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RStatistical parametric mapping (SPM) locates significant clusters based on a ratio of signal to noise (a ‘con-
trast’ of the parameters divided by its standard error) meaning that very low noise regions, for example out-
side the brain, can attain artefactually high statistical values. Similarly, the commonly applied preprocessing
step of Gaussian spatial smoothing can shift the peak statistical significance away from the peak of the con-
trast and towards regions of lower variance. These problems have previously been identified in positron
emission tomography (PET) (Reimold et al., 2006) and voxel-based morphometry (VBM) (Acosta-Cabronero
et al., 2008), but can also appear in functional magnetic resonance imaging (fMRI) studies. Additionally, for
source-reconstructed magneto- and electro-encephalography (M/EEG), the problems are particularly severe
because sparsity-favouring priors constrain meaningfully large signal and variance to a small set of compactly
supported regions within the brain. (Acosta-Cabronero et al., 2008) suggested adding noise to background
voxels (the ‘haircut’), effectively increasing their noise variance, but at the cost of contaminating neighbour-
ing regions with the added noise once smoothed. Following theory and simulations, we propose to modify –

directly and solely – the noise variance estimate, and investigate this solution on real imaging data from a
range of modalities.

© 2011 Published by Elsevier Inc.
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Introduction

The statistical parametric mapping (SPM) approach to the analysis
of neuroimaging data rests upon the application of frequentist statistics
to reject a null hypothesis at a particular voxel, local maximum or con-
tiguous cluster (Chumbley and Friston, 2009; Friston et al., 1994). The
null hypothesis, for example of no functional activation or of no group
difference in activity or local tissue volume, is commonly tested with a
t- or F-contrast of the parameters in a general linear model (Friston
et al., 2007). The t-statistic is a signal-to-noise ratio; the significance
of the estimated contrast of the parameters is judged with respect to
its standard error, which is proportional to the estimated standard devi-
ation of the noise in the model. The F-statistic is a ratio of explained to
unexplained variance, which can also be expressed (see Implications
for F-contrasts section) as a squared signal-to-noise ratio.

Employing a ratio of signal to noise is necessary because there is
no principled parametric method to control the false positive rate
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when declaring the signal alone to be ‘large’. (Worsley et al., 1992)
pooled voxels to estimate a spatially stationary noise variance, how-
ever, the spatially non-stationary voxel-wise variance estimate pro-
posed by Friston et al. (1991) has been found more appropriate.
However, a consequence of each voxel having its own variance esti-
mate is that rejected null hypotheses could relate to unusually low
noise variance, as well as or even instead of noteworthy signal.

SPM is intended for smooth (and usually additionally smoothed) data,
which interacts with this issue, since blurring regions of signal with
neighbouring low-variance background regions can cause the significant
area to spread into the background, and can shift the peak significance
towards the low-variance regions, as observed by Reimold et al.
(2006). This reduces the localisation accuracy of the topological features.

Reimold et al. (2006) proposed to address these localisation
accuracy problems by returning to consider the underlying signal
(the ‘contrast’ image) within the clusters detected by the convention-
al t-statistic based procedure. More precisely, significant clusters are
grown to accommodate neighbouring voxels with similarly large sig-
nal, and the signal itself is visualised in colour-coded maps in place of
the usual t-values.1 However, this modification clearly cannot protect
against the unwanted detection of clusters with low signal in regions
of even lower variance.
1 Reimold et al.'s (2006) work resulted in an SPM toolbox for masked contrast im-
ages, MASCOI, http://homepages.uni-tuebingen.de/matthias.reimold/mascoi.

ce voxels in statistical parametric mapping; a new hat avoids a ‘hair-
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Reimold et al. (2006) considered positron emission tomography
(PET) and simulated data. The problem is ameliorated to some extent
for functional magnetic resonance imaging. fMRI data typically have
lower inherent smoothness and lower applied smoothing (at least for
first-level, within-subject, analysis), together with a higher background
noise level. However, the problem is far more severe for source-
reconstructed magneto- and electro-encephalography (M/EEG). Here,
the ill-posed inverse problem requires prior knowledge about the
form of the activity in a given task. A commonly used prior is that acti-
vation should be spatially sparse, for example with ‘multiple cortical
sources with compact spatial support’ (Friston et al., 2008), which
means that low activity – and correspondingly low variance – will be
wide-spread even within the grey matter (GM).

