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Neural Networks in Clinical Medicine

WILL PENNY, PhD, DAVID FROST, MB, PhD

Neural networks are parallel, distributed, adaptive information-processing systems that
develop their functionality in response to exposure to information. This paper is a
tutorial for researchers intending to use neural nets for medical decision-making ap-
plications. It includes detailed discussion of the issues particularly relevant to medical
data as well as wider issues relevant to any neural net application. The article is

restricted to back-propagation learning in multilayer perceptrons, as this is the neural
net model most widely used in medical applications. Key words: neural networks; med-
ical decision making; pattern recognition; nonlinearity; error back-propagation; multi-
layer perceptron. (Med Decis Making 1996;16:386-398)

Tutorial

Neural networks are statistical pattern-recognition
machines composed of simple nonlinear processors
connected into networks. Their design is inspired by
knowledge from neurophysiology, though they are
not biologically realistic in detail. They are parallel,
distributed, adaptive information-processing sys-
tems that develop their functionality in response to
exposure to information. These attributes differ

from the usual (von Neumann) computational par-
adigm in which computation is the execution of a
sequence of programmed instructions in a central
processing unit. Neural nets have been applied to
many problems, including handwriting recognition,
speech recognition, the prediction of protein struc-
ture, the conversion of text to speech, and the pre-
diction of stock market prices, to name but a few.34,48

It is not surprising, therefore, to see neural nets
being used in medical decision making. In fact, the
number of such applications has mushroomed in
the last four years. In a recent review article , 88 386
neural net applications in the biomedical sciences
since the beginning of 1991 are referred to. Of these,
108 are based on actual clinical data. In 1990, a sim-
ilar review&dquo; referred to fewer than 20 studies. Spe-
cial sessions on medical applications at recent neu-
ral network conferences highlight the current

interest.
A picture of neural net research in medicine may

be gained from reviews of neural nets in computer-
aided diagnosis,’9 in pathology and laboratory med-

------

icine,3 in medical imaging and medical signal pro-
cessing (EEG,EKG),52 in cancer research, 6791 and
medicine as a whole in Japan.84
This paper is a tutorial for researchers intending

to use neural nets for medical applications. It in-

cludes detailed discussion of the issues particularly
relevant to medical data and wider issues relevant
to any neural net application. The article is re-

stricted to back-propagation learning in multilayer
perceptrons, as this is the neural net model most

widely used for medical applications.
The article refers to applications from diverse

medical disciplines to illustrate points. Quantitative
results from these studies are summarized in

table 1.

Although the article is self-contained from the

point of view of medical applications, readers re-
quiring more introductory material or greater detail
are referred to introductory texts. 1,18,3334 Readers

wishing to apply the methods illustrated in this tu-
torial to existing medical problems are referred to
an archive of medical data sets&dquo; and a review of

freely available and commercial software. 58

Neural Network Basics

A neural network consists of simple processing
units called neurons or nodes, which are connected

together to form the network. Each neuron sends
signals to other neurons via connections, analogous
to the axons in the central nervous system. The sig-
nals that a neuron receives from other neurons are

weighted and then summed to produce an overall
activity level in the neuron. Thus, if the ith neuron
in a network receives signal x, from the jth neuron,
it is weighted by an amount w,~. The total activity in
the ith neuron is
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where w,o is a bias weight. The ith neuron responds
to this activity by sending a signal

This type of neuron, called a perceptron, is illus-
trated in figure 1. The standard choice for the func-
tion F is the nonlinear logistic or sigmoid function

which restricts the output to be between 0 and 1. If
the incoming weighted activity is larger than the
(negative) bias weight, the activation is positive. Pos-
itive activations cause node outputs that tendj to 1.

Negative activations cause outputs that tend to 0.

Thus, the bias weight acts as a threshold above
which the node is active. For small activation levels,
the sigmoidal function is approximately linear.

Perceptrons are the basic processing element in
most neural network models. A feed-forward neural

network, called the multilayer perceptron (MLP), is
illustrated in figure 2. The network consists of sen-
sory units that make up the input layer, one or more
hidden layers of processing units (perceptrons), and
one output layer of processing units (perceptrons).
Every unit is connected to every unit in the layer
below. The input signal propagates through the net-
work a layer at a time. Because MLPs are trained
with an algorithm called error back-propagation,
they are also known as &dquo;backprop&dquo; networks.
There are many other types of networks, varying

in node models and patterns of connectivity,34 3’,‘~’4
but the MLP is the network used in nearly all med-

ical applications. Our discussion is therefore re-

stricted to MLPs.

