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Abstract
In this paper we propose the use of Bilinear Dynamical Systems

(BDS) for model-based deconvolution of fMRI time series. The impor-
tance of this work lies in being able to deconvolve hemodynamic time-
series, in an informed way, to disclose the underlying neuronal activity.
Being able to estimate neuronal responses in a particular brain region
is fundamental for many models of functional integration and connec-
tivity in the brain. BDSs comprise a stochastic bilinear neurodynami-
cal model specified in discrete-time and a set of linear convolution ker-
nels for the hemodynamics. We derive an Expectation-Maximisation
(EM) algorithm for parameter estimation, in which fMRI time series
are deconvolved in an E-step and model parameters are updated in
an M-Step. We report preliminary results that focus on the assumed
stochastic nature of the neurodynamic model and compare the method
to Wiener deconvolution.

Keywords: fMRI, Deconvolution, Connectivity, EM, Dynamical, Em-
bedding

1 Introduction

Imaging neuroscientists have at their disposal a variety of imaging techniques
for investigating human brain function [8]. The Electroencephalogram (EEG)
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records electrical activity from electrodes placed on the scalp, the Magne-
toencephalogram (MEG) records the magnetic field from sensors placed just
above the head and functional Magnetic Resonance Imaging (fMRI) records
changes in magnetic resonances due to variations in blood oxygenation. How-
ever, as the goal of brain imaging is to obtain information about the neu-
ronal networks that support perceptual inference and cognition, one must
first transform measurements from imaging devices into estimates of intrac-
erebral electrical activity. Brain imaging methodologists are therefore faced
with an inverse problem, ‘How can one make inferences about intracerebral
neuronal processes given extracerebral/vascular measurements ?’

Though not often expressed in this terminology, we argue that this prob-
lem is best formulated as a model-based spatio-temporal deconvolution prob-
lem. For EEG and MEG the required deconvolution is primarily spatial, and
for fMRI it is primarily temporal. Although one can make minimal assump-
tions about the source signals by applying ‘blind’ deconvolution methods
[23, 24], knowledge of the underlying physical processes can be used to great
effect. This information can be implemented in a forward model that is in-
verted during deconvolution. In EEG/MEG, forward models make use of
Maxwell’s equations governing propagation of electromagnetic fields [1], and
in fMRI, forward models comprise hemodynamic processes as described by
‘Balloon’ models [4, 9, 28, 30].

In this paper, we propose a new state-space method [18] for model-based
deconvolution of fMRI. The importance of this work lies in being able to
deconvolve hemodynamic time-series, in an informed way, to disclose the un-
derlying neuronal activity. Such estimates are required by many models of
functional integration and connectivity in the brain. Typically, the influence
of an experimental manipulation, on the coupling between two regions, is
tested using a statistical model of the interaction between the experimental
factor and neuronal activity in the source region. These interaction terms
rest on being able to deconvolve the fMRI time-series. The procedures de-
scribed below enable the construction of precise and informed interaction
terms that can then be used to detect context sensitive coupling among brain
regions. The interaction terms are variously known as Psychophysiological
Interactions [10], moderator variables in Structural Equation Models [3], and
bilinear inputs in Dynamic Causal Models [11].

The model we propose is called a Bilinear Dynamical System (BDS) and
comprises the following elements. Experimental manipulation (input) causes
changes in neuronal activation (state) which in turn cause changes in fMRI
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signal (output). Experimental inputs fall into two classes (i) driving in-
puts which directly excite neurodynamics and (ii) modulatory inputs which
change the neurodynamics. These modulatory inputs typically correspond
to instructional or attention set, and therefore allow neurodynamic changes
to be directly attributed to changes in experimental context. Readers of our
earlier papers on Dynamic Causal Modelling (DCM) [11, 25] may well be
experiencing a sense of ‘deja-vu’. This is no accident because BDS employs
the same concepts of driving and modulatory inputs, neuronal states and
outputs.

A key difference to DCM, however, is that BDS uses a stochastic neu-
rodynamic model. This is biologically more realistic as regional dynamics
are unlikely to be under full experimental control. Moreover, it has been
established, across a variety of spatial scales, that neurodynamics can be
meaningfully treated as stochastic processes, from Poisson processes describ-
ing spike generation [6] to statistical mechanical treatments of activity in
cortical macrocolumns [21]. Stochastic components could also be considered
as the consequence of local or global deterministic nonlinear dynamics of a
possibly chaotic nature (see eg. [2]). From another perspective, stochastic
components could be considered as reflecting input from remote regions [5].

In BDS, neurodynamics cause changes in fMRI signals via hemodynamic
models specified in terms of a set of basis functions. Although more detailed
differential equation models exist [4, 9, 28], the relationship between neuronal
activation and fMRI signals can be formulated as a first-order convolution
with a kernel expansion using basis functions (typically two or three). This
kernel is the hemodynamic response function. This approach has enjoyed a
decade of empirical success in the guise of the General Linear Model (GLM)
[12, 19]. Moreover, this means that the state-output relation can be described
by a linear convolution.