For voxel-based morphometry (VBM), the same problem has al-
ready been discussed in the literature (Acosta-Cabronero et al., 2008;
Bookstein, 2001). (Acosta-Cabronero et al., 2008) proposed that it
could be corrected by adding background noise to low-probability vox-
els in the GM segments. Specifically, following probabilistic tissue clas-
sification (Ashburner and Friston, 2005), random noise uniformly
distributed between 0 and 0.05 was added to voxels with GM probabil-
ities below 0.05; an approach they termed the ‘Haircut’ due to its re-
moval of significant voxels outside the skull. Acosta-Cabronero et al.
(2008) argued ‘intuitively, the statistical effect of noise, with mean
and standard deviation an order ofmagnitude lower than [the probabil-
ities in voxels confidently segmented as GM], being smoothed into GM
tissue, can be neglected.’ However, they also observed that such a low
level of added noisemeant that ‘the blobs were not completely restored
to the glass brain’, which leaves open the question of whether a noise-
level sufficient to solve the problem fully might have a non-negligible
effect on voxels with substantial tissue probability.

The real purpose of adding noise to the data in the Haircut tech-
nique is to inflate the error variance σ2. Changing the data, however,
has the unwanted side-effect of altering the estimated parameters
and the estimated smoothness, as discussed later. We therefore pro-
pose a more incisive modification: that the error variance estimate
σ̂ 2 (distinguished by the addition of a hat) be directly altered, with-
out requiring any modification of the original data and hence preserv-
ing the signal. In brief, we simply add a small value to the estimated
error variance. This has only an inconsequential effect in regions
with non-trivial signal and variance, but can preclude large statistical
values in regions of very low noise, and help to preserve the localisa-
tion accuracy of the statistical peaks. This approach is effective and
easy to implement; however, it requires us to define what we mean
by ‘a small value’. In what follows, we evaluate a simple procedure
for determining this value automatically. First, we motivate our ap-
proach and derive a heuristic using simulated data, then we validate
it using real VBM, MEG and fMRI data.

Theory

The main equations related to the contrast c of the parameters β in
a linear model of the data in n-vector y (at a particular voxel) with de-
sign matrix X (whose Moore–Penrose pseudoinverse is denoted X+)
are:

β̂ ¼ Xþy ð1Þ

ε̂ ¼ y−Xβ̂ ¼ Ry; R ¼ I−XXþ ð2Þ

σ̂ 2 ¼ ε̂ ′ε̂
n−rank Xð Þ ¼

y′Ry
tr Rð Þ ð3Þ

t ¼ c′β̂
σ̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c′ X ′Xð Þþc

p ∝ c′β̂
σ̂

: ð4Þ
Please cite this article as: Ridgway, G.R., et al., The problem of low varian
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Consider the hypothetical scenario of smoothing an infinitesimal
‘point source’ surrounded by zeros. Both the contrast in the estimated
parameters c′β̂ ¼ c′Xþy and the residual images ε̂ ¼ Ry are linear
in the data, so smoothing the data smooths both similarly. The esti-
mated noise standard deviation required for the denominator of the
t-statistic is the square root of the residual mean squares (ResMS)
σ̂ 2 ¼ y′Ryð Þ=tr Rð Þ, which is nonlinear in the data, and might appear
more complicated. For example, for Gaussian random field data, the
estimated standard deviation image would relate to a square root of
a Chi-square random field. However, note that because all the residu-
al images have the same spatial profile, this profile is preserved by the
squaring and square-rooting operations and by the summation in be-
tween them, suggesting that the smoothing will affect the numerator
and denominator equally. Supporting this argument, simulations like
those described below but with the noise standard deviation tending
towards zero, indicate that shape and smoothness of σ̂ matches that
of β̂ so that the t-map becomes flat and theoretically infinitely ex-
tended (see also Chumbley and Friston, 2009). It is therefore clear
why low, but non-zero noise, surrounding signals in regions of higher
noise, can give rise to the spreading of t-statistic peaks observed in
the literature (Acosta-Cabronero et al., 2008; Reimold et al., 2006).

Simulations

To illustrate the nature of the problem and some potential solu-
tions, simple two-dimensional data corresponding to a one-sample
t-test are simulated. The underlying signal is generated as a point
source at the centre (pixel coordinates 20,20) of a 40×40 pixel image,
distributed normally with mean 100 and standard deviation 100. A
total of n=12 images are simulated, so that the expected t-value of
the underlying source is

β
σ

ffiffiffiffiffiffiffiffi
1=n

p ¼ ffiffiffi
n

p
≈ 3:464: ð5Þ

The images containing the point source are smoothed with a
10 pixel full-width at half-maximum (FWHM) Gaussian kernel. Simi-
larly smoothed Gaussian noise is added to produce the final data. Two
different noise standard deviations are employed: 0.01 and 2; the sig-
nal is generated only once, remaining identical for each noise level.
Note that because the underlying signal occurs only at one pixel
prior to smoothing and that its standard deviation is 50 times higher
than that of the high noise level, the high-noise data can also be
viewed as an example of applying the Haircut technique of Acosta-
Cabronero et al. (2008) to the low-noise data (strictly, the Haircut
would not alter the signal pixel itself, but that effect here is trivial).

