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Variational Bayes for Generalized
Autoregressive Models

Stephen J. Roberts and Will D. Penny

Abstract—We describe a variational Bayes (VB) learning algo- [5], [6]. Recent use of reversible jump methods [7] applied to
rithm for generalized autoregressive (GAR) models. The noise is AR models [6] allows efficient exploration of model order in
modeled as a mixture of Gaussians rather than the usual single o \arkov chain. Although these techniques are shown to be
Gaussian. This allows different data points to be associated with . - - .
different noise levels and effectively provides robust estimation of well swted to A,R modgl apaIyS|s, this papef considers an al-
AR coefficients. The VB framework is used to prevent overfitting  ternative formalism, which is known as variational Bayes (VB)
and provides model-order selection criteria both for AR order and  learning, which offers a tractable (nonsampling) approach. Al-
noise model order. We show that for the special case of Gaussianthough the Bayesian methodology has a long history, the use of
noise and uninformative priors on the noise and weight precisions, /g ig relatively new: the key idea of VB is to find a tractable
the VB framework reduces to the Bayesian evidence framework. . . . . S
The algorithm is applied to synthetic and real data with encour- approxmathn to the trge posterior density that m|n|m|ze§ the
aging results. Kullback-Leibler (KL) divergence [8]. Notable recent applica-
tions are to principal component analysis [9] and independent
component analysis [10]. We have also published short confer-
ence papers summarizing some key results for standard autore-
gressive models [11] and non-Gaussian AR models [12]. To our

. INTRODUCTION knowledge, VB has not previously been applied to such models.
HE STANDARD autoregressive (AR) model assumes that Section |l describes the autoregressive process as a prob-
T the noise is Gaussian and, therefore, that the AR coefbilistic Bayesian model. We then describe the VB method
cients can be set by minimizing a least squares cost functiéggction Ill) and show how it can be applied to generalized
Least squares, however, is known to be sensitive to outliefdX models (Section IV). Section V describes the VB approach
Therefore, if the time series is even marginally contaminaté@ the standard AR model and compares it with the evidence
by artifacts, the resulting AR coefficient estimates will be serffamework. Section VI presents results on synthetic and real
ously degraded (see Bishop [1, p. 209] and Pe¢as [2, p. 700] data and compares the difference between model evidence for
for a general discussion of this issue and a number of proposéd and from a sampling step. Appendices A and B, detailing
solutions). some important results required elsewhere in the text, are

This paper tackles this problem by modeling the noise withigcluded for completeness.
mixture of Gaussians (MoG) in which different data points can
be associated with different noise levels. This provides a robust Il. GENERALIZED AUTOREGRESSIVEMODELS
estimation of AR coefficients via a weighted least squares ap-\e define an autoregressive model as
proach; data points associated with high noise levels are down-
weighted in the AR estimation step. This approach is thus well Yn = XpW + €, (1)
suited to situations in which the signal is stationary (and may be
modeled via an AR process), whereas the noise is non-Gaussvdrere ., is the nth value of a time seriesw is a
The development of AR models with non-Gaussian excitati®®lumn vector of AR coefficients (weights), and, =
has a relatively long history. Work presented in [3]-[5] utilize§/n—1, ¥n—2, - - -, Un—p] are thep previous time series values.
essentially the same model as we discuss here. In these Pae AR model has additive noisg, which is usually modeled
pers, the issue of parameter inference is rightly tackled wieis @ Gaussian. In this paper, however, we model the noise as
a fully Bayesian approach using Markov chain Monte Carid one-dimensional (1-D) Gaussian mixture havingcom-
(MCMC) sampling methods. Such schemes may be made effenents. Component has mixing coefficientr,, meany,,
cient by exploiting tractable integration for part of the AR modednd precision (inverse variancg). We can write the param-

eters collectively as the vectoss, = = [my, 72, ..., T,
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D ={y,, x,} withn =1--- N.The likelihood of a data point Finally, the weight precision itself has a Gamma prior

is given by the mixture model
pla) = Gala; by, co). (13)

m
P(ynlxn, 8) = Z p(sn = s|m)p(ynl, Xn, sn, Bs, 11s, W)
- 2)
is an indicator variable indicating which component The standard autoregressive model is recovered when the
noise mixture consists of a single Gaussian component with
zero mean and precision (inverse variangelhe parameters

now consist o = {8, w, «}. The likelihood of the data set
p(sy = s|w) = 7. (3) [from (2)] now simplifies to