Overall, the MLP performs a functional mapping
from the input space to the output space. The input
and output spaces are multidimensional, with one
dimension per input and output variable. The

input-output mapping is determined by the struc-
ture of the network and the values of its weights.
Changing the structure or the weights changes the
function implemented.
An MLP with a single hidden layer having H hid-

den units and a single output, y, implements map-
pings of the form

FIGURE 2. A multilayer perceptron. This is a two-layer percep-
tron with four inputs, four hidden units, and one output unit.
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where z,, is the output of the hth hidden unit, Wh is
the weight between the hth hidden unit and the out-
put unit, and wo is the output bias. There are N sen-

sory inputs, x,. The jth input is weighted by an
amount ~3~,, in the hth hidden unit. j3o,, is the bias in
that hidden unit.

The question then remains as to how the weights
(wo, Whl (30,&dquo; (3,,, ) are chosen for the network to solve
the task at hand, whether it be diagnosis of myocar-
dial infarction or prediction of cancer outcome. The
answer is to choose those weights that best approx-
imate the mapping (l(lJ l(2, ..., xp~) => y for every

pairing of input vector and output in the training
set. The network thus adapts its function according
to the information it is presented with. This process
is carried out by a training algorithm. The most pop-
ular training algorithm is error back-propagation,
which, in conjunction with the MLP, is used in

nearly all medical applications.
After a network has been trained, it may be used

in the particular application environment. Its per-
formance on a separate data set, known as the test
set, indicates how well it is likely to perform.
A typical medical application is that of Baxt,6 who

used a neural net for the diagnosis of myocardial
infarction. Baxt used 351 cases to train the network.

Each consisted of an input vector containing 20 in-
put predictors. These included details of the pa-
tient’s history and electrocardiographic findings.
Each output was a single variable signifying whether
or not the patient had myocardial infarction. The
network had 20 input nodes (N = 20), one per input
variable, and a single output node. Two hidden lay-
ers of ten nodes each were used, as this was thought
to give the network sufficient complexity to approx-
imate the required mapping. This degree of com-
plexity is unusual, in that most applications use only
a single layer of hidden nodes. The network was
trained with back-propagation. When tested on a
further 331 cases, the network was able to diagnose
both positive and negative cases more accurately
than a clinician.

Any application of a neural network must address
issues of linearity versus nonlinearity, training time,
network structure, and network generalization.
These are discussed below.

In medical applications there are further con-
cerns. A typical medical data set is small, contains
missing data items, and has low-prevalence catego-
ries. Neural nets must therefore be used with ap-
propriate input and output representations and be
assessed with suitable performance measures. Also,
it is often necessary that some explanation be given
as to how the network makes its decisions. How well
the network performs in relation to other compu-
tational methods is also of interest. These issues are

discussed later.

Linearity versus Nonlinearity: are Hidden
Layers Necessary?

Interest in neural networks largely stems from
their ability to implement nonlinear functions.
A perceptron can implement a nonlinear mapping

by virtue of its nonlinear activation-output function,
F. In effect, however, this nonlinearity acts only
to monotonically rescale, or squash, the output of
a linear transform. A perceptron can implement
only linearly separable functions. This was pointed
out in the late 1960s by Minsky and Papert,53 whose
work signalled a 20-year decline for neural net re-
search.

Multilayer perceptrons with hidden layers, how-
ever, can implement nonlinearly separable func-
tions. This was known in the 1960s, but until the
mid-1980s there was no method of training them.

Multilayer perceptrons are universal approxima-
tors, which means that any mapping can be approx-
imated. Specifically, an MLP with a single hidden
layer and a sufficient number of hidden units can
approximate any smooth function to an arbitrary de-
gree of accuracy.36 This includes all Boolean func-
tions and any smooth nonlinear function.

In theory, there are some problems for which it
is better to use a network with two hidden layers
because the overall number of nodes will be less

than it would be in a single-hidden-layer net.37 There
is a problem, however, in deciding how many units
to have in a hidden layer (see below) which is com-
pounded by having two of them. Moreover, there is
no substantial practical evidence that more than one
hidden layer adds to the predictive capabilities of a
network. For these reasons, the majority of medical
applications use single-hidden-layer networks.
Neural nets will offer better results than linear

methods only if there are nonlinearities in the data.
If a network with no hidden units or a single hidden
unit performs as well as a network with a large
number of hidden units, then the problem is linear.
Not every medical data set contains nonlinearities,
but many do. Of the studies listed in table 1, those

of myocardial infarction,8 low back pain/1 anti-can-
cer agent discovery,89 thyroid function,62 and cancer
outcome&dquo; all showed modest improvements in pre-
diction accuracy over linear methods.