Fig. 1 (a) and (b) show results for the low- and high-noise data re-
spectively. For the high-noise case, the estimated mean (beta) is very
similar to the true value, so its discrepancy is plotted instead (the dis-
crepancy for the low noise case matches that of rows c and d). For the
low-noise case, as expected, the estimated noise standard deviation σ̂
follows the same Gaussian shape as the signal, leading to a t-statistic
map with a roughly flat plateau, surrounded by some more erratic
values due to boundary effects. For the high-noise case, the t-map
plateau is brought closer to the desired shape of the smoothed signal,
though at the chosen noise level retains some distortion, with the
maximal value displaced from the expected location by about 45%
of the applied FWHM. Further increasing the noise level might im-
prove the shape of the t-statistic surface, but at the expense of in-
creasing the errors in the estimated parameter(s) β. There would
also be an increasing risk that the non-zero sample mean of the
noise itself could actually worsen the shape of the t-map, particularly
with low degrees of freedom.

Alternative approaches are investigated in rows (c) and (d) of
Fig. 1, each using the original low-noise data, but instead modifying
the estimated noise standard deviation image. A reasonable lower
ce voxels in statistical parametric mapping; a new hat avoids a ‘hair-
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Fig. 1. Simulation results. Columns, from left to right, show: the signal or its error (true signal β in first row; error in estimate β̂−β in rows b–d); the estimated noise standard
deviation σ̂ ; the SPMt. Rows correspond to: (a) Low-noise; (b) High-noise (or equivalently, added noise); (c) Low-noise with σ̂ lower bounded at 0.2; (d) Low-noise with
σ̂ 2→σ̂ 2 þ 0:22.
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bound for the (post-smoothing) noise standard deviation is 0.2, and
in (c) the estimated standard deviation image is prevented from fall-
ing below this bound (values above the bound are left untouched).
The original plateau is greatly reduced in diameter, and the Gaussian
shape beyond the plateau made more similar to that of the signal.
However, the discontinuity introduced to the σ̂ image results in an
undesirable discontinuity in the resultant t-map. Instead of a hard
lower bound, therefore, in (d) we propose to modify the estimated
noise standard deviation by adding the value of the bound. More
precisely, we add the square of the bound to the estimated noise
variance, in the expectation that this will impact less upon the
Please cite this article as: Ridgway, G.R., et al., The problem of low varian
cut’, NeuroImage (2011), doi:10.1016/j.neuroimage.2011.10.027
pixels which already have suitably high σ̂ due to the nonlinearity of
the square root. That is, we propose a modification of the variance
estimate,

σ̂ 2→σ̂ 2 þ δ: ð6Þ

Because the data (and hence the parameter estimates β̂) are not
altered, we are able to increase the level of σ̂ beyond that which
could be reasonably achieved with the Haircut technique, obtaining
a satisfactory (though still slightly rounded) profile for the t-map,
with a correctly located unique maximum value, and without any
ce voxels in statistical parametric mapping; a new hat avoids a ‘hair-
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additional artefacts introduced away from the signal location. Al-
though the addition of δ reduces the maximum t-value compared to
using δ as a lower bound, the value of 4.1 is still above that of 3.46
expected for the underlying point source. This is due to the nonlinear
effect on σ̂ from smoothing lower noise regions together with the
signal.

It appears that the addition of a small value δ to the estimated
noise variance (known as the residual mean squares image in SPM
and stored as ResMS.img) is an appealing strategy. However, in this
illustration, the lower bound value was chosen by hand to produce
satisfactory results. The problem of automatically choosing an appro-
priate value of δ for typical neuroimaging data is therefore addressed
empirically in the following sections.

Material and methods

Three separate modalities are explored: VBM, MEG and within-
subject fMRI. In each case, the SPM software (version 8, revision
4290 — but without the modification that is described here) is used
to estimate a general linear model and to compute a t-contrast of
interest. To illustrate the potential problem at its most severe, the sta-
tistical modelling is performed at every non-constant voxel through-
out the field of view, i.e. using no explicit mask and no threshold
masking. SPM's implicit masking is still used along with the exclusion
of voxels that are constant over all scans (which typically excludes
only the voxels at the very edges of the field of view that are beyond
the six-sigma support of the Gaussian smoothing kernel from any
non-zero data). For the MEG data, the source reconstruction process
means that the data are zero beyond a moderately tight grey matter
mask.