N2
pY10.%)= () en(-pEpw) a8

B. Gaussian Noise Models

wheres,,
of the noise mixture model is selected at presentation ofithe
datum. These are chosen probabilistically according to

The joint likelihood of a data point and indicator variable is

p(yna 3n|xn70) = p(sn = s|7r)p(yn|xn, S, Bs, uS,W) 4)

where
which, given that the noise samples are assumed independent N
and identically distributed, gives
y g Ep(w) =3 (40 —xaw)’
N n=1
p(Y, 818) = [] p(sn = slm)p(ynlxn, sn; Bsr s, W) (5) =LY - Xw)"(Y - Xw) (15)
n=1
. in which, as before,Y is a column vector with entries
cSJver [the whole datTT set, whele = [y1, 4o, ..., yn]" and (y1, ...yn), and thenth row of the matrixX containsx,.
= |51, $2, ---, SN| -

Each component in the noise model is a Gaussian, and hegcemaximum Likelihood

The standard autoregressive model with Gaussian noise can

3 ) be implemented using a maximum likelihood (ML) approach.
= (2m) 1/2pL/2 eXp<% (Un — [1s,, +XnW]) ) . (6) The optimal AR coefficients, given by the maximum of (15)
[15], are

p(yn|xn7 Sns Bsny Psn s W)

A. Model Priors war = (X'X) T XTY, (16)

We choose the stgndard conjugate priors fqr gach part c')flgﬂ%m the AR predictions,, = x,, w11, the ML noise variance
model. These are either normal, gamma, or Dirichlet densm%?\,“ can be estimated as

which we define in Appendices A and B for completeness.
The prior on the model parameters is taken to factorize as 1 X
2 o ~ 2
ML T Z (O — yn)™ 17)
p(0) = p(m) [ [ p(8:) [ [ plrea)p(wle)p(c2). (7 n=1
s s The covariance is then estimated as
The prior over the mixing parameters of the MoG is a

—1
Dirichlet Cur =0y (X'X) . (18)
p(m) = Dir(m, A) (8) This ML solution provides a method for initializing the
Bayesian analysis.
where the hyperparameters axe= [Ag, Ao, ---, Ao] (i.€., @
symmetric Dirichlet). The prior over the precisions is a Gamma I1l. V ARIATIONAL BAYES LEARNING
distribution The central quantity of interest in Bayesian learning is the
P(53:) = Ga(Bs; bo, co) (9) posterior distributionp(8, S[Y), which fully describes our
knowledge regarding the parameters of the model. In nonlinear
the prior over the means is a univariate normal or non-Gaussian models, however, the posterior is often diffi-
cult to estimate because, although one may be able to provide
plpes) = Ni(es; mo, vo) (10) values for the posterior for a particul#; S, the partition

fypction, or normalization term, may involve an intractable
integral. To circumvent this problem, two approaches have been
developed: the sampling framework and the parametric frame-
p(w| @) = (g)f’/Q exp(—aEw) (11) work. In the sampling framework, integration is performed via
27 a stochastic sampling procedure such as Markov chain Monte
Carlo (MCMC). The latter, however, can be computationally
intensive, and assessment of convergence is often problematic.
wiw. (12) Alternatively, the posterior can be assumed to be of a particular

and the prior over the weights is a zero-mean Gaussian with
isotropic covariance having precision