Back-propagation Training
Training algorithms for perceptrons have been

around since 1960, when the delta rule was devel-

oped.9° This is an iterative gradient-descent tech-
nique that is used to minimize the mean squared
error (MSE) between target outputs, t,, and actual

outputs, Y,
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The perceptron is trained by first setting its

weights, w,, to random values. A single iteration of
the delta rule is as follows. A training pattern, p,
consisting of the input vector (x&dquo; x2, ... , xN) and the
output target tp, is selected from the training set. The
input vector is processed by the perceptron, which
then produces an output YP according to equations
1, 2, and 3. Each weight is then changed according
to the delta rule for sigmoidal perceptrons

where Aw, is the change in the jth weight and a is
the learning rate. The other terms calculate the er-
ror gradient, -dMSE/dw~. The learning rate is an ad-
justable factor that determines how large a step is
taken in the direction of this gradient. High values
give faster learning, but if the learning rate is too
high the network’s weights may oscillate around the
solution, never quite converging to it.

The error gradient comprises (t, - y?), otherwise
known as the error signal 8; x,, the jth input; and
yp(l - yp), the derivative of the sigmoid function.
Many iterations of the delta rule for each training
pattern may be necessary before a solution is

reached. Convergence to the global minimum of
mean squared error is guaranteed.

Multilayer perceptrons can be trained with the
generalized delta rule, otherwise known as error

back-propagation or bac:kprop, so-called because
the error signals are propagated backwards through
the net. This was popularized in 198669 and has led
to a resurgence in neural net research.
The form of the learning rule is the same as the

delta rule, but the way in which the error signals
are generated differs. The errors for the nodes in
the output layer are calculated exactly as before and
the delta rule is implemented. These errors are then
passed backwards to the previous layer, are

weighted by the connections along which they are
sent, and are then summed to produce total error
contributions for each unit in the layer below. The
delta rule is then implemented in these units with
this modified error signal. For networks with more
than one hidden layer, this process continues until
all nodes have been updated. Full implementation
details and descriptions of other training algorithms
are available in introductory neural network texts.33
Convergence to a global minimum of mean

squared error is, however, not guaranteed. This is
because an MLP’s weight space contains local error
minima in which the back-propagation algorithm
may become trapped. Different initial random-

weight settings may therefore lead to different so-

lutions. Thus, it is advisable to train networks a
number of times from different initial settings.
A variant of backprop incorporates a momentum

term in which a proportion of the previous weight-
change value is added to the current value. This

adds &dquo;momentum&dquo; to the algorithm’s trajectory
through weight space, which may prevent it from

becoming trapped in local minima.
The time it takes to train a neural net increases

exponentially with the number of network inputs, 80
and the number of network nodes,4° and polyno-
mially with the number of training examples.81 A
large network, with 200 inputs trained on a few
thousand examples, takes about four hours to train
on a SUN SPARC.~1 There is great utility, therefore, in
including only those inputs and examples that seem
relevant to the task at hand. This is not a significant
problem for medical decision-making networks, as
they are generally smaller. A typical medical net has
20 inputs and is trained on 350 examples (median
values from table 1).

Generalization, Network Structure, and
Stopped Training
After a network has been trained, it will be re-

quired to operate in its given problem domain. The
generalization ability of a network is a measure of
its performance on data not present in the training
set. To assess how well the network will perform on
novel data, the original data set is partitioned, usu-
ally into two sets; a training set and a generalization
or test set.

The performance that the network achieves on its
training set, however, does not necessarily reflect its
performance on the test set or on future data. Un-
less care is taken, neural networks will learn fea-
tures in the training set that are not present in the
wider population of cases. This is known as fitting
to noise or overfitting.

Overfitting will occur if the complexity of the net-
work is greater than the complexity of the function
being estimated. Thus, there is a link between the
structure of the network and generalization perfor-
mance.

The vast majority of studies use networks with one
hidden layer, as these are sufficient to approximate
any smooth nonlinear function. The neural net de-

signer has only to decide, therefore, how many units
to put in the hidden layer so as to define the net-
work structure completely. Rigorous theoretical re-
sults relating the number of weights in a network,
and thus the number of hidden units, to the number
of training examples and likely generalization per-
formance do exist.s This sort of analysis, however,
allows the examples to come from any, possibly ab-
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normal, probability distribution and so overesti-

mates the number of examples required in prac-
tice. 16 There are, however, a number of rules of
thumb.5 Livingstone and Manallack’s empirical
work,46 for example, suggests that

D _ mo ~. , @D W
w ~’ rw 

P r

where m is the number of training examples, o is
the number of network outputs, and w is the total
number of network weights, be greater than 3 to
ensure good generalization and avoid memorization
of the training set. This is typical of values used in
practice (see table 1).

Thus, if there are 240 training cases and a single
network output, the network should not have more
than 80 weights. In a network with ten inputs this
corresponds to having a single hidden layer with six
units.