The experimental approach is the same for each modality: the com-
ponents of the t-statistic – the ‘contrast’ and the residualmean squares –
are displayed; a histogram is used to estimate the distribution of the
latter over voxels, and also a joint histogram of the contrast and
ResMS, for reasons that will become clear in the results. Note that the
joint histogram is only used to determine a suitable procedure from
which δ can be estimated from the distribution of ResMS; the eventual
(very simple) procedure is not dependent on a particular contrast
(and thus can be enacted at themodel-estimation stage without requir-
ing any contrasts to be specified). The histograms employ the base-10
logarithm of ResMS; the fact that log10 σ̂ 2

� � ¼ 2 log10σ̂ obviates the
decision of whether to consider ResMS or its square-root. The original
t-map is presented alongside the new version using the modified esti-
mate of ResMS (σ̂ 2→σ̂ 2 þ δ).

VBM data

Structural MRI was obtained from the Open Access Series of Imag-
ing Studies (OASIS) at http://www.oasis-brains.org/. We use the
baseline scans from the longitudinal data-set (Marcus et al., 2010),
which contains 150 subjects (62 males, 88 females) aged 60to 96.
72 of the subjects were characterized as nondemented throughout
the study, 64 were characterized as demented, and 14 subjects were
characterized as nondemented at the time of their initial visit but
were subsequently characterized as demented at a later visit.

Imageswere segmented using SPM8's New Segment toolbox (an ex-
tension of Ashburner and Friston, 2005) to produce native and ‘Dartel-
imported’ (rigidly aligned toMNI orientation and resampled to 1.5 mm
isotropic) segmentations of grey and white matter (WM). Dartel
(Ashburner, 2007) was then used to nonlinearly warp all subjects to-
gether by simultaneously matching their GM and WM segments to an
evolving estimate of their group-wise average (Ashburner and Friston,
2009). The transformations obtained (parameterised by flow-fields)
were then applied to the native GM segments together with an affine
transformation to MNI space. Probabilistic tissue volumes were
Please cite this article as: Ridgway, G.R., et al., The problem of low varian
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preserved (‘modulation’). The images were finally smoothed with a
Gaussian kernel of 8 mm FWHM.

All 150 subjects were modelled using SPM's flexible factorial de-
sign, with a three-level group factor (allowing for unequal variances).
Covariates were included to adjust for age, gender and estimated total
intracranial volume2 (Barnes et al., 2010). The contrast of interest
tested for reduced GM in the 64 demented subjects compared to the
72 non-demented subjects.

MEG data

We use the multimodal face-evoked responses dataset that is
openly available from the SPM website, http://www.fil.ion.ucl.ac.uk/
spm/data/mmfaces/, and is described in chapter 37 of the SPM Man-
ual (SPM8 revision 4290). The data are for a single subject, undergo-
ing the experimental paradigm developed by Henson et al. (2003)
wherein subjects viewed faces and scrambled images of faces (using
random phase permutation in Fourier space). The MEG data were ac-
quired on a 275 channel CTF/VSM system, though one sensor was
dropped due to a fault.

The first run (SPM_CTF_MEG_example_faces1_3D.ds) was pro-
cessed; data were baseline-corrected with baseline between −200
and 0 ms and downsampled to 200 Hz.

Multiple sparse priors (MSP) source reconstruction was per-
formed, which uses a Variational Laplace procedure for automatic rel-
evance determination (ARD), constructing an appropriately sparse
solution by selecting from a large number of spatially compact puta-
tive sources (Friston et al., 2008).

Standard settings were used (Litvak et al., 2011), with the ‘MEG
Local Spheres’ forwardmodel (Huang et al., 1999), applied to the entire
time series. The source power was summarised separately for each trial
with a Gaussian window from 150 to 190 ms corresponding to the
‘M170’ peak in evoked response field (ERF). The power values were
smoothed on the cortical mesh using 8 iterations of graph Laplacian
smoothing, interpolated from the mesh to a regular three-dimensional
volume using a non-linear interpolation method (spm_mesh_to_grid),
and then smoothed in 3-D space with a 1 voxel FWHMGaussian kernel.

A two-sample t-test was used to compare 20 trials with faces to 20
with scrambled faces.

fMRI data

The fMRI time-series data is also a standard SPM data-set, avail-
able from http://www.fil.ion.ucl.ac.uk/spm/data/face_rep/ and de-
scribed in chapter 29 of the SPM manual. It consists of a single
session of data for one subject from a study of repetition priming
for famous and nonfamous faces (Henson et al., 2002). The functional
time-series comprises 351 volumes (repetition time 2 s) consisting of
24 descending slices (3 mm thick plus 1.5 mm gap; 64×64 matrix of
3×3 mm2) of echo planar imaging data (echo time 40 ms). A stan-
dard T1-weighted structural MRI is also available.