where
1
Ew =35
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parametric form. In the Laplace approximation, which is enis the KL divergence [17] between the approximate posterior
ployed, for example, in the “evidence framework,” the posteri@nd the true posterior.
is assumed to be Gaussian [16]. This procedure is quick but iEEquation (23) is the fundamental equation of the VB frame-
often inaccurate. Recently, an alternative parametric methedrk. Importantly, because the KL-divergence is always posi-
has been proposed: variational Bayes (VB) or “ensembige [17], I'(p, m) provides a strictower boundon the model
learning.” A full tutorial on VB is given in [8]. In what follows, evidence. Moreover, because the KL divergence is zero when
we briefly describe the key features. the two densities are the sanfé(p, m) will become equal to
Given a probabilistic model of the data with AR orgeand the model evidence when the approximating posterior is equal
m MoG components in the noise model, the “evidence” or “mate the true posterior, i.e., if(#, S|Y) = p(@, S|Y).

ginal likelihood” is given by The aim of VB-learning is therefore to maximiZé&(p, m)
and make the approximate posterior as close as possible to
p(Yp, m / (Y, S, 0|p, m)de ds. (19) the true posterior. To obtain a practical learning algorithm, we

must also ensure that the integralsfitfp, m) are tractable.
The log evidence can be written as (droppjngn in the con- One generic procedure for attaining this goal is to assume that

ditioning for brevity) the approximating density factorizes over groups of parameters
(in physics, this is known as the mean field approximation).
log p(Y) = log // S|Y p(Y, S| 0)) d9ds  (20) Thus, following [18], we consider
q(@, S[Y

where ¢(8, S|Y) is, as we will see, a hypothesized, or ap-
proximate, posterior density. This has been introduced in both
denominator and numerator in (20). Noting tiygf, S|Y) is  where#, is theith group of parameters. The distributions that
a density function (i.e., it integrates to unity), we may applshaximize the negative free energy can then be shown to be of
Jensen’s inequality to obtain a strict bound on the true IqBe following form (see Appendix A), which, here, is shown for

a(0, SIY) = a(S|Y) [ [ a(6:]Y) (26)

posterior as parameter group;
p Y7 87 0) I 0
log p(Y 103// (8, S|Y) d6 dS L0 eXp[ ( )] 27
To see this bound from another perspective, we may write I(az)d"f/ (0\7 Y) log p(Y, S|0)p(0)d0\i (28)

log p(Y) = / / d6.dSq(6, S|Y)log p(Y) y -
and 6" denotes all the parametenst in the :th group. For
p(Y, S, 0) models having suitable priors, the above equations are avail-
= d8dSq(8, S|Y)log| p(Y) ————= !
/ a(9, S|Y)log <p( ) (Y, S, 0 able in closed analytic form. This leads to a set of coupled

B p(Y, S, 0) update rules. Iterated application of these leads to the desired
= // dfdSq(6, S|Y)log (0, STY) maximization.
=/ d6 dSq(0, S|Y)(logp(Y, S, 0) A. Model Order Selection
—logp(8,S|Y) +log q(#,S|Y) —log ¢(6, S|Y)) By computing the evidence for models of different order (i.e.,
( .S, 0) p andm), we can estimate the posterior distribution oyemd
// (0, S[Y)lo (9 S|y) df ds m using the negative free energy. We may thus use this to per-
( S|Y) form model order selection. The posterior oyern is given via
/ (8, S|Y)lo (0 SIY) de ds. (22) Bayes' theorem as
i P(Y|p, m)P(m, p)
We may write the latter equation as P(p, m[Y) = S POl )P ) (29)
logp(Y|p, m) = F(p, m) + KLpost(p, m)  (23) vlm!
where (reintroducing the dependencerom) where, for example, we may have uniform priors over model

ordersp andm.
// 0, S|Y) o (Y p(Y,8,0p,m) 5 o (24)  The evidence is estimated using(p, m). To see that
q(0,8]Y) F(p, m) is an intuitively suitable model order criterion, we
decompose it as follows. UsingY, S, 8) = p(Y, S|0)p(@)
and assuming that the approximate posterior factorizes as in
KLyoi(p, m // (0, S|Y)lo ~q(0.8]Y) 40 dS (26), i.e.,q(8, S|Y) = ¢(0]Y)q(S|Y), we can write
® p(8.S[Y . p,m)

is known as the negative variational free energy, and

(25) F(p7 m) = La'v (pv m) - KLprior (30)
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where and for the weight precision, we have a Gamma density