One strategy for choosing network structures is to
start with the above number of hidden units, then
reduce it until a generalizing network is obtained.
Networks with zero or one hidden units should be

tried to see whether or not the problem is linear.
This procedure requires the examples to be split
into three sets: a training set {L}, a validation set
{ V}, and a testing set { T} . The validation set is a
pseudo-test set used to establish which network

generalizes best. The final network performance is
measured on f T} .
A different way to achieve matching of network

complexity to data complexity is the stopped-train-
ing method. 211112 It allows lower values of D to be
used. Stopped training has been widely used in
medical applications.2 35,49,72 76 91

Stopped training involves first choosing an over-
large network and setting its weights to small ran-
dom values. The examples are again split into three
sets: {L}, f V}, and {T}. The validation set is used to
monitor the generalization error during training. In
networks that are too large for the data, the valida-
tion error reaches a minimum before the training
error does. Training is stopped at this earlier point
and the minimum validation error is recorded. The

network is then retrained on the pooled training
and validation set until the previously recorded min-
imum validation error is reached. Network perfor-
mance is then evaluated on the completely unseen
test set.

Stopped training works by effectively placing a
limit on the magnitude of the weights.25 This cor-
responds to a limit on the complexity of the network
function, because large weights are necessary for
nodes to operate in their nonlinear range.
A third class of model-selection methods includes

the weight decay or complexity regularization algo-

rithms. These give each weight a tendency to decay
to zero. Thus, connections that are not otherwise

strengthened by backprop will disappear. The sim-
plest algorithm sets the new weight to be a fraction,
e, of the old weight, before backprop is imple-
mented. Although this restricts weight size in a more
direct way than stopped training, a suitable value for
e must be found. This requires use of a validation
set.

Finoff et aI.25 compare stopped training with com-
plexity regularization and examine hybrid ap-

proaches.

Representation of Network Inputs
The variables in a medical problem will be a mix-

ture of information from various sources; clinical

diagnosis, patient records, examination results, lab-
oratory tests, etc. These variables will be measured
with various levels of intrinsic precision. There are
three such levels: nominal, ordinal, and interval.
The weakest level is nominal, where the values as-
sumed by the variable simply indicate different cat-
egories. The variable &dquo;diagnostic group,&dquo; for exam-
ple, is nominal, since by assigning the numbers 0,
1, and 2 to &dquo;psychosis,&dquo; &dquo;neurosis,&dquo; and &dquo;organic&dquo;
we can differentiate between categories. There is no
ordering. An ordinal variable, however, allows or-
dering of categories. The variable &dquo;severity of de-
pression,&dquo; for example, is ordinal because it may
take on one of a number of values indicating or-
dered severity, e.g., 1 = mildly depressed, 2 = mod-
erately depressed, and 3 = severely depressed. Dif-
ferences in the value of an ordinal variable,
however, cannot be interpreted as distances be-
tween categories. Thus, someone with severe de-
pression is not 3/2 times as depressed as someone
with moderate depression. Interval variables such as
age do have this property.
The way in which variables are presented to a

neural net can be an important determinant of net-
work performance. Apart from entering the input
variables exactly as they are measured, there are two
main coding schemes.
The first is to use a 1-out-of-C code where a var-

iable with C categories is converted into C Boolean
inputs, each of which is high for a certain category
or range. The second is a thermometer code, where
an ordinal or interval variable is represented by C
- 1 Boolean inputs, of which the leftmost k has
value 1 to represent the kth category while all others
are p.s2
The above coding schemes produce networks

with more input units but possibly fewer hidden
units. This is because hidden units that were pre-

viously needed to decode the more complex input
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representation are no longer necessary.&dquo;
Missing values can be represented by adding an

extra input that is 1 if a variable is missing. This is
somewhat extravagant, however, and should be
used only when that variable is missing for a large
proportion of cases. The strategy is also appropriate
if the extra input can account for many variables’
being missing together. For example, if arterial

blood gas analysis is not ordered, the extra input
&dquo;ABG not ordered&dquo; will account for all the variables

pH, PC02, P02, etc., being missing.
An alternative strategy is to set missing Boolean

inputs to the value 0.5. A less biased approach is to
set missing inputs to their average non-missing val-
ues.89 A fourth, but more computationally intensive,
method is to set missing values to a value found by
the expectation-maximization (EM) algorithm.19 This
uses a probabilistic model of the input space where
the parameters of the model (means, covariances,
etc.) are initially guessed at. The values of the miss-
ing inputs are then calculated from these parameter
values and other input values. This is the expecta-
tion step. The parameters that maximize the likeli-
hood of observing these data given the model are
then calculated. This is the maximization step. The
two steps are repeated until the algorithm con-
verges. The EM algorithm is impractical unless it

can be automated in software.

A further issue concerns scaling. Rescaling the in-
put variables to have zero mean and unit variance
can reduce training time.’4 Certainly, no learning
can take place in weights connected to inputs that
are zero because the corresponding weight change,
according to the delta rule, is zero. After training,
the weights can be resealed to the original range of
the training inputs, allowing test inputs to be applied
without any transformation.