The data were preprocessed as described in the SPM manual:
briefly, the volumes were realigned to correct for head motion,
slice-timing discrepancies were corrected, the mean of the realigned
functional time-series was coregistered to the structural image, the
latter was segmented and the spatial transformation parameters
from the unified segmentation (Ashburner and Friston, 2005) were
used to spatially normalise the functional images, which were then
smoothed with an 8 mm FWHM isotropic Gaussian kernel.

The data were modelled with two conditions, fame (famous face or
not) and repetition (first or second presentation), in a 2×2 factorial de-
sign. The canonical haemodynamic response with time and dispersion
derivatives were used to form regressors from the appropriate stimulus
ce voxels in statistical parametric mapping; a new hat avoids a ‘hair-
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5G.R. Ridgway et al. / NeuroImage xxx (2011) xxx–xxx
functions. Default values were used for other settings (128 s high-pass
filter, serial correlations modelled as a first order autoregressive
process).

The contrast of interest here is the positive effect of condition on
the canonical terms, i.e. the activation in response to faces, averaged
over the four cells of the factorial design.
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Results

For the purpose of illustration, findings from the VBM data are
shown as typically presented in Fig. 2; atrophy in the temporal
lobes, posterior cingulate and precuneus is consistent with other re-
ports (Baron et al., 2001; Lehmann et al., 2010), but non-brain regions
are visible in the maximum intensity projection (MIP). Next, a
series of figures investigating the relationship between the maps of
‘contrast’ (t-statistic numerator) and of estimated variance are pre-
sented, one for each modality studied. Figs. 2(b) and 3(a,c,e,f) show
slices at the same location of maximal difference between estimated
means for demented and non-demented subjects.

For VBM data, the image of ResMS (Fig. 3 a) is very similar, in
terms of the shape of its visibly non-zero regions, to the grey matter
of the average template (Fig. 2 b), which reflects the fact that most
of the variability (including the unexplained variability that relates
to σ̂ 2) in VBM data is in regions with high GM probability. The corre-
sponding panel (a) images for the MEG and fMRI data in Figs. 4 and 5
are strikingly different. For the MEG data, the ResMS image follows
the pattern of the contrast image (Fig. 4 c) extremely closely, due to
the nature of the MSP source reconstruction method. For the fMRI
data, the ResMS is so much higher around the brain stem that its
values over the grey matter are visually indistinguishable from the
minimum value (white) when the intensity window is set to map
the maximum value to black. Changing the intensity window (figure
not shown) reveals a broadly uniform pattern over the brain, but with
other outlyingly high values, including a very high spot visible near
the centre of each slice due to a scanner artefact.

Considering the simple histograms, in Fig. 3(b), clear bimodality is
visible, which appears to correspond to distinct foreground and back-
ground modes. In contrast, Fig. 4(b) is heavily skewed but shows no
pronounced bimodality nor any clear distinction between foreground
and background. Fig. 5(b) has a strong unimodal distribution, whose
Please cite this article as: Ridgway, G.R., et al., The problem of low varian
cut’, NeuroImage (2011), doi:10.1016/j.neuroimage.2011.10.027
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some quite severe outliers at both positive and negative extremes.
The dramatically varying distributions of the voxel-wise variance

estimates makes it very difficult to find a suitable generic modelling
strategy (attempts to fit mixtures of Gaussians with numbers of com-
ponents selected by Bayesian model evidence proved unhelpful). This
motivates consideration of the joint distribution of variance and sig-
nal estimates, in an attempt to find a heuristic background estimate.

The joint histogram for the MEG data (Fig. 4 d) reveals distinct
curves; further investigation shows these correspond to separate
clusters and are linear when contrast and σ̂ are considered, thus
they appear to represent the simple decay of signal and noise away
from the centres of the compact MSP basis functions (see MEG data
section). The other joint histograms show similar signal-to-noise re-
lationships evident as the envelope of a much denser pattern, which
arises due to the more complicated mixing of many more ‘sources’
in these modalities.

Based on visual inspection of these and other data-sets' joint
histograms,3 the background estimate or lower bound δ to be added
to the ResMS image was chosen to be one thousandth of the
maximum value of the ResMS image. Correspondingly, the joint
histograms are annotated with a vertical line at the value of

log10δ ¼ log10 10−3 � maxResMS
� �

¼ max log10 ResMSð Þ−3: ð7Þ

This value seems appropriate for both VBM and MEG, but slightly
too high for these fMRI data.