The BDS model may be viewed as a marriage of two formulations, the
input-state relation being a stochastic DCM and the state-output relation
being a GLM.

BDS has a similar form to models used in signal processing and ma-
chine learning. In particular, BDS is almost identical to a Linear Dynamical
System (LDS) [29] with inputs. The only difference is that the inputs can
change the linear dynamics in a bilinear fashion - hence the name ‘Bilin-
ear’ Dynamical Systems. In such models, the hidden variable, which in our
case corresponds to the neuronal time series, can be estimated using Kalman
smoothing. Further, the parameters of the model can be estimated using
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an Expectation-Maximisation (EM) algorithm described in [15] which needs
only minor modification to accomodate the bilinear term.

The structure of the paper is as follows. In section 2 we define BDS and
describe how it can be applied to deconvolve fMRI time series. We describe
a novel EM algorithm for estimation of model parameters. In section 3 we
present preliminary results on applying the models to synthetic data and
data from an fMRI experiment.

1.1 Notation

We denote matrices and vectors with bold upper case and bold lower case
letters respectively. All vectors are column vectors. XT denotes the trans-
pose of X and Ik is the k-dimensional identity matrix. Brackets are used to
denote entries in matrices/vectors. For example, A(i) denotes the ith row of
A, A(i, j) denotes the scalar entry in the ith row and jth column, and a(i)
denotes the ith entry in a. We define zN as a vector with a 1 as the first
entry followed by N −1 zeros and 0I,J as the zero matrix of dimension I×J .

2 Bilinear Dynamical Systems

Although, in principle, we could define models for activity in a network of
regions, in this paper we define a BDS model for activity in only a single
region. BDS is an input-state-output model where the states correspond to
‘neuronal’ activations. Neuronal activity is defined mathematically below
and can be thought of as that component of the Local Field Potential (LFP)
to which fMRI is most sensitive [22]. BDS is defined, for a single region, with
the following state-space equations where n indexes time

sn =
(
a + bT un

)
sn−1 + dT vn + wn (1)

xn = [sn, sn−1, sn−2, .., sn−L+1]
T (2)

yn = βTΦxn + en (3)

The first equation describes the stochastic neurodynamic model. Driving in-
puts vn cause an increase in neuronal activity sn (a scalar) that decays with a
time constant determined by (a+bT un). This time constant is determined by
the value of the ‘intrinsic connection’, a, and ‘modulatory inputs’, un. Driv-
ing inputs typically correspond to the presentation of experimental stimuli

103



and modulatory inputs typically correspond to instructional or attentional
set. The strengths of the driving and modulatory effects are determined by
the vectors of driving connections, d, and modulatory connections, b. The
driving connections are also known as ‘input efficacies’. Neuronal activity is
also governed by zero-mean additive Gaussian noise, wn, having variance σ2

w.
Neuronal activation then gives rise to fMRI time series according to the

second and third equations. The second equation defines an embedding pro-
cess [32] in which neuronal activity over the last L time steps is placed in
the ‘buffer’, xn. The vector xn is referred to as an ‘embedded’ time series
where L is the embedding dimension. Neuronal activation, now described by
xn, then gives rise to fMRI time series, yn, via a linear convolution process
described in the third equation. Equation 3 comprises a signal term βTΦxn

and a zero-mean Gaussian error term en with variance σ2
e . The hth row of

matrix Φ defines the hth convolution kernel (ie. basis of the hemodynam-
ics response function) and β(h) is the corresponding regression coefficient.
Figure 1 shows a set of convolution kernels that have been used widely for
the analysis of fMRI data in the context of the GLM. Linear combinations
of these functions have been found empirically to account for most subject-
to-subject and voxel-to-voxel variations in hemodynamic response [19, 20].

The model can perhaps be better understood by looking at the neuronal
and hemodynamic time series that it generates. An example is shown in
Figure 2. The model we have proposed, BDS, can be viewed as a combina-
tion of two models (i) a stochastic, discrete-time version of DCM to describe
neurodynamics and (ii) the GLM to describe hemodynamics. GLMs are well
established in the neuroimaging literature [8] and DCMs are becoming so.
Consequently, the model choices we have made are informed by precedents
established for GLMs and DCMs. For example, from previous work using
GLMs [20], we know that the embedding dimension should be chosen to span
a 20-30s period. With regard to neurodynamics, the discrete bilinear form
affords analytic tractability while allowing nonlinear interactions between ex-
ogenous input and states. The splitting of exogenous inputs into driving and
modulatory terms is also prompted by DCM. The motivation for this is that,
for data collected from controlled experiments, one wishes to relate changes in
connectivity to experimental manipulation. This distinction is echoed by the
separate neurobiological mechansisms underlying driving versus modulatory
activity [25].