(Y,5/6)
Lo ) = [ [ a@¥)asp0 10522 S doas @) A(alY) = Gales ¥, ). (40)

? @) (a3

corresponds to the average likelihood, and ] o )
We note finally that for the indicator posteriors, we have

q(0]Y) g(S|Y) = II,, a(sn|Y).
KL, ior = 0]Y)log de 32 Ldn AR . .

r /Q( [Y)log p(6) (32) Each distribution is updated as described in what follows.
First, the responsibilities (i.e., the probabilities over the indi-
gator variable set) of the Gaussian components in the noise
number of model parameters, it acts as a penalty term in (36}9del are updated, along with the hyperparameters that govern
which penalizes more complex models. their distribution. Second, the component means and precisions

As the number of samples increases, the parameter postefiér UPdated as are the AR coefficients. All hyperparameters
becomes sharply peaked about the most probable values (Wméﬁomated with the distributions over these variables are also
are also the ML values. It can then be shown that in theUPdated during this second step. We detail the specific update
large sample limitV — oo, F(p, m) becomes equivalent to €quations for the variables in the following subsections.
the Bayesian information criterion (BIC) [18], [19]

is the KL divergence between the approximate postefiéy’)
and the priop(#). Now, because the KL term increases with th

A. Step 1

BIC(p, m) = logp (Y‘ 9) _ Noar log N (33) 1) Component Responsibilitied/e first define some inter-
2 mediate variables

where N,.. is the total number of adjustable parame-

ters in the model. The BIC is itself equal to the negative log 7ty = T(N,) — U Z A

of the minimum description length (MDL) measure, i.e., o

BIC(p, m) = —MDL(p, m). These popular model order  def )

selection criteria can therefore be seen as limiting cases of the log 8, = W(co) +logh,

VB framework. B. Y.e, (41)
IV. VB FOR GENERALIZED AR MODELS where¥() is the digamma function [2], and

To apply VB to non-Gaussian autoregressive models, we ap-.2,,\ _ / 2% 2% _ 2 gwd
proximate the posterior distribution over parameters with theaS(n) AW Y)Y ) (Y = s + X0 W])" dw dpis

factorized density =42 — 2muyn — 20nyn +mE + v,
g(0]Y) = q(x[Y)q(B|Y)a(p|Y)a(w|Y)q(a]Y)  (34) + 2miin + X0 CX, + G, (42)

and the posterior distribution over hidden variablegt§{Y). " Which g, = x,w is the mean AR prediction. |f we define
We then set each distribution to maximiZép, m) by applying 72 = q(s»|Y) to be the posterior of the indicator variable for
(27) and substituting in the joint log-likelihood of the generalthe sth component of the MoG (i.e., the probability that compo-

ized AR model nents is responsible for data point,), then this step consists
N of updating the indicator posterior according to
. _ . Lne - _
logp(Y, S18) = 3, logm: + 3 log B=nfee A @
— £Bs(yn — [1s +x.w])>. (35) These variables are then normalized to give
Given our choice of prior and model likelihood, the optimal ap- A = Ve ) (44)
proximating densities take the following forms. For the preci- XA
sions, we have(8[Y) = [[, ¢(3,]Y) and Gamma densities s
(J(/35|Y) = Ga(ﬁs? bs, cs) (36) B. Step 2
for the means, we havgp) = [], ¢(z2s) and univariate normal We now define some intermediate variables
densities der 1 zl\:
fs ; AT 7?
a(ps[Y) = Ny (i ms, v5) (37) N
for the mixing coefficients, we have a Dirichlet N, ot N,
N
7[Y) = Dir(m: AL, ..o A 38 g det 1 n
q(n|Y) (m; Ay ) (38) 7s N;'Vsyn
for the weights, we have a multivariate normal . ~
— def n
a(wlY) = (w; W, C) (39) TN nz::l o ¥n (45)
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TABLE |
Pseubo-CoDE FORVB-AR UPDATES

initialize;
WHILE (AF(p,m) > tolerance )
update indicator posteriors, 47 using Equations 43,44;
update component means, precisions & associated hyperparamaters using Equations 46-50;
update AR coefficients and precisions using Equations 51, 52;
calculate negative free energy, F(p, m) using Equation 55;

calculate AF(p,m) £ |F(p, m)"e¥ — F(p, m)°;

