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ABSTRACT

The analysis of functional magnetic resonance imaging (fMRI) time-series data can provide

information not only about task-related activity, but also about the connectivity (functional or

effective) among regions, and the influences of behavioral or physiologic states on that

connectivity (Büchel and Friston, 1997). Similar analyses have been performed in other imaging

modalities, such as positron emission tomography (PET) (McIntosh et al., 1994). However,

fMRI is unique because the information about the underlying neuronal activity is filtered or

convolved with a hemodynamic response function. Previous studies of regional connectivity in

fMRI have overlooked this convolution and have assumed that the observed hemodynamic

response approximates the neuronal response. In this paper, this assumption is revisited using

estimates of underlying neuronal activity. These estimates use a Parametric Empirical Bayes

formulation for hemodynamic deconvolution.
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INTRODUCTION

A common objective in functional imaging is to characterize the activity in a particular

brain region in terms of the interactions among inputs from other regions or by the interaction

between inputs from another region’s activity and behavioral state. Examples of analyses

modeling these interactions include psychophysiologic interactions (PPI), physiophysiologic

interactions and the incorporation of moderator variables in structural equation modeling (SEM)

(Büchel et al., 1999; Friston et al., 1997). Analyzing functional magnetic resonance imaging

(fMRI) data presents a unique challenge to these techniques because the experimenter is

presented with a time-series that represents the neural signal convolved with some hemodynamic

response function (HRF). However, interactions in the brain are expressed, not at the level of

hemodynamic responses, but at a neural level. Therefore, veridical models of neuronal

interactions require the neural signal or at least a well-constrained approximation to it. Given

blood oxygen level dependent (BOLD) signal in fMRI, the appropriate approximation can be

obtained by deconvolution using an assumed hemodynamic response. The need for robust

deconvolution is motivated neurobiologically (because brain interactions take place at a neural

level) and mathematically (because modeling interactions at a hemodynamic level is not

equivalent to modeling them neuronally). This note reviews the mathematical theory, presents a

simple method for constrained deconvolution, and demonstrates the method using simulated and

empirical datasets.

THEORY

Brain interactions occur at a neuronal level, yet the signal observed in fMRI is the hemodynamic

response engendered by that neuronal activity. The problem is how to construct regressors,
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based on hemodynamic observations, which model neuronal influences. The hemodynamic

response to neural activity can be modeled by convolution with a finite impulse response

function

∑ −=
τ

ττ tt xhy (1)

where yt is the measured BOLD signal at time t, hτ is the hemodynamic response function

defined at times τ, and xt-τ is the neuronal signal at time t minus τ. This equation can be

reformulated in matrix notation as

Hxy = (2)

where H is the HRF in Toeplitz matrix form.

Assume that we wish to model the interaction between neural activities in two areas.

Given the bold signal from two regions yA and yB we might try taking the product at each point in

time to generate the interaction term; however, this would not produce the signal induced by

interactions at a neuronal level (i.e., xA and xB representing neuronal activity from two regions),

since we have neglected convolution with the HRF. This can be expressed mathematically for

BOLD responses (3), and for the interaction of a psychological variable with BOLD signal (4).

)())(( BABABA xxHHxHxyy ≠= (3)

)())(( AAA PxHHxHPHPy ≠= (4)

The proper form of the necessary physiologic variables (e.g., xA) must first be obtained

from the observed BOLD activity (e.g., yA). The first step is to expand xA in terms of a temporal

basis set X such as a Fourier set or a set of cosine functions

βXxA = (5)

where β are parameters that control the expression of different frequency components of xA.

Introducing observation noise, we create a linear model whose maximum likelihood estimators

are obtained through the Gauss-Markov theorem
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εβ += HXyA (6)

A
TTTT

ML yHXHXHX 111 )(ˆ −−− ΣΣ=β (7)

where ),0(~ 2Σσε N , σ2 is the error variance, and Σ is the error correlation matrix. Using the

estimates, MLβ̂ , one could then derive the neural signal for each BOLD vector and compute the

required interaction terms using the left hand expressions in equations 3 or 4.