The modulatory coefficients in equation 1, b, are also known as ‘bilinear’
terms. This is because the dependent variable, sn, is linearly dependent on
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the product of sn−1 and un. That un and sn−1 combine in multiplicative
fashion endows the model with ‘nonlinear’ dynamics that can be understood
as a nonstationary linear system that changes according to experimental
context. Importantly, because un is known, it is straightforward to estimate
how the dynamics are changing. We emphasise that the term ’bilinear’ relates
to interactions between a state and an input rather than among the states
themselves.

2.1 Relation to biophysical models

In the previous section, we interpreted (a + bT un) as the time constant of
decaying neuronal activity. However, our BDS model has a much more
general relationship to underlying biophysical models of neuronal dynam-
ics. Consider some biologically plausible model of neuronal activity that
is formulated in continuous time ẋ = f(x, u, θ) and allows for arbitrarily
complicated and nonlinear effects of the state and exogenous inputs. The
parameters of this biophysical model θ (c.f. neural mass models [31]) can be
related directly to biophysical processes. In our discrete-time formulation,
under local linearity assumptions, a = exp(∆t∂f/∂x) and b(i) = ∂a/∂u(i) =
∆ta∂2f/∂x∂u(i) where ∆t is the sampling interval and i indexes the input.
This means that our input-dependent autoregression coefficients can be re-
garded as a lumped representation of the underlying model parameters. This
re-parameterization, in terms of a state-space model, precludes an explicit
estimation of the original parameters. However, this does not matter because
we are not interested in the parameters per se; we only require the condi-
tional estimates of the states. The transformation of a dynamic formulation
into a discrete BDS is a useful perspective because priors on the biophysical
parameters can be used to specify priors on the autoregression coefficients,
should they be needed.

2.2 Relation to GLMs

For models with a single input BDS reduces to a GLM if sn = vn, that is, if the
neuronal activity is synonymous with the experimental manipulation (driving
inputs). This highlights a key assumption of GLMs, that the dynamics of
neuronal transients can be ignored.

For models with multiple inputs the relation between BDS and GLMs is
more complex. Ignoring bilinear and noise terms, BDS can be more parsi-
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monious than the GLM in the sense of having fewer parameters. Say, for
example, we are modelling hemodynamics with H basis functions. Then for
M (driving) input variables, the GLM has HM parameters, whereas in BDS,
there are M + H + 1 parameters. For H = 3, for example, BDS has fewer
coefficients if M ≥ 3.

The reason for this reduction is that, in BDS, the inputs affect only
neurodynamics. And the strength of this effect, ignoring modulatory terms,
is captured in a single parameter, the input efficacy. The relation between
neurodynamics and hemodynamics is independent of which input excited
neuronal activity. This is obviously more consistent with physiology where
experimental manipulation only affects fMRI by changing neuronal activity.

2.3 Deconvolution

Deconvolution consists of estimating a neuronal time series, sn, given an
fMRI time series, yn. It is possible to perform model-based deconvolution
using BDS and a modified Kalman-filtering algorithm. The modification is
necessary because, due to the modulatory terms, the state transition ma-
trix is time-dependent. Also, the BDS model must be reformulated so that
the output is an instantaneous function of the state. This section describes
standard Kalman filtering and the modifications required for BDS.

In the Kalman-filtering approach, deconvolution progresses via iterative
computation of the probability density p(sn|yn

1 ) where yn
1 = {y1, y2, ...yn}.

That is, our estimate of neuronal activity at time step n is based on all the
fMRI data up to time n (but not on future values).

The Kalman-filtering algorithm can be split into two steps that are ap-
plied recursively. The first step is a time update where the density p(sn−1|yn−1

1 )
is updated to p(sn|yn−1

1 ). In our model this will take into account the effects
of inputs un and vn and the natural decay of neuronal activity. The second
step is a measurement update where the density p(sn|yn−1

1 ) is updated to
p(sn|yn

1 ) thereby taking into account the ‘new’ fMRI measurement yn. The
two steps together take us from time point n − 1 to time point n and are
applied recursively to deconvolve the entire time-series.

A complication arises, however, because the Kalman filtering updates re-
quire that the output be an instantaneous function of the hidden state. That
is, that yn depend only on sn and not on sn−1, sn−2 etc, which is clearly
not the case. But Kalman filtering can proceed if we use the embedded
state variables xn. This will lead to an estimate of the multivariate den-
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sity p(xn|yn
1 ). Our desired density, p(sn|yn

1 ), is then just the first entry in
p(xn|yn

1 ). Whilst this is conceptually simple, a good deal of book-keeping
is required to translate the BDS neurodynamical model into an ‘embedded
space’. This is described in detail in Appendices A and B.