END WHILE;
i.e., and covariance of the distribution [see (39)]. These hyperparam-
7s  proportion of data associated with compongnt eters are updated via
N, number of data points associated with comporentd 1
the quantitiex;; G = <Z 3.XTI,X + aI)
7, Wweighted data values. — 7

1) Component Mixing FractionsThe hyperparameters, . _
{),} of the Dirichlet [Equation (38)] are updated in the stan- w=C Z B, (X'I',Y + m,X'I',1) (51)
dard manner by adding the data counts to the prior counts, i.e., s
A, =N, + Ao (46) Wherel’, = diag[y:, 72, ..., vY]), thenth row of X contains

X,, thenth entry in the column vectdY isy,,, andl is a column
2) Component Precisionstf we define the expected vari- vector of 1s of lengthV.

ance of componert as 5) AR Coefficient PrecisionsThe update equations for the
~ coefficient precision and associated hyperparameters [see (40)]
, 1 , are
~2 n~2
Os = %7 Vs s\ (47)
w2 o Lo Lo (e) ]
then the hyperparameters for the precisions [see (36)] are up- *
dated as d =Ly,
1 N _, 1 2/ /
E=§Us+b—0 a=bc, (52)
N, in which Tr(-) denotes the trace of a matrix.
€= + ¢p. (48)

i L C. Co-Mean Noise Model
We can understand these equations by considering the corre-

sponding mean variance (the inverse of the mean precision) /il it is possible to use a full Gaussian mixture model
which is given by1/(b,c,). If we ignore terms involving the for the noise (as described previously), the numerical examples

prior, this comes out to b&2/7,, which is the expected vari- in this paper use a _simplified model in which all t_he means
ance of that component reweighted according to the number@® Zero. The resulting model then resembles weighted least
examples for which the component is responsible. squares, where the weights are given by the precisions and re-
3) Component Meansin this step, the hyperparameter$ponsibilities of the noise components. This simplifies a number
governing the posterior distribution over the component mea@kupdate equations. For step 1, as before, we now have [cf. (42)]
are updated [see (37)]. If we first define the means and preci- .9 o . Al L o
sions (i.e., the hyperparameters) of the component maans 53(n) = Yo = 20nYn + X0 Oy + - (53)
estimated from the datas In this case, (49) and (50) are dispensed with, and the second

Maata(s) = (XsW — 7,)/7s line in (51) simplifies to

Tdata(s) = Nsf, (49) w=C> XY (54)

then the posteriors of these hyperparameters are given by

Ts =T0 + Tdata(s) D. Pseudo-Code
my = 7o mo + Tdata(5) Mdata(s) (50) Thg previous steps may be conveni(_antly implemented in the
Ts Ts algorithm shown in pseudo-code form in Table I.

wherery = 1/ is the prior precision, and, = 1/v, is the
posterior precision.

4) AR Coefficients:The distribution of AR coefficients is  The prior distributionp(sr) is chosen to be uniform, and we
multivariate normal with hyperparameters governing the meapt Ay = 5. For the Gamma distributions, we use vague priors

E. Practicalities
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(see, e.g., [16]); fop(3,), we sethy = 10%, ¢o = 102, and for V. GAUSSIAN AUTOREGRESSIVEMODEL
p(a), we seth, = 10® andc, = 1072, It is noted that we do

k . e The standard autoregressive model is recovered when the
not find particular sensitivity to these values.

h : o mixture consists of a single zero-mean Gaussian. Because of
The posterior distributiong(x|Y), ¢(5,|Y), ¢(alY), and 40 actored form of the prior distribution, the form of the