However, estimates based on a full-rank basis set are generally very inefficient (i.e.,

highly variable). This is particularly so for the coefficients in β̂ controlling high frequencies,

because the HRF selectively attenuates high frequencies. The estimates therefore have to be

constrained or regularized. This could be achieved, for example, by setting the high-frequency

estimates to zero by removing high-frequency terms from the basis set. This would give a least

squares maximum likelihood deconvolution that is motivated by smoothness constraints on the

solution. Constraints like this could also be implemented using a Bayesian formulation in which

the estimated neuronal activity conforms to a Bayesian estimator with priors on its frequency

structure. The advantage of the Bayesian formulation is that it allows a more flexible

specification of the priors. The corresponding Bayesian estimator (under Gaussian assumptions)

is

A
TTTT

MAP yHXCHXHX 1121 )(ˆ −−− Σ+Σ= βσβ (8)

where MAPβ̂ is the maximum a posteriori estimate, and 1−
βC is the prior precision (inverse of the

prior covariance) of β . By setting the leading diagonal elements of 1−
βC corresponding to the

highest frequencies to infinity (i.e., these coefficients have zero mean and variance) the solution

is effectively restricted to lower frequencies. This would render (8) equivalent to the least

squares deconvolution described above that obtains after removing the highest frequencies from

X.

.

e.g.
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This Bayesian formulation is potentially useful because it accommodates more finessed

regularizations than simply removing columns from X . The simplest constraint (used in the

examples below) is to assume the underlying neuronal process is white, with the uniform

expression of all frequencies:

e.g. QC λλβ =
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(9)

This is a more graceful form of constraint in which all frequencies are estimated, but in a way

that ensures the frequency profile conforms roughly to spectral profile specified in the prior

covariances. Note that we have introduced a hyperparameter λ that controls the variance, given

that the relative variances conform to the leading diagonal of Q. We could assume a particular

value for λ based on expectations about the variance of xA. This would render MAPβ̂ a fully

Bayesian estimator. However, it is difficult to specify λ for all situations, and a more flexible

approach is to estimate it from the data. This leads to empirical Bayes estimators. Then λ can be

estimated using restricted maximum likelihood (ReML) as described in Friston et al. (in press)

using a simple hierarchical observation model and expectation-maximization (EM)

)1(εβ += HXyA (10)

)2(0 εβ +=

where, as before, Σ= 2)1( )cov( σε is the variance of the observation error and

βλε CQ ==)cov( )2( is the prior covariance of β which enters into (8) to give MAPβ̂ (Friston et

al., in press). Finally, MAPβ̂ can then be used to calculate Ax̂ and form the appropriate interaction

terms for statistical modeling.
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EXAMPLES

To illustrate the importance of deconvolving prior to forming interactions we will use the

interaction between two simulated event-related responses. Note that all deconvolutions in this

paper employed a discrete cosine transform basis set, and a white noise form for the prior

constraints on βC . The simulated data consisted of 115 scans, with a TR of 2 seconds. Figure

1A shows 20 event-related neural responses during a 230 second scanning session. Neural

responses were formed by convolving a stick function with an exponential decay having a time

constant of 1000 msecs. Figure 1B shows responses to the same events from a different area.

The only difference between the two regions was the trial-to-trial latency in neural activity that

varied uniformly between 0 and 8 seconds. Simulated neural activities from these two regions

convolved with a HRF are shown in figure 1C and 1D respectively.

INSERT FIGURE 1

The result of multiplying the hemodynamic responses, in these two regions, to generate the

interaction term is shown in figure 2A. In contrast, figure 2B shows the result of first obtaining

neural signals by deconvolution, multiplying the neural signals to obtain the interaction term, and

then reconvolving with a HRF. The results of these operations are clearly different because the

interaction term in figure 2A is completely insensitive to the relative onsets of the neuronal

activities that determine the degree of interaction.

INSERT FIGURE 2

The simulated BOLD data were noise free, whereas actual BOLD data contain a substantial

amount of noise, which could affect parameter estimation. To model observation error the

standard deviations of the simulated BOLD data were calculated and Gaussian noise was added

to the simulated BOLD signal. The original and deconvolved noise free neuronal signals are

shown in figure 3A. The effects of adding 25%, 50% and 100% Gaussian noise on the

deconvolution is shown in figure 3B – D. The addition of Gaussian noise results in a relative loss

of high frequency components. This is because the Bayesian estimator depends more on the

priors as the level of noise increases.
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INSERT FIGURE 3

To examine the effects of noise on the hemodynamic and neural interactions, neural event

vectors were constructed with 35 events. These vectors were then treated as outlined above,

including convolution with a HRF, addition of Gaussian noise, generation of the hemodynamic

interaction, deconvolution of the individual hemodynamic responses, generation of the neuronal

interaction, and reconvolution of the neuronal interaction with a HRF. Noise effects on the

BOLD versus neuronal interactions are shown in figure 4.