A second complication arises in that, in the standard Kalman update
formulae [15], the inputs do not change the intrinsic dynamics. To account
for this we introduce a time-dependent state-transition matrix that embodies
changes in intrinsic dynamics due to modulatory inputs. This is also detailed
in Appendices A and B.

It is also possible to perform deconvolution based on Kalman-smoothing
rather than Kalman-filtering. Kalman-smoothing estimates neuronal activity
by computing the density p(sn|yN

1 ). It is therefore based on the whole fMRI
record, ie. past and future values and, as we shall see, provides more accurate
deconvolutions in high noise environments.

2.4 Estimation

To run the deconvolution algorithms described in the previous section we
must know the parameters of the model eg. β, a, b and d. If these parameters
are unknown, as will nearly always be the case, they can be estimated using
Maximum-Likelihood (ML) methods.

For BDS this can be implemented using an Expectation-Maximisation
(EM) algorithm which we derive in Appendices A and B. The E-step uses a
Kalman smoothing algorithm which contains only minor modifications to the
algorithm presented in [15]. The M-step contains updates derived by consid-
ering estimation of the neurodynamic parameters (a, b, d) as a constrained
linear regression problem [27]. The neurodynamic parameters are updated
as shown in equation 25 and the hemodynamic parameters, β, are updated
using equation 28. It is also possible to update the initial state estimates
as described in [15], but this was not implemented for the empirical work in
this paper.

It is also possible to implement ML parameter estimation by comput-
ing the likelihood using Kalman filtering (as shown in Appendix C), and
then maximising this using standard Matlab optimisation algorithms such as
Pseudo-Newton or Simplex methods [26]. However, preliminary simulations
showed EM to be faster than these other ML methods.
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2.5 Initialisation

The EM estimation algorithm is initialised as follows. In the limit of Zero
Neuronal Noise (ZNN) the neuronal activity is given by

sn = (a + bT un)sn−1 + dT vn (4)

and the predicted hemodynamic activity is

ŷn = βTΦxn (5)

We intially set a to a random number between 0 and 1, and b such that
bT un is between 0 and 1−a for all n. The values of d are also set to random
numbers between 0 and 1. The first β coefficient is fixed at unity, and others,
if there are any, are initialised to random numbers between 0 and 1. We then
run a pseudo-Newton gradient descent optimisation (the function fminunc in
Matlab) to minimise the discrepancy between the observed fMRI time series
yn and the estimated values ŷn under the ZNN assumption. Occasionally,
parameter estimates result in an unstable model. We therefore repeat these
initialisation steps until a stable model is returned. These parameters are
then used as a starting point for EM.

3 Results

3.1 Simulations

We generate simulated data to demonstrate various properties of the deconvo-
lution algorithm. These simulations are similar to the first set of simulations
in [16]. We also compare our results to those obtained with Wiener deconvo-
lution [17], which makes minimal assumptions about the source (that it has
a flat spectral density [26, 16]).

A 250s time series of input events with sampling period ∆t = 0.5s was
generated from a Poisson distribution with a mean interval between events of
12s. Events less than 2s apart were then removed. The half-life of neuronal
transients was fixed to 1s by setting a = 0.71, the input efficacy was set
to d = 0.9 and the neuronal noise variance was set to σ2

w = 0.0001. There
were no modulatory coefficients and a single hemodynamic basis function
(the ‘canonical’, shown in Figure 1) was used.
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We then added observation noise to achieve a Signal to Noise Ratio (SNR)
of unity (this is equivalent to the 100% noise case in [16]). This was achieved
using σ2

e = 0.015. The generated time series is shown in Figure 3.
The parameters were estimated using EM to be a = 0.72 and d = 0.88.

Wiener and BDS Kalman smoothing deconvolutions (the latter obtained us-
ing estimated parameters) are shown in Figure 4. Wiener deconvolution used
the known value of σ2

e and BDS Kalman smoothing used the known values of
σ2

e and σ2
w. The quality of the BDS deconvolution is considerably better than

that using the method described in [16] (see eg. Figure 3D in [16]). This is
because information about the paradigm (eg. experimental inputs) has been
used. For Wiener deconvolution the correlation with the generated neuronal
time series is r = 0.520 and for BDS Kalman smoothing it is r = 0.998.

We then ran a second simulation with the neuronal noise variance set to
a high value, σ2

w = 0.03. This data is shown in the top panel of Figure 5.
Neurodynamic parameters were estimated, using EM, to be a = 0.68 and
d = 0.83. For comparison, ZNN initialisation (see section 2.5) produced
parameter estimates a = 0.45 and d = 1.13. That is, the assumption of zero
neuronal noise leads to an underestimate of the neuronal time constant and
an overestimate of the input efficacy.