/ / “ i
¢(w|Y) have the parametess, b;, ¢,, b, ca, W, andC, which approximate posterior that maximizes the negative free energy

are initialized as follows. The posterior for the AR coefficients i& also of factorized form (we note that unlike the general case
initialized using the ML solutions of (16)—(18). The posteriorfo[n variational Bayes methods, we do not havessumehis),
the weight precisionis then initialized using (52). The remainiq

posteriors are set as follows. We first calculate the ereGng
from the ML model and then define a new variablg)) = 2(0]Y) = ¢(w|Y)q(e|Y)qg(B|Y). (58)
|e(n) — €|, which is the absolute deviation of each error from

the mean erroe. We then apply:-means clustering [1] te(n), The weight posterior is a normal densityw|Y) =
which results in mixing coefficients. (s) and meansn.(s). N(w; w, C). By inspection of (51), noting that there is
We then sef\; = 100X.(s). The parameter; andc, are then now only a single value of3, thatm; = 0, and that the
set to achieve means ofm_(s)? and variances of vat/m_.) weighting matrix", is an identity matrix, we get

(the mean and variance of a Gamma densitytarand b2c,

. N ~ —1
respectively). C= (/BXTX + &I)
The VB equations are then applied iteratively until a consis- o A AT
tent solution is reached. Convergence is measured by evaluating w=CiXY. (59)

the negative free energy The weight precision posterior is a Gamma density with pa-

rameters as before [see (52)]. The noise precision posterior is
F(p, m) = Lo, — KL(w) = KL(@) = KL(m) =K L(B) (35) 4(3]Y) = Ga(8; ¥/,. ¢,), where

where we use the shorthand notatioKL(a)défKL 1V, =Ep(w) + 1
(¢(a]Y)||p(a)). The first term of (55) is given as ’ bs
N
m C’/g = 5 + (o]
Law = H((SIY)) + Y N, (log, + §log 3, ) 3 =1dj (60)
s=1 B

—IN Y B.52 - LNlog2r. (56) and
o=1 Ep(w) = Ep(¥) + 3Tr (CxTx) . (61)
The entropy over the hidden variables is We note that in previous work, MacKay has derived VB updates
N om for the weight and weight precisions in a linear regression model
_ RPN [21] and that, reassuringly, (52) and (59) are identical to his. We
H(q(SIY)) = Z Z 7 log 7' ®7) note that these update rules can also be derived directly, i.e.,
without considering the model as a special case of GAR.
The KL terms for normal, gamma, and Dirichlet densities are For Gaussian noise models, the negative free energy simpli-
given in Appendices A and B. As the update for the AR coefffies to
cients is computationally more intensive than the updates for the
other parameters (as it involves a matrix inversion), we perform
this step only once evefy, iterations. In our experiments, We\ here
usedW, = 5. We evaluate'(p, m) everyW, iterations (after
_the AR updates) and termi_nate optimizatipn if the proportionate L,, = N {log B) — BED N log 27 (63)
increase from one evaluation to the next is less than 0.01%. 2 2
We note that the formalism adopted in this paper does not, ujjq
like many AR modeling approacheg,aranteea stable model
(i.e., the poles of the characteristic function do not lie outside (log B) = W(cy) + log b, (64)
the unit circle in thez-domain). Although it is possible to en- ' '
force stability by reflecting poles across the unit circle, we dahere¥() is the digamma function.
not regard this as an elegant solution. Placing stability priors onAn alternative Bayesian approach is that offered by the
thereflection coefficientsf the model is another possibility (asevidence framework [16]. Given that the observation noise is
described in [20]), but this leaves analytically troublesome deero-mean Gaussian with precisiGrand that the weights are
scriptions of the AR coefficients themselves for which (slowdrawn from a prior distribution with zero mean and isotropic
sample-based approaches must therefore be used. It is nateslariance having precision, the posterior distribution is
however, that in all examples in this paper, and indeed all daaussian with mean and covariance, which is also given by
analyzed thus far, no unstable models have been found. (59). In the evidence framework, there are no priors ever

n=1 s=1

F(p) = Law — KL(W) — KL(a) - KL(3)  (62)
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4. The evidence for the model is therefore given by (see, e.ghere we have dropped the constant terfi /2) N (1+4log 27 ).