Interpretation of Network Outputs
The majority of medical applications of neural

nets involve decision making. Thus, the target out-
puts are nominal or ordinal variables. When there
are n distinct output categories, n output nodes can
be used. If the ith target output is 1 when the ith

category is present and the other targets are 0, we
have a 1-out-of-n coding. If this scheme is used, the
outputs of a trained network may be interpreted as
posterior probabilities.66 That is, output i is the prob-
ability that the category is i given that the input vec-
tor x has been observed, p(i/x). If a novel input is
presented and the ith output is the highest, a com-
monsense decision rule is to assign that pattern to
the ith category. This corresponds to picking the cat-
egory with the highest posterior probability and re-
sults in a network with minimum classification-er-

ror rate.2~’ss The accuracy with which the posterior
probabilities are approximated is dependent upon
training set size and requires that the training al-
gorithm find a global minimum of the cost func-
tion.ss

If the prevalence (prior probability) of an output
category in the training set is low, however, then
information about that category will be largely ig-
nored by the network. Specifically, in a neural net-
work trained on a 1-out-of-n code, the transform im-
plemented in the hidden layer weights each class in
proportion to the square of the number of patterns
in that class. 17 Thus, the network disproportionately
(that is, not in linear proportion) misclassifies those
patterns in low-prevalence classes in order to cor-
rectly classify patterns in high-prevalence classes.

In many medical situations it is difficult to obtain

a large amount of data about a particular outcome
or diagnosis of interest. Thus, it is inevitable that

low-prevalence classes are common, even though
we may wish the network to classify these classes
just as accurately as more prevalent ones.
To accommodate this type of situation, Smith 74

suggests using a weighted mean-squared-error cri-
terion during training, where the error from under-
represented class patterns is magnified by a weight-
ing factor. This corresponds to simply replicating
underrepresented class patterns. The converse ap-
proach, namely that of reducing the number of
overrepresented class patterns, throws away infor-
mation unnecessarily.
Lowe and Webb 47 take a more general and rig-

orous approach that, by manipulation of error

weightings and target values, allows arbitrary im-
portance to be placed on each class. One suggestion
is the use of a 1/~-out-of n output coding where
p, is the prevalence of the ith class. This ensures that
the network constructs a discriminant function in

which the classes are weighted linearly according
their prevalences (rather than in proportion to the
square).

Further, if the relative costs of different types of
misclassification are known, they can be used di-
rectly to train the network. If a pattern in class i is

presented during training, then the output targets
are g where g is the cost of misclassifying a class i

pattern as a class j pattern. In testing, one assigns a
pattern to the class having the smallest network out-
put. This output coding scheme produces networks
that minimize the misclassification cost.4’
These latter two schemes require linear activation-

output functions in the output nodes because the

targets may be greater than 1. For 1-out-of-n coding
schemes, the output nodes use logistic functions.
Perturbation of these target values by a small

amount prevents the weights from assuming large
magnitudes and so speeds learning.&dquo;
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Performance Measures

The majority of medical applications are classifi-
cation problems. A network’s performance is there-
fore measured by how well it discriminates between
classes. To force the network into decisions, its final

output is compared with a decision threshold* that
is chosen to maximize performance on the training
set.

Measures such as the mean squared error or
cross entropy,33 which are used to train the network,
indicate how well the outputs are calibrated to their

targets, but do not necessarily measure the net-

work’s discrimination ability.
A more suitable measure is the network’s overall

classification rate. But if quoted on its own it can be
misleading. The performances of two very simple
decision algorithms should also be quoted. The first
is &dquo;always choose the class having the maximum
prior probability.&dquo; This is known as the no-data rule
or the default rule. The second is &dquo;make a random

decision where class i is chosen with a probability
equal to the prior probability of class i.&dquo; This rule

classifies at the chance agreement rate.
These precautions are necessary because in med-

ical applications the prior probabilities of different
classes are usually quite uneven. This is illustrated
in table 1, where the median prior probability of the
most prevalent class (in two-class problems) is 71%.
These issues are illustrated in an application that

attempted to predict psychiatric stays as short or
long. 17 An MLP achieved an overall classification rate
of 74%. This appears significant until one finds out
that 73% of the examples were short stays. Thus, a
73% classification rate is achievable with the default

rule, so the network’s performance is clearly un-
impressive.
For networks that have a single output, classifi-

cation rates on positive target outputs, the sensitivity,
and classification rates on negative target outputs,
the specificity, can be quoted. 14 Furthermore, as
each of these values is dependent upon the choice
of decision threshold, a graph of sensitivity versus 1
minus specificity, known as the receiver operating
characteristic (ROC), can be plotted through various
decision threshold values.50 The area under this
curve (AUROCc) then gives a definitive measure of the
classifier’s discrimination ability that is not depen-
dent on the choice of decision threshold. It is iden-

tical to the probability that, given a positive case and
a negative case, the network output will be higher
for the positive case. Hanley and McNeilz9 describe
algorithms for calculating the AuRocc and describe
its relation to other measures of rank correlation.