The neuronal time series, as estimated using BDS Kalman smoothing
(bottom panel of Figure 5) had a correlation with the generated time series
of r = 0.775. The ZNN estimate neuronal time series had a correlation of r =
0.724. The Wiener deconvolved time series (second panel in Figure 5) gave
r = 0.52 (again). We also show, in the third panel of Figure 5, deconvolutions
from BDS Kalman filtering.

Figure 5 shows that Wiener estimation recovers the intrinsic dynamics
but misses the evoked responses, whereas BDS Kalman filtering recovers the
evoked responses but misses the intrinsic dynamics. Deconvolution using
BDS Kalman smoothing recovers both.

The smoother can capture the intrinsic dynamics because it uses more
information than the filter. It updates the filter estimates of neuronal activ-
ity, at a given time point, using information in advance of that time point
(ie. from the future). These updates are implemented using the ‘backward
recursions’ described in Appendix B.1. Heuristically, the reason for the im-
provement is that the best estimates of neuronal activity are obtained using
observed fMRI activity about 5 seconds or so in the future ie. at the peak of
the hemodynamic response.
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3.2 Single word processing fMRI

We now turn to the analysis of an fMRI data set recorded during a passive
listening task, using epochs of single words presented at different rates. The
experimental inputs in Figure 6 describe the paradigm in more detail. The
driving inputs in the top panel indicate presentation of words in the subject’s
headphones and modulatory inputs in the lower panels indicate epochs with
different presentation rates.

We focus on a single time series in primary auditory cortex shown in
Figure 7. This comprises 120 time points with a sampling period ∆t = 1.7s.
Further details of data collection are given in [11]. As the experimental inputs
are specified at a higher temporal resolution than the fMRI acquisition, we
upsampled the fMRI data by a factor of 4 prior to analysis. The input
variables were convolved with a ‘canonical’ hemodynamic response function
(see top panel of Figure 1) to form regressors in a GLM. Figure 7 shows the
resulting GLM model fit.

The same input variables and hemodynamic basis function were then used
to define a BDS model. The observation and state noise variances were set to
σ2

e = σ2
w = 0.1, and the hemodynamic regression coefficient was set to β = 1.

Figure 8 shows the resulting model fit which is clearly superior to the GLM
model fit in Figure 7 (but see Discussion). Figure 9 shows neuronal activity
as estimated using BDS Kalman smoothing. This includes both event-related
responses (the ’spikes’) and intrinsic activity (slow fluctuations).

Neurodynamic parameters were estimated, using EM, as d = 0.80, a =
0.92, b(1) = −0.44, b(2) = −0.08 and b(3) = −0.02. Thus, epochs with
faster stimulus presentations were estimated to have an increasingly inhibitory
effect on event-related neurodynamics. This pattern was robust across a wide
range of settings of the noise variance parameters. This finding is consistent
with neuronal repetition suppression effects and is in agreement with Dy-
namic Causal Modelling of this data [11].

4 Discussion

We have proposed a new algorithm, based on a Bilinear Dynamical Sys-
tem (BDS), for model-based deconvolution of fMRI time series. The impor-
tance of the work is that hemodynamic time-series can be deconvolved, in
an informed way, to disclose the underlying neuronal activity. Being able
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to estimate neuronal responses in a particular brain region is fundamental
for many models of functional integration and connectivity in the brain. Of
course, these estimates can only describe those components of neuronal ac-
tivity to which fMRI is sensitive. They should nevertheless be useful for
making fMRI-based assessments of connectivity [10, 16].

BDS is fitted to data using a novel Expectation-Maximisation (EM) algo-
rithm where deconvolution is instantiated in an E-step and model parameters
are updated in an M-step. Simulations showed EM to be faster than maxi-
mum likelihood optimisation based on simplex or Pseudo-Newton methods.
Deconvolution can be based either on a full E-step, using Kalman smoothing,
or a partial E-step based on Kalman filtering. Kalman smoothing uses the
full data record wheras Kalman filtering only uses information from the past.

Simulations showed that our model-based deconvolution is more accurate
than blind deconvolution methods (Wiener filtering). This is because BDS
uses information about the paradigm. We also observed the following trends.
Wiener estimation recovers the intrinsic dynamics but misses the evoked
responses, whereas BDS Kalman filtering recovers the evoked responses but
misses the intrinsic dynamics. Deconvolution using BDS Kalman smoothing
recovers both.

Simulations also suggest that if dynamics are indeed of a stochastic na-
ture, as is assumed in BDS, then if we mistakenly assume deterministic
dynamics, estimation of neuronal efficicies and time constants will become
innaccurate. This has implications for models that assume deterministic dy-
namics, such as DCM [11].

Our applications of BDS provide good examples of Kalman smoothing
providing better deconvolutions than Kalman filtering. The reason is that
smoothing also uses future observations and the best estimates of neuronal
activity are obtained using observed fMRI activity about 5 seconds or so into
the future, that is, at the peak of the hemodynamic response. This property
should hold for any state-space model of fMRI (see eg. [28]).