[1, p. 409]) The VB criterion is given by
N
oY) = [ oY, Dp(wvie) . (65  F(p) =y (losf) ~ KL(w) ~ KL(a) ~ KL(B)  (75)
The log of the evidence can then be written as where, again, we have dropped the constant tefiry2) N (1 -+
. L log 27). The evidence and VB criteria are therefore identical,
EV(p) = —aBw — BEp(W) + 5 log[C]| except for the divergences afand/3. However, as these do not
+ p log v + N log 3 — N log27. (66) scale withp, we can igpore the'm. Wg glso note that for large
2 2 2 data sets, the distribution ovgris sufficiently peaked for the

The precision parameters are then set to maximize the evidefiegt expectation term not to make a significant difference, i.e.,

as (log B) =~ log /3. We may also thus see the evidence approach
5 as a limiting case of the VB framework.
o= 2w (67) If we assumea priori, that different model orders are equally
likely, then the posterior probability distribution over model
8= N-v (68) order is given by (29). This can also be applied to BIC/MDL.
2Ep(W)
wherey, which is the number of “well-determined” coefficients, VI. RESULTS
is given by A. Synthetic Data: Gaussian Noise Model
v =p—aTr(C) (69) We generated multiple three second-blocks of 128 Hz data

from AR(6) models with varying signal-to-noise ratios (SNRs).
wherey is calculated using the “old” value of. The update for \\e also generated data from AR(25) models, again with varying
« is therefore an implicit equation. We can also write it as thgnNRs. We generated ten data sets of each type (each with a dif-
explicit update ferent realization of the noise process) and applied the VB and
- P (70) BIC/MDL model order selection methods. Typical results are
T 2Ew +Tr(C)’ shown in Figs. 1 and 2, which are fpr= 6, SNR= 2 and
. _ R p = 25, SNR= 20, respectively. We have plotted the proba-
This is eql_nvalent o the update f@_rfrom_the vB fra_mewo_rk bility of each model order averaged over the ten runs (the aver-
[see (52)] if we choose_ unmf_ormatwe priors anSimilarly, 'f_ aging was done on the probabilities rather than the log probabil-
‘E;’;;h(c(’s%sﬁ uninformative priors fgf, then the VB update is ities in order to show a greater spread). For both the AR(6) and
AR(25) data, model order selection is more difficult at lower
A= N 71) SNR. For the AR(6) data, both methods essentially pick out the
2Ep(W) + Tr (CXTX) correct model order, with VB overestimating it on a smgll pro-
portion of runs. For the AR(25) data, the BIC/MDL criterion
which is equivalent to (68) as, from an eigendecomposition sfignificantly underestimates the model order. On longer blocks
C, it can be shown thatr(CX*X) = v/. of data (e.g., 10 s), both methods were seen to converge to the
same estimate of model order (as predicted by theory).

A. Model Order Selection

As mentioned Section IlI-A, the BIC model-selection criteB. Synthetic Data: Non-Gaussian Noise Model
rion is a limiting case of the VB framework. For the AR model, \We generated 3 s of synthetic data from an AR(5) model with

we have coefficients
N
BIC(p) = 5 logAur — glogN (72) Wirue = [—1.8517, 1.3741, 0.1421, —0.6852, 0.3506]"
(76)
where/,; . is the precision of the ML model. and noise drawn from a two-component Gaussian mixture
The model order selection criterion for the evidence framenodel with mixing coefficientst; = 0.9, 7 = 0.1 and

work [see (66)] can be rewritten in terms of the KL-divergenc@ariancess? = 1, 02 = 100. We repeated the data generation

between the weight posterior and the weight piok(w). For - process ten times and used the negative free edéfgym) as

the priorp(w) = N(w; o, (1/a)I) and the posteriog(w) = 3 model order selection criterion. The results in Figs. 3-5 show