It is also useful to measure the proportion of cases

*This is not the same as the bias weight in the output node.

that the network classifies as positive that actually
are positive, the positive predictive value, and the
proportion of cases that the net classifies as negative
that are actually negative, the negative predictive
value. These quantities are, however, dependent on
the prevalence of positive cases.14 Even for classifiers
that have high sensitivity and specificity, it is impos-
sible to get a high positive predictive value if the

prevalence of positive cases is low. The best predic-
tive value is achieved when the prevalence of the
class of interest is 0.5.
Other summary measures of the network’s dis-

crimination ability are the kappa value and the in-
formation gain. Unlike the AUROCC, these require an
output threshold to be chosen. Kappa is the actual
improvement in classification rate over the chance
rate divided by the maximum possible improvement
over the chance rate.’3 A value of 1 indicates perfect
classification and a value of 0 indicates classification

at the chance rate. The information gain is the de-
crease in classification uncertainty after having ob-
served the network output.&dquo; Somoza and Moss-
man’ describe an algorithm for finding the output
threshold that maximizes the information gain.

If the relative costs of different types of misclas-
sification, i.e., the costs of false-negative and false-
positive decisions, are known, then an overall cost
measure can be calculated. Alternatively, the net-
work can be trained to output these values directly,4’
as described above.

For networks with many outputs, individual per-
formance measures can be quoted separately or av-
eraged across all outputs.

Cross-validation and Bootstrapping
The performance measures described above

should be made on both the training set and the test
set. Only if the test set has in no way been used to
set the network’s weights or evaluate its structure
will it reflect the network’s performance on future
data. In the statistics literature, the procedure of
splitting data into a training set and a test set is

called cross-validation. If there is plenty of available
data, this procedure is suitable.
Medical data sets, however, are often small. When

this is the case, the method of v-fold cross-validation

is applicable.78 The data are split into v roughly equal-
sized parts where, typically, 5 ~ v !5 10. The network
is then trained and tested v times. On the ith itera-

tion, the network is trained on all parts except i and
then tested on the i th part. The cross-validated per-
formance measures are then the average test perfor-
mances across all v iterations. If v is equal to the
number of data items, the technique is called leave-
one-out cross-validation, or the jackknife.
Another statistical technique for small data sets is
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the bootstrap. 22 One of its uses is for estimating the
value of the use of a performance measure, 0, on
future data. All available examples are first placed in
a training set. A network is then trained and 0 is

measured. B samples are then generated, each one
of size m drawn with replacement from the m train-
ing examples. For the bth bootstrap sample, a net-
work is trained and 0 is measured. The 0 value ob-

tained when this bth network is tested on the

original sample is also measured. The difference be-
tween these two values is recorded. The average dif-
ference across all B bootstrap samples is then sub-
tracted from the original 0 value to give an estimate
of 0 for future data.$
The bootstrap method has been used to estimate

prediction errors in decision-tree classifiers22 but
has only recently appeared in the neural network
literature.&dquo; A drawback of the bootstrap is that 20
~ B ~ 200 networks must be trained.

Bootstrapped estimates of performance measures
are less variable than cross-validated estimates but

can be (optimistically) biased. The choice of valida-
tion method depends on the data set and software
used.

We re-emphasize that the test set may not be used
in any way during the training process.

Sensitivity Analysis and Rule Extraction

Because the path between an input and an output
is so complex, it is difficult to appreciate exactly how
an output is dependent on any individual input. Also,
as this relationship is embodied in a mathematical
equation rather than a set of rules, the workings of
the network seem somewhat obscure.

It has been argued32 that other machine learning
algorithms such as C4.5 and CART are more likely to
be accepted in actual clinical settings because they
produce sets of rules that are easy to interpret.
Another point of view 21 is that there should be no

problem for clinicians to put their faith in &dquo;black

box&dquo; systems because they already do in everyday
clinical practice; expert clinicians making intuitive
judgments are often unable to explicitly pass on
their thought processes to others. Neural networks
should therefore be judged on their performances
on prospective data and field trials just as any other
new clinical technology is.
However, the workings of a neural set can, to

some extent, be explained. For example, in using a
network to perform survival analysis on censored
data, Delaurentis and Ravdin43 explored the inter-
actions between predictive variables and survival

rate. They concluded that the network &dquo;was not a
black box but could lead to useful insights into the
roles played by different prognostic variables in de-
termining patient outcome.&dquo;
One method is to rank inputs according to how

much the testing error increases when the individ-
ual input is not used in the training or testing of the
network. This leave-one-out method has been used,
for example, to find which factors were predictive
of admission into a psychiatric ward from a network
trained on data from a psychiatric emergency
room.’6 The method, however, may require consid-
erable computation. For a network with n inputs, an
extra n networks must be trained and tested. Fur-

thermore, this method does not indicate the polarity
of the relationships.
A different approach is sensitivity analysis, Each

input is varied, and the corresponding change in
output is measured. The ratio, change in output
over change in input, 8y/§x,, is then averaged over
all examples to produce a sensitivity measure for
each input (6y/6x,)~ The inputs can then be ranked
according to sensitivity.
The method has been used to find which factors

were predictive in psychiatric outcome, 54 breast and
ovarian cancer,91 early prediction of heart attack,31
and diagnosis of myocardial infarction in emergency
room patients.’ The method is particularly suited to
psychiatric data as these data sets often have large
numbers of inputs (see table 1), only a few of which
turn out to be useful.