A comparison of GLM and BDS model fits in figures 7 and 8 clearly shows
that BDS is superior. Whilst this is somewhat encouraging, this observation
should be tempered with a note of caution. This is because the BDS model
is more complex and no penalty was paid for this during model fitting. The
BDS model may therefore be overfitted. In particular, as fMRI time series
are known to contain aliased cardiac and respiratory artifacts, the finer de-
tails that BDS picks up may be of artifactual rather than neuronal origin.
To eliminate this possibility one would need to estimate model parameters
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(especially the state noise variance) using Bayesian or cross-validation [33]
methods. Fortunately, Bayesian methods have already been developed for
Linear Dynamical Systems [14] that should not require too many changes to
accomodate the bilinear term.

Recently, Riera et al. [28] have proposed a state-space model for fMRI
time series which allows for nonlinear state-output relations. They showed
how model parameters could be estimated using a maximum likelihood pro-
cedure based on Extended Kalman Filtering. Moreover, they showed how
the parameters could be related to a stochastic differential equation imple-
mentation of the Balloon model. Thus, unlike BDS which assumes linear
hemodynamics, their model can describe nonlinear properties such as hemo-
dynamic refractoriness. This is important, as the neuronal refractoriness
inferred using BDS in section 3.2, for example, may actually be of hemo-
dynamic rather than neuronal origin. In fact, a Dynamic Causal Modelling
analysis of this data [11], which allows for both neuronal and hemodynamic
refractoriness, concluded that both effects were present.

The model proposed by Riera et al. [28] also differs from BDS in the input-
state relations. In BDS, this is governed by driving inputs that excite linear
neurodynamics which can be changed according to modulatory inputs. This
means that neurodynamics and changes in them can be directly attributed
to changes in experimental context. This modelling approach is therefore
appropriate for designed experiments where the inputs are known. In the
Riera model, the inputs are not assumed to be known. Instead, a more
flexible radial basis function approach is used to make inferences about the
onsets of linear neurodynamical processes.

In previous work we have proposed an fMRI deconvolution model based
on the GLM [16]. This uses a forward model in which neuronal activity,
represented using a temporal basis set and corresponding coefficients, is con-
volved with a known hemodynamic kernel to produce an fMRI time series.
Observation noise is then added. Deconvolution is achieved by estimating
the coefficients of the temporal basis functions. In [16] we used full-rank
Fourier basis sets and overcomplete basis sets that used information about
experimental design. Coefficients were estimated using priors and Paramet-
ric Empirical Bayes. A problem with the method, however, is that for J
coefficients (where J is typically the length of the time series or longer) one
must store and invert J × J covariance matrices. A computational benefit
of the BDS approach is that, by making use of factorisations that derive
from Markov properties of the state-space model, one need only manipulate
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L × L covariance matrices, where L is the temporal embedding dimension
(L << J). We have also argued, in section 3.2, that BDS is more parsimo-
nious and biologically informed than the GLM.

The method we have proposed has been applied to deconvolve data at
a single voxel. This is useful in providing a ‘source’ neuronal time series,
for example, for the analysis of PPIs [10, 16]. More generally, however, one
is interested in making inferences about changes in connectivity in neural
networks extended over multiple regions. This requires simultaneous decon-
volution at multiple voxels and, ideally, a full model-based spatio-temporal
deconvolution. The application of state-space models to this more difficult
problem is an exciting area of current research (see eg. [13]).
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A Embedding

It is convenient to re-write the neurodynamic model as

sn = b̃
T
ũnsn−1 + dT vn + wn (6)

and ũn is a vector of modulatory inputs augmented with a 1 as the first entry
(note some inputs may be driving and modulatory in which case they appear

in both ũn and vn) and b̃
T

= [a, b]T absorbs a.
The state-space equations can then be written in terms of the embedded

neuronal activity, xn, as

xn = Anxn−1 + Dvn + w̃n (7)

yn = cT xn + en

where cT = βTΦ. The embedded state transition matrix is

An =

[
b̃

T
F n

ΨL

]
(8)

where
F n = ũnz

T
L (9)

is a (B + 1)× L matrix (where B is the number of modulatory inputs) and
ΨL is the (L − 1) × L delay matrix that fills the lower L − 1 rows of An.
This ensures that the embedded time series are shifted one time step each
time An is applied. The input matrix is given by

D =

[
dT

0L−1,M

]
(10)

where M is the number of driving inputs. The state noise in equation 7 is
given by w̃n = wnz

T
L. The covariance of w̃n is Q and the only non-zero entry

is Q(1, 1) = σ2
w.