The efficacy of the simple modification for VBM and MEG can be
seen by comparing the original and modified SPMt images in Figs. 3
and 4 (e) and (f). For the VBM data, spurious non-brain findings
have been dramatically reduced, and there is some evidence of slight-
ly greater anatomical acuity within grey matter. The latter point is
more clearly reinforced in the MEG results, where the original SPMt

without modification is unreasonably significant in several regions
with very low signal and noise. Reassuringly, the t-values at the
ce voxels in statistical parametric mapping; a new hat avoids a ‘hair-

http://dx.doi.org/10.1016/j.neuroimage.2011.10.027


U
N
C
O

R
R
E
C
T
E
D
 P

R
O

O
F

416

417

418

419

420

421

422

423

(a) ResMS

(c) Contrast
Cross−hair at max

(24, −3, −21)

(e) Standard SPM_t
t = 4.8325

(f) Modified SPM_t
t = 4.8269

C
on

tr
as

t

(d) Joint Histogram

−0.04

−0.02

0

0.02

0.04

0.06

−12 −10 −8 −6 −4 −2
0

10

20

30

40

50

60

70

80

90

log10 ResMS

−12 −10 −8 −6 −4 −2
log10 ResMS

C
ou

nt
 / 

10
^3

(b) ResMS Histogram

Fig. 3. VBM data. (a) Image of estimated variance or residual mean squares (ResMS). (b) Histogram of log10ResMS over voxels. (c) The contrast of interest, labelled with the MNI
coordinates of its maximum value. (d) Joint histogram of contrast value on the vertical axis and log10ResMS on the horizontal axis (which matches that of panel b). The vertical
dotted line is located at log10δ=max(log10ResMS)−3. (e) Statistical parametric map (SPMt) computed in standard way. (f) SPMt computed using modified ResMS (with the
amount shown dotted in panel d, δ=10−3×maxResMS, added on). In panels a and d, white represents zero and higher values or counts are darker; in panels c, e and f, white values
are negative and dark values are positive.
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location of maximum signal are only reduced by about 0.1%, which
should not change their statistical interpretation.

However, for the fMRI data, as could be expected from the location
of log10δ on the joint histogram, the modification has had a more
Please cite this article as: Ridgway, G.R., et al., The problem of low varian
cut’, NeuroImage (2011), doi:10.1016/j.neuroimage.2011.10.027
notable effect on the t-value at the location of maximum signal,
which has been reduced by over 10%. The t-value changes are more
precisely presented in Fig. 6, which plots the changes as a function
of the underlying contrast value.
ce voxels in statistical parametric mapping; a new hat avoids a ‘hair-
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Fig. 4. MEG data, following the same format as Fig. 3.
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Discussion

For VBM andMEG data, the problem of low-variance voxels is well
addressed by the simple procedure of adding one thousandth of the
maximum value to the residual mean squares variance estimate:

δ ¼ 10−3 � max σ̂ 2

σ̂ 2→σ̂ 2 þ δ:
Please cite this article as: Ridgway, G.R., et al., The problem of low varian
cut’, NeuroImage (2011), doi:10.1016/j.neuroimage.2011.10.027
Source-reconstructed EEG data is expected to behave similarly.
However, for the fMRI data here, the reduction in the t-value at the
location of maximal signal is over 10%, which is probably unaccept-
ably high, in terms of the consequent reduction in power. This also
seems to be true of other within-subject (first-level) fMRI data-
sets, where artefacts are common but inconsistent in nature, leading
to unpredictable behaviour of the joint distribution of signal and
noise estimates. Furthermore, the problem of low variance voxels is
ce voxels in statistical parametric mapping; a new hat avoids a ‘hair-
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Fig. 5. fMRI data, following the same format as Fig. 3.
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itself less severe for within-subject fMRI, due to the smaller amount
of smoothing typically applied and the strict masking procedure
used by default at the first level.4
444

4 The masking is not clearly documented, but in spm_fmri_spm_ui each image is
thresholded at a fraction (by default 80%, defined in spm_defaults) of its global value
estimated by spm_global (the mean of those voxels above one eighth of the original
mean), and the intersection of all images' suprathreshold sets defines the overall anal-
ysis mask.