INSERT FIGURE 4

The hemodynamic interactions (top panels) are much more affected by adding noise than the

neuronal interactions (lower panels). This example was chosen to make the distinction between

interactions at the neuronal and hemodynamic levels very apparent. In practice, the distinction

may be less pronounced because experimentally induced changes in neuronal activity have fewer

high frequency components, which attenuates the impact of the convolution. The hemodynamic

regressors in figures 2 and 4 are still valid regressors but the interactions they model are at the

hemodynamic, not the neuronal, level. In fact, the analysis of non-linearities in hemodynamic

responses presented in Friston et. al. (1998) used these sorts of regressors to estimate second

order Volterra kernels.

An application to emprical BOLD data is shown in figures 5 and 6. The data in figure 5

were taken from a lexical decision task (Gitelman, unpublished data), while the data in figure 6

are from a task of covert spatial attention (Gitelman, unpublished data). As noted previously, real

data may show less pronounced differences between BOLD versus neuronal interactions because

there are fewer high frequency components particularly, when block design data are used. As

anticipated the disparities between BOLD and neuronal interactions for event related designs

(Figure 5) are moderated in block designs (Figure 6). The Pearson correlation coefficient for the

BOLD versus neuronal interaction for block design data (r = 0.948) was significantly better than

that for event-related data (r = 0.709), based Fisher’s Z-transformation (z = 7.27, p <

0.00000001).

INSERT FIGURES 5 and 6
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CONCLUSION

This paper has illustrated the distinction between interactions among BOLD signals as opposed

to interactions occurring at a neuronal level. When modeling neural networks, interactions occur

at a neuronal level, thus, it is important to generate the proper form of the interaction term. The

distinction between BOLD and neuronal interactions appears to be even more prominent in the

setting of high noise, further demonstrating the importance of deconvolution for generally noisy

fMRI data. Although there are potentially, simpler methods for deconvolution, such as using

least squares, these methods provide rather harsh constraints and may show distortions with

noisy data. We have motivated the use of a parametric empirical Bayesian formulation in order

to generate well-constrained priors on the basis set, allowing the specification of prior in terms of

the frequency structure of fMRI data.
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Figure Legends

Figure 1: Neural activity from twenty simulated neural events is displayed. The signal level in all

figures has been normalized and displayed in arbitrary units (au). The activity from area B (1B)

has been slightly and variably delayed in relation to the activity from area A (1A). Neural

activity was produced by randomly generating twenty delta functions and convolving them with

an exponential decay function. C and D illustrate simulated noiseless BOLD signal generated by

convolving the neural activity with a HRF.

Figure 2: A) Interaction term produced by multiplying BOLD signal A with BOLD signal B.

Note this interaction is in terms of hemodynamic activity, not neural activity. B) Interaction term

produced by deconvolving the HRF from BOLD signal from A and B, multiplying the resulting

estimated neural activities and reconvolving with a HRF. Note the difference between the

interactions.

Figure 3: The effect of noise on the deconvolution. A) Plot of original (dotted line) and

deconvolved (solid line) noiseless simulated BOLD data. The effect of adding Gaussian noise,

25% to 100%, is illustrated in B – D.

Figure 4: Hemodynamic interactions in the setting of 0% and 100% Gaussian noise is shown in

4A and 4B. Deconvolved neuronal interactions in the setting of 0% and 100% Gaussian noise is

illustrated in 4C and 4D respectively

Figure 5: Psychophysiological interactions from an event-related fMRI data. A) event-related

BOLD signal (black) and regenerated BOLD signal (red). The regenerated signal was produced

by deconvolving the BOLD signal using the techniques in this report, and then reconvolving

with a HRF in order to compare the result of the deconvolution procedure with the original

signal. B) psychological variable; C) Hemodynamic interaction; D) Neuronal interaction.

Figure 6: Psychophysiological interactions from a block-design experiment. A) block-design

BOLD signal (black) and regenerated BOLD signal (red). The regenerated signal was produced

as for figure 5. B) psychological variable; C) Hemodynamic interaction; D) Neuronal interaction.
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Figure 1
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Figure 2
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Figure 3
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Figure 4
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Figure 5
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Figure 6