If we have a BDS with a single driving input, no modulatory inputs and
L = 4, a = 0.92 and d = 0.80 then the embedded neurodynamic model is

xn = Anxn−1 + Dvn + wn (11)
sn

sn−1

sn−2

sn−3

 =


0.92 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0




sn−1

sn−2

sn−3

sn−4

+


0.80
0
0
0

 vn +


wn

0
0
0


Modulatory inputs would change the first entry in An.
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B EM algorithm

In probabilistic models with hidden variables maximum-likelihood learning
can be implemented using an Expectation-Maximisation (EM) algorithm [7].
This requires us to maximise the auxiliary function

F =
∫

p(X|y) log p(X, y)dX (12)

where X = {x1, ..,xn, ..,xN} are the hidden variables and y = {y1, .., yn, .., yN}
are the observed variables [15]. In BDS, the observed variables are the fMRI
time series and the hidden variables are the neuronal activities. Using the
Markov property we can write

p(X, y) = p(x1)
N∏

n=2

p(xn|xn−1)
N∏

n=1

p(yn|xn) (13)

The initial, transition and output probabilities are given by

p(x1) = N(µ1,Σ1) (14)

p(xn|xn−1) = N(Anxn−1 + Dvn, Q) (15)

p(yn|xn) = N(cT xn, σ
2
e) (16)

which define the observation model, state transition model and initial state
distribution. In the above expression the quantity c is as defined in equa-
tion 7. Therefore the joint log-likelihood is a sum of quadratic terms

LJ = log p(X, y) = −
N∑

n=1

1

2σ2
e

[
(yn − cT xn)T (yn − cT xn)

]
− N

2
log |σ2

e | (17)

−
N∑

n=2

1

2

[
(xn −Anxn−1 −Dvn)T Q−1(xn −Anxn−1 −Dvn)

]
− 1

2

[
(x1 − µ1)

TΣ−1
1 (x1 − µ1)

]
− 1

2
log |Σ1|

− N − 1

2
log |Q| − NL

2
log 2π

In the above equation, the quantity Q refers to an arbitrary covariance ma-
trix. In Appendix B.2 we show how LJ , as a function of the state variables
xn, simplifies for the Q defined for the BDS model in Appendix A. The ex-
pectation over the terms in the above equation can be maximised as shown
in the following sections.
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B.1 E-Step

The objective of the E-step is to compute the probability of the hidden vari-
ables given the data. Because the initial, transition and output probability
distributions are Gaussian this can be achieved by updating the conditional
mean and conditional covariance. Following [15], we write the expected value
of xn conditioned on all data up to time n as xn

n ≡ E[xn|yn
1 ]. Similarly, the

corresponding covariance is given by Σn
n ≡ Var[xn|yn

1 ].

Kalman filtering

The objective of Kalman filtering is compute the probability of the hidden
variables given all observed variables up to that time point, that is, to com-
pute, p(xn|yn

1 ). Kalman filtering implements the recursive computation of
xn

n and Σn
n from xn−1

n−1 and Σn−1
n−1 in two steps. Firstly, in the time update

step

p(xn|yn−1
1 ) =

∫
p(xn|xn−1)p(xn−1|yn−1

1 )dxn−1 (18)

This is implemented using

xn−1
n = Anx

n−1
n−1 + Dvn (19)

Σn−1
n = AnΣ

n−1
n−1A

T
n + Q

Secondly, in the measurement update step

p(xn|yn
1 ) =

p(yn|xn)p(xn|yn−1
1 )∫

p(yn|xn)p(xn|yn−1
1 )dxn

(20)

This is simply Bayes rule where p(xn|yn−1
1 ) (from equation 18) describes our

belief in xn before observing yn. The measurement update is implemented
using

Kn = Σn−1
n c

(
cTΣn−1

n c + σ2
e

)−1
(21)

xn
n = xn−1

n + Kn(yn − cT xn−1
n )

Σn
n = Σn−1

n −Knc
TΣn−1

n

where Kn, known as the Kalman gain matrix, operates as an adaptive step
size parameter for each hidden variable. In the above expressions the quantity

119



c is as defined in equation 7. The procedure is initialised using x0
1 = µ1 and

Σ0
1 = Σ1. These updates are exactly as described in [15] except that (i) An

is used instead of A because our dynamics are input-dependent, and (ii) we
use c instead of C because our observations are univariate.

Kalman smoothing

The objective of Kalman smoothing is compute the probability of the hidden
variables given all observed variables, that is, to compute, p(xn|yN

1 ). They
are impleneted using a set of ‘backward recursions’ which compute xN

n−1 and
ΣN

n−1 from the forward estimates xn−1
n−1, Σn−1

n−1. Because these formulae are
also almost identical to those described in [15], we do not reproduce them
here. The only difference is that An is used instead of A.

