sci 2007;11(7):267–9.

ones M, Wilson M. Theta rhythms coordinate hippocampal-prefrontal interactions

in a spatial memory task. PLoS Biol 2005;3(12):2187–99.
epecs A, Uchida N, Mainen Z. The sniff as a unit of olfactory processing. Chem Senses

2006;31:167–79.
achaux J, Rodriguez E, Martiniere J, Varela F. Measuring phase synchrony in brain

signal. Hum Brain Mapp 1999(8):194–208.



roscie

L

L

L

M

M

M

O

P

P

S

S

S

S

T

V

V

White J, Chow C, Ritt J, Soto-Trevino C, Kopell N. Synchronization and oscilla-
W.D. Penny et al. / Journal of Neu

akatos P, Shah A, Knuth K, Ulbert I, Karmos G, Schroeder C. An oscillatory hierarchy
controlling neuronal excitability and stimulus processing in the auditory cortex.
J Neurophysiol 2005;94:1904–11.

e Van Quyen M, Foucher J, Lachaux J, Rodriguez E, Lutz A, Martiniere J, et al. Com-
parison of Hilbert transform and wavelet methods for the analysis of neuronal
synchrony. J Neurosci Methods 2001;111:83–98.

isman J, Idiart M. Storage of 7 ± 2 short term memories in oscillatory subcycles.
Science 1995;267:1512–5.

iller K, den Nijs M, Shenoy P, Miller J, Rao R, Ojemann J. Real-time functional brain
mapping using electrocorticography. Neuroimage 2007;37:504–7.

iller K, Sorensen L, Ojemann J, den Nijs M. ECoG observations of power-law
scaling in the human cortex. Technical Report, Cornell University Library,
(arXiv:0712.0846v1).

ormann F, Fell J, Axmacher N, Weber B, Lehnertz K, Elger C, et al. Phase/amplitude
reset and theta–gamma interaction in the human medial temporal lobe dur-
ing a continuous word recognition memory task. Hippocampus 2005;15:
890–900.

sipova D, Mazaheri A, Jensen O. Gamma power is phase-locked to posterior alpha

activity. In: Proceedings of the 13th annual meeting of the organization for
human brain mapping; 2007.

apoulis A. Probability, random variables, and stochastic processes. New York, USA:
McGraw-Hill; 1991.

alva S, Palva J. New vistas for alpha-frequency band oscillations. Trends Neurosci
2007;30(4):150–8.

W

nce Methods 174 (2008) 50–61 61

chack B, Vath N, Petsche H, Geissler H, Moller E. Phase-coupling of theta–gamma
EEG rhythms during short-term memory processing. Int J Psychophysiol
2002;44:143–63.

inkkonen J, Tiitinen H, Naatanen R. Gabor filters: an informative way for analysing
event-related brain activity. J Neurosci Methods 1995;56:99–104.

teriade M. Grouping of brain rhythms in corticothalamic systems. Neuroscience
2006;137:1087–106.

wets J. Signal detection theory and ROC analysis in psychology and diagnostics:
collected papers. Lawrence Erlbaum Associates; 1995.

ass P, Rosenblum M, Weule J, Kurths J, Pikovsky A, Volkmann J, et al. Detection of
n:m phase locking from noisy data: application to magnetoencephalography.
Phys Rev Lett 1998;81(15):3291–4.

anhatalo S, Palva J, Holmes M, Miller J, Voipio J, Kaila K. Infraslow oscillations mod-
ulate excitability and interictal epileptic activity in the human cortex during
sleep. Proc Natl Acad Sci USA 2004;101(14):5053–7.

anRullen R, Koch C. Is perception discrete or continuous? Trends Cogn Sci
2003;7(5):207–13.
tory dynamics in heterogenous, mutually inhibited neurons. J Comput Neurosci
1998;5:5–16.

hite J, Banks M, Pearce R, Kopell N. Networks of interneurons with fast and slow
GABA-A kinetics provide substrate for mixed gamma–theta rhythm. Proc Natl
Acad Sci USA 2000;97(14):8128.


	Testing for nested oscillation
	Introduction
	Methods
	Modulation index
	Phase-locking value
	Correlation and general linear model

	Results
	ECoG data
	Hippocampal interneuron network
	Sigmoidal coupling
	Von-Mises coupling
	Nonstationary theta
	Biphasic coupling

	Discussion
	Acknowledgements
	Neural network simulation
	References