Sensitivity analysis, however, may be misleading.
This is because y is not necessarily a linear function
of x,. Thus dy/dx, and therefore 8y/8x, will not be
constant across x,. The resulting sensitivity measures
are therefore dependent on the particular examples
used to train the network. They are also dependent
on the initial weight-setting of the network, because
different initial weight settings may result in differ-
ent solutions. Average values from a number of net-
work runs with different training examples and in-
itial conditions are therefore more reliable. 10

In the myocardial infarction application, results
from a single trained network showed that the net-
work was sensitive to electrocardiographic variables
that had in the past been shown to be good predic-
tors. It also identified three other predictors not be-
fore known for their predictive ability. In a later

study, Baxt and White9 used bootstrap estimates of
sensitivity measures to eliminate uncertainty due to
random-sampling variation. They concluded that
only two of the three new predictors were truly pre-
dictive.

Gallant&dquo; and Saito and Nakan07° describe meth-
ods for extracting &dquo;if-then&dquo; rules from neural net-
works. Saito and Nakano’s &dquo;rules from network&dquo;

method is based on the idea of growing regions$This is the bootstrap-pairs method.
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around training examples that the network correctly
classifies as positive by expanding the range of one
input dimension at a time about its original value
until further expansion would result in negative
classification by the network. The resulting hyper-
rectangle is then operated on by subtracting out
regions around negative examples. All resulting
terms are then joined by logical &dquo;ors.&dquo; The algo-
rithm produces rules of the form &dquo;if (x between xl
and x2 and y between y1 and y2) or (x between x3
and x4 and y between y3 and y4), then diagnosis =

positive. &dquo;
Gallant also describes an approach, called &dquo;key-

factor justification,&dquo; that is used to explain individual
decisions. Each input is, in turn, reversed. If the out-
put decision is reversed as a consequence, then we
have found a key factor. Explanations are of the
form &dquo;myocardial infarction has been diagnosed be-
cause rales (an abnormal chest sound indicative of
fluid in the lungs) are heard.&dquo; If no single key factor
can be identified, then pairs of variables or triples
are reversed together. To go beyond triples may re-
quire too much computation.

Other Paradigms
There are many paradigms for computerized de-

cision making other than neural networks. These
include the methods of regression,41 discriminant
analysis,z° 41 pattern recognition,2° probabilistic rea-
soning and Bayesian decision theory,&dquo; decision tree
classifiers,12,26,64 knowledge-based expert systems,38
curve fitting,24 and fuzzy logic.42 There are also sim-
ilarities between neural nets and a number of these
methods.

Univariate regression, correlation measures, or t-
testis 14 can be used as baseline performance mea-
sures of how well the output variable can be pre-
dicted. They can also be used to select inputs for
other models.

Multivariate regression methods are applicable
for predicting continuous variables. They can be cat-
egorized into linear, logistic, and polynomial or
other nonlinear schemes. The regression function is
that function that minimizes the squared error and
is found by matrix inversion. The nonlinear scheme
requires that nonlinear terms be entered explicitly
as separate inputs. This is often impractical, as the
relationship between variables is unknown a priori
and the number of possible nonlinear interactions
grows exponentially with the number of inputs. A
perceptron that has a linear activation-output func-
tion trained with the delta rule approximates the lin-
ear regression method. 18 Similarly, a perceptron
with a logistic activation-output function approxi-
mates logistic regression. 77 Multilayer perceptrons

are known as &dquo;model-free estimators&dquo; because they
can learn the same functions as nonlinear regres-
sion methods but do not require the nonlinear
terms to be entered explicitly.
Discriminant-function analysis is appropriate for

predicting nominal variables. It is otherwise very
similar to regression analysis. The discriminant
function is chosen to maximize class separation and
is found by matrix inversion. Linear discriminant
functions may be implemented in a perceptron and
higher-order functions, such as quadratic functions,
by an MLP. Again, the MLP has the advantage of
being a model-free estimator.
A common pattern-recognition method is the

nearest-neighbor classifier. This works by calculat-
ing the distance, usually the Euclidian distance, be-
tween the pattern to be classified and the patterns
already seen. The new pattern is then assigned to
the class of its nearest neighbor or to that class most
frequently represented among the k nearest neigh-
bors. These classifiers are practical when large
amounts of memory and sufficient computation
power are available. This is not a significant prob-
lem for medical data sets, which are often small, but
the problem here is in finding a distance metric that
works with nominal input variables.