Expectations

The M-step requires a number of expectations that can be derived from the
E-step

mn =
∫

p(xn|y)xndxn (22)

P n =
∫

p(xn|y)xnx
T
ndxn

P n,n−1 =
∫

p(xn, xn−1|y)xnx
T
n−1dxn

These can be computed as shown in [15], with the minor modification that
the updates for P n and P n,n−1 depend on An instead of A.

B.2 M-step for Neurodynamics

Because the only non-zero element in Q (see appendix A) is the first entry,
the joint log-likelihood can be written as a function of the neurodynamic
parameters as follows

LJ = −1

2

N∑
n=2

(
xn(1)− xn−1F

T
n b̃− vT

nd
)2

(23)

= −1

2

N∑
n=2

(
xn(1)− [xT

n−1F
T
n , vT

n ]θ
)2
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where xn(1) is the first entry in xn and

θ =

[
b̃
d

]
(24)

Taking expectations and derivatives leads to the update

θ̂ =

(∑
n

S̃n

)−1 (∑
n

ṽn

)
(25)

where

S̃n =

[
F nP n−1F

T
n F nmn−1v

T
n

vnm
T
n−1F

T
n vnv

T
n

]
(26)

and

ṽn = [P n,n−1(1)F T
n , mn(1)vT

n ] (27)

The quantities mn, mn−1, P n−1 and P n,n−1 are computed after Kalman
smoothing, vn are the driving inputs and F n is a matrix derived from the
modulatory inputs defined in equation 9.

B.3 M-step for Hemodynamics

The output kernel coefficients can be updated using

β̂ =

(∑
n

P̃ n(1)

)−1 (∑
n

Φmnyn

)
(28)

where
P̃ n = ΦP nΦ

T (29)

The quantities mn and P n are computed after Kalman smoothing, Φ is the
matrix of hemodynamic basis functions and yn is the observed fMRI time
series.
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C Likelihood

The likelihood is given by

L = log p(yN
1 ) (30)

= log p(y1) +
N∑

n=2

log p(yn|yn−1
1 )

where
p(yn|yn−1

1 ) = N(cT xn−1
n , cTΣn−1

n c + σ2
e) (31)

The quantities xn−1
n and Σn−1

n are obtained from Kalman filtering (see Ap-
pendix B.1).
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Figure captions

1. Hemodynamic Basis Functions Top Panel: Canonical function,
Middle Panel: Derivative of Canonical with respect to time, Bottom
Panel: Derivative of Canonical with respect to dispersion. Linear com-
binations of these functions have been found empirically to account for
most subject-to-subject and voxel-to-voxel variations in hemodynamic
responses [19, 20].

2. Time series from examplar BDS model Driving input vn (top
panel) causes an increase in neuronal activity sn (third panel). This
activity decays with a time constant that changes according to a mod-
ulatory input un (second panel). In this instance the modulatory co-
efficient, b, is negative. Driving inputs typically correspond to the
presentation of experimental stimuli and modulatory inputs typically
correspond to instructional or attentional set. Neuronal activity then
gives rise to the fMRI time series yn (bottom panel) by convolving neu-
ronal activity with a set of hemodynamic kernels (shown in Figure 1).

3. Low Neuronal Noise Data Top Panel: Driving input vn, Middle
Panel: Neuronal activity sn, Bottom Panel: fMRI data yn.

4. Deconvolving Low Neuronal Noise Data (a) Wiener Deconvolu-
tion (solid line), (b) BDS Kalman smoothing deconvolution (solid line)
using estimated parameters a = 0.72 and d = 0.88. The simulated
(true) neuronal activity is shown as a dotted line in both plots.

5. Deconvolving High Neuronal Noise Data Top (First) Panel: fMRI
data, Second Panel: Wiener Deconvolution (thick line), Third Panel:
BDS Kalman Filtering (thick line), Bottom (fourth) Panel: BDS Kalman
Smoothing (thick line). In the bottom 3 panels the original simulated
neuronal activity is shown as a thin line. Wiener estimation recovers
the intrinsic dynamics but misses the evoked responses (the ‘spikes’),
whereas BDS Kalman filtering recovers the evoked responses but misses
the intrinsic dynamics (slow fluctuations). Deconvolution using BDS
Kalman smoothing recovers both.

6. Word fMRI inputs Driving input vn (top panel) and modulatory
inputs un (lower panels). The delta functions in the top panel indicate
presentation of words in the subject’s headphones and the modulatory
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inputs in the lower panels indicate epochs with different presentation
rates.

7. GLM fit to Word fMRI data fMRI time series from primary audi-
tory cortex (thin line) and GLM model fit (thick line).

8. BDS fit to Word fMRI data fMRI time series from primary auditory
cortex (thin line) and BDS model fit (thick line).

9. BDS deconvolution of Word fMRI data Estimation of neuronal
activity using BDS Kalman smoothing. Event-related responses can be
seen as spikes superimposed on intrinsic dynamics.
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