Please cite this article as: Ridgway, G.R., et al., The problem of low varian
cut’, NeuroImage (2011), doi:10.1016/j.neuroimage.2011.10.027
For between-subject (second-level) fMRI, the analysis mask is the
intersection of all the first-level masks, which usually avoids includ-
ing low-variance non-brain voxels.5 For these reasons, we do not rec-
ommend the procedure here for fMRI.
5 If one instead performed the first-level analysis in each subject's native space and nor-
malised the contrast images, then theproblem could reappear (e.g. as discussed on the SPM
mailing list https://www.jiscmail.ac.uk/cgi-bin/webadmin?A2=SPM;ea0f015e.1012 and
https://www.jiscmail.ac.uk/cgi-bin/webadmin?A2=SPM;715bcc4e.1012). This is also the
reason why SPM's smoothing module has an option to preserve the implicit mask.

ce voxels in statistical parametric mapping; a new hat avoids a ‘hair-
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Implications for F-contrasts

Although results have only been presented here for simple
t-contrasts, the same low variance problem affects F-contrasts (with
single or multiple column contrast matrices C), whose equivalent of
Eq. (4) can be written in the form (Christensen, 2002, p. 69):

F ¼
C ′β̂

� �
′ C ′ X ′Xð ÞþC� �þ C ′β̂

� �
σ̂ 2rank Cð Þ ; ð8Þ
Please cite this article as: Ridgway, G.R., et al., The problem of low varian
cut’, NeuroImage (2011), doi:10.1016/j.neuroimage.2011.10.027
which shows that the same procedure of modifying σ̂ 2 while leaving β̂
unaltered, also finesses the problem for F-contrasts.

Relation to other procedures

As emphasised by Reimold et al. (2006), the numerator of the
t-statistic or contrast image is important because it is probably
the most spatially accurate way of locating effects (see also
Poldrack et al., 2008 and http://imaging.mrc-cbu.cam.ac.uk/imaging/
UnthresholdedEffectMaps). Nevertheless, thresholded SPMt images
ce voxels in statistical parametric mapping; a new hat avoids a ‘hair-
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remain the most common way of presenting results, and are more
closely connected with the assessment of significance. Ultimately,
the decision to use the approach of Reimold et al. (2006) or not
depends on the particular research question, imaging modality and
preferences of the investigator; the new method does not supplant
careful consideration of the contrast image.

Due to its implementation prior to smoothing, the Haircut tech-
nique proposed by Acosta-Cabronero et al. (2008) can alter the con-
trast image in regions near to low probability areas (which arguably
includes all of the cortex, if the smoothing FWHM is larger than the
cortical thickness, as is usually the case), whereas our modification
of only ResMS leaves the signal in the contrast image completely
intact.

Overly generous masks might also be expected to influence esti-
mation of the smoothness (Kiebel et al., 1999). The resels-per-voxel
(RPV) image is typically very low away from the brain (the spatial
gradients of low intensity regions tend to be very flat),meaning
that the key quantity of interest – the resel count – is only weakly
influenced by the inclusion of voxels with very low RPV. However,
by adding initially rough noise to non-brain regions, the Haircut tech-
nique increases the RPV away from the brain, thus increasing the
overall resel count and reducing the power of random field theory
based inference. Our modification to ResMS has no impact on RPV
estimation.

However, ssq is computed from the residual images themselves
(stored temporarily in ResI_* files by spm_spm), not from the
(potentially) modified ResMS image, so is unchanged by any mod-
ifications to the latter.

Definition of the analysis mask

One might argue that the problem of low variance voxels can be
solved simply by defining the analysis mask (Ridgway et al., 2009)
to more strictly follow the grey matter, as for example in FSL-VBM
(Douaud et al., 2007).6 This is perhaps partially true for fMRI and
VBM, however, as noted byAcosta-Cabronero et al. (2008) and Ridgway
et al. (2009), doing so can increase the risk that some true effectswill be
falsely excluded (particularly in morphometric studies of atrophied or
damaged brains). Furthermore, the problem of SPMt peaks shifting to-
wards regions of lower variance – including those within the brain –

would remain, whereas the modification of ResMS proposed here
should ameliorate this problem (though admittedly not to the same ex-
tent as the method of Reimold et al., 2006). More importantly, with
source reconstructed M/EEG data, even a very strict grey matter mask
would include some regions of problematically low variance, and at-
tempts to define a very strict signal-based mask might result in too
few voxels for the reliable estimation of the smoothness needed for ran-
dom field theory (Kiebel et al., 1999).

Statistical shrinkage and Bayesian methods

The inflation of the estimated variance proposed here can also be
viewed as a shrinkage of the estimated precision towards zero, moti-
vating brief discussion of related statistical shrinkage procedures. The
idea of shrinking or deliberately biassing an estimator to improve its
performance with respect to some specified loss function was first
proposed by Stein (1956) and extended by James and Stein (1961),
though Tikhonov had worked on related concepts for integral equa-
tions and inverse problems in the 1930s and 40s (Kerimov, 2006).
James and Stein (1961) showed that the obvious estimate for the
mean of normally distributed samples (assumed to have unit variance
for simplicity), which is the maximum likelihood and least-squares
576

577

5786 http://www.fmrib.ox.ac.uk/fsl/fslvbm/.