Bayesian classifiers estimate class probability den-
sity functions from training patterns and a priori in-
formation and then use Bayesian decision theory to
classify patterns. Research has focused on paramet-
ric classifiers where the form of probability distri-
bution is assumed to be known and only the pa-
rameters need be estimated. A frequent assumption
is that examples are drawn from a multivariate
Gaussian distribution. Hence, only the mean and co-
variances need by calculated from the training data.
A further assumption is that groups of inputs or all
of the inputs are independent. A Bayesian classifier
for independent Gaussian inputs can be imple-
mented with a perceptron.44 Multilayer perceptrons
have been shown to be more accurate than Bayesian
methods in a number of empirical studies.45 This is
not always so, however, as shown by the head-injury
study in table 1, in which a Bayesian classifier was
more accurate.

Decision-tree classifiers such as classification and

regression trees (CART) and C4.5 have been devel-

oped extensively over the past ten years. These clas-
sifiers extract rules from data by building decision
trees. The simplest classifier builds a decision tree
by computing inequalities on inputs, an input at a
time. They are much faster to train than MLPs, their
operation is easily understood in terms of &dquo;if-then&dquo;
rules, and they are of comparable accuracy. Like re-
gression methods, however, they may require cer-
tain features to be inputted explicitly rather than be
discovered. This is exemplified in the problem of

 by guest on February 17, 2012mdm.sagepub.comDownloaded from 

http://mdm.sagepub.com/


395

Table 1 9 25 Neural Network Studies in Medical Decision Making*

*For reference citations, see the reference list

tP = pnor probability of most prevalent category.
$D = ratio of tramng examples to weights per output
§A single integer in the accuracy column denotes percentage overall classification rate and a single real number between 0 and 1 indicates the

AUROCC value Neural = accuracy of neural net, Other = accuracy of best other method

differential identification of fatty liver and two

types of hepatitis on the basis of laboratory tests. 65
CART required that the ratio of two inputs be entered
explicitly as a third input. Without this extra in-
put, CART would not classify as accurately as a neural
net.

Knowledge-based expert systems have been

widely used in the medical domain. The difficulty in
eliciting rules from experts and the inconsistency
and brittleness of resulting systems have been their
main drawbacks. Neural networks offer a more di-
rect approach but have the disadvantage that their
workings are not readily interpreted.

Curve-fitting methods such as generalized spline
fitting are similar to regression methods. A differ-
ence is that the data may be approximated by many
local functions, which are then combined to form a

single global nonlinear function.
Fuzzy-logic systems implement general nonlinear

functions, which are initialized by heuristic, expert
knowledge. They are based on readily understood
but vague linguistic rules, which are given precise
meaning via algebraic operators called &dquo;member-

ship functions.&dquo;
Curve-fittings’ and fuzzy-logic methods3° are sim-

ilar to a type of neural network called a &dquo;radial basis
function network.&dquo; This is a two-layer network with

Gaussian activation-output functions in the hidden
layer and linear functions in the output layer.
Considerable research effort is being devoted to

systems involving combinations of the above-men-
tioned methods and neural networks. A recent se-

lection of studies involving such &dquo;hybrid&dquo; systems
for medical reasoning is given by Cohen and Hud-
son. 15
Table 1 shows how accurate neural nets are in

comparison with other methods. Michie et aI.51

compare machine learning, neural nets, and statis-
tical classifiers on a variety of data sets, including
classifications of heart disease, head injury, and di-
abetes.

Conclusion

Certain issues must be addressed for neural net-
works to truly perform well in medical applications.
These include choosing input and output represen-
tations and performance measures that are suitable
for the low-prevalence categories and missing data
items often found in medical data sets. If the data

set is small, then the statistical techniques of folded
cross validation and bootstrapping allow a more ac-
curate assessment of the network’s performance.
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Table 2 . Checklist for Applying Neural Networks to
Problems in Clinical Medicine

Sensitivity analysis and rule-extraction methods are
available to explain how a neural network’s deci-
sions are made. Performance comparisons with lin-
ear classifiers allow assessment of the nonlinearity
in the data. Table 2 summarizes the steps involved.
Of the studies we have examined, the decisions

made by neural networks are in most cases as ac-
curate as a clinician’s decisions. Nonlinear neural
networks offer a modest increase in classification

accuracy over linear classifiers. This indicates that
there are nonlinearities in clinical data and that it is
worthwhile using a neural net to model them. Other
nonlinear methods make medical decisions as ac-

curately as neural networks. In comparison with
these other methods, neural networks seem most
useful in those areas where there is little a priori
knowledge, because of their ability to detect non-
linearities that are not explicitly formulated as in-
puts. They are thus able to identify factors that were
not previously known to have predictive ability.
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