Please cite this article as: Ridgway, G.R., et al., The problem of low varian
cut’, NeuroImage (2011), doi:10.1016/j.neuroimage.2011.10.027
E
D
 P

R
O

O
F

estimate, could be improved upon in terms of the estimator's
expected squared error by shrinking it towards zero:

�y→�y−n−2
�y′�y

�y ¼ 1−n−2
�y′�y

� �
�y: ð9Þ

With the goal of estimating covariance matrices, instead of mean
vectors, Ledoit and Wolf (2004) derived a shrinkage estimator appro-
priate for high dimensional problems, which is the asymptotically op-
timal convex combination of the sample covariance matrix with a
scaled identity matrix. This estimate has found application in neuro-
imaging as part of the ‘searchlight’ method of Kriegeskorte et al.
(2006).

Another related application in imaging is wavelet shrinkage.
Bullmore et al. (2004) review methods for denoising and for multi-
scale spatial hypothesis testing using wavelet shrinkage, in which
wavelet coefficients with absolute values below a threshold are zer-
oed and those above can be either preserved or have the threshold
value subtracted from their absolute value, respectively known as
‘hard’ and ‘soft’ thresholding.

Bayesian statistics, in which one considers the posterior probabil-
ity distribution of the aspect(s) of interest can also be used to derive
shrinkage procedures. For example, considering β in a linear model to
be a random variable having a Gaussian prior distribution with mean
μβ and covariance Σβ, the maximum a posteriori (MAP) estimate be-
comes a version of the ML estimate shrunk towards the prior mean,
which generalises ‘ridge regression’ (Friston et al., 2002; Gelman
et al., 2003):

β̂MAP ¼ σ−2X′X þ∑−1
β

� �−1
σ−2X′yþ∑−1

β μ β
� �

ð10Þ

¼ X′X þ σ2∑−1
β

� �−1
X′Xβ̂ML þ σ2∑−1

β μ β
� �

: ð11Þ

The form of the James–Stein estimator in (9) is clearly closely re-
lated to (11) with μβ=0 and σ=1, except that in (9) �y′�y ¼ β̂′β̂ de-
pends on the data, while in a conventional Bayesian setting the
covariance Σβ of the prior distribution would not. The notion of em-
pirical Bayesian methods for hierarchical models allows the prior's
hyper-parameters to be estimated from the data (Carlin and Louis,
2008; Friston et al., 2002), which can be shown to exactly generalise
the James–Stein estimator (Lee, 2004). Similarly, wavelet shrinkage
using soft thresholding can also be formulated as a Bayesian proce-
dure with a sparsity-favouring prior over the wavelet coefficients,
for example a Laplacian distribution (Bullmore et al., 2004) or a mix-
ture of Gaussians (Flandin and Penny, 2007). Ledoit and Wolf (2004)
also present a Bayesian interpretation of their estimator.

It is possible that an appropriate prior distribution for the variabil-
ity σ2 could allow something similar to the modification of its esti-
mate proposed here to be derived with an empirical Bayesian
approach. This would have the advantage that the amount of modifi-
cation could be derived from the data itself, instead of being arbitrari-
ly set to some fraction (1/1000 here) of the maximum over voxels,
which might conceivably allow the method to adapt more appropri-
ately to fMRI data. However, this would require a somewhat different
formulation than the usual hierarchical model in Friston et al. (2002),
since the variance estimate becomes a parameter of interest in addi-
tion to β̂ , and is therefore left for further work.

Finally, on the topic of Bayesian methods, it is worth noting that
the posterior probability mapping (PPM) approach (Friston and
Penny, 2003) can entirely circumvent the problem of low-variance
voxels undesirably becoming significant: instead of considering sig-
nificance of each voxel in terms of the probability of the test statistic
under the null hypothesis, the Bayesian approach can determine for
each voxel the probability that the contrast of its parameters exceeds
a specified effect size, and this effect size can be chosen to be non-
ce voxels in statistical parametric mapping; a new hat avoids a ‘hair-
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trivial rather than simply non-zero. For an example of PPM applied to
MEG data, see Henson et al. (2007).

Conclusions

For modalities other than fMRI (specifically PET, structural MRI or
VBM, and source-reconstructed EEG or MEG), we propose a conserva-
tive modification of SPM's residual mean squares image (ResMS) that
simply entails adding on 0.1% of its maximum value.7 It has been
shown here that the procedure has very limited effect on regions of
meaningfully high signal, while avoiding the problem of artefactually
high statistic values in regions with both low signal and low noise.
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