N(w; w, C), it can be shown that that the VB model order selection criterion selects both the

correct AR order and the correct noise model order. For more

on VB model order selection, including a comparison with the

Becaus@E, = (1/2)(IN — ~) [see (68)], we can combine (73)minimum description length (MDIT) critgrion, see [11]. N

with (66) to give We als_o calculat_ed the error with which the AR coefficients
were estimated using the measijse — wy,....||. Over the ten

1 1
KL(W):—§10g|C|—gloga—i—aEw—Qw. (73)

N
EV(p) = ) log 8 — K L(w) (74) IThe SNR was altered by adjusting the noise variance.
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Fig. 1. Model order selection for AR(6) data (SNR2) with (a) BIC/MDL
and (b) VB with 3-s blocks of data.

(b)

Fig. 2. Model order selection for AR(25) data (SNR20) with (a) BIC/MDL
and (b) VB with 3-s blocks of data.

runs, the errors from the non-Gaussian AR mod.el With two COY- £ pata: Non-Gaussian Noise Model
ponents were less than those from the Gaussian AR model by

an average factor of six. We applied the model to a short sample of EEG data shown
in Fig. 7, the middle section of which is contaminated by an
eye-movement artifact. For a Gaussian noise modeH 1),
C. EEG Data: Gaussian Noise Model the optimum AR model order was at= 27, havingF»; 1 =
—2681. Form = 2 andm = 3, the best models were also at
We applied AR models to short blocks of EEG data recordgd= 27 (this is not always the case) wih; » = —2661 and
while a subject was awake or in an anesthetized state. Fifty ¥-5 3 = —2671. This shows that the non-Gaussian AR process
blocks were selected randomly from each 30-min recordingith two noise components is the preferred model. This model
and BIC/MDL and VB model order selection criteria weraook 25 iterations to converge. The final mixing coefficients in
compared. the noise model were; = 0.78 andw, = 0.22, and the vari-
The results from VB in Fig. 6 show that in the waking stateances (inverse precisions) weré = 0.014 ando2 = 0.066,
there are modes at= 8 andp = 13, and in the anesthetizedi.e., alow and high variance component. Fig. 7 shows which data
state, the modes are at= 3 andp = 8/9. The results clearly points “belong” to which noise component. The first compo-
show a decrease in model order from the waking state to thent corresponds to the majority of the data (78% of it), and the
anesthetized state; according to a t-test, this decrease is sigs#icond component picks out the outliers that are mostly in the
cant at the 0.0004 level. The results from BIC/MDL, howevemiddle section. These points are then effectively downweighted
showed no such discrimination. The difference of means was mothe corresponding weighted least squares regression. The out-
significant; from a t-test, we get a significance level of 0.062.liers therefore have a minimal influence on the estimation of the
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Fig. 3. AR model order selection (af'(p, 2) versusp and (b) the Fig. 4. Noise model order selection (#)(5, m) versusm and (b) the
corresponding probabilitieB(p, 2) versusp. corresponding probabilitieB (5, m) versusm.

AR coefficients; this can be seen from (54), whéreand I, in which we define the weight function
weight the samples accordingly.

Y,S,0)
i jati ? w(o, s) ' UY:5:0). 79
E. How Good is the Variational Bound? 0, S) (0. S[Y) (79)

From (23) we saw that the negative free-energy t&im, m) . ] o
formed a strict lower bound to the true posterior (the KL term &S noticed by others [22, ch. 4], this enables the variational ap-
strictly non-negative). How tight this bound is will clearly affeciProximationg(6, S|Y) to be used as the proposal iniampor-
the confidence we have in the variational approach. We consi@@?ce samplingtep. We do not cover the details of importance
here a simple experimental validation of the bound and presé@{nPling as they may be found in standard texts (e.g., [23, ch.
results on the non-Gaussian noise example in Section VI.  9))- Suffice to say, the true posterior may be estimated via im-

Consider the marginal of (19), where once more, we drop, fgprtance weights, which are evaluated as an expectation under

notational convenience, dependencepom the proposal, i.e., (78) may be written as
p(Y) = / / »(Y, S, 0)dS do. (77) p(Y) ~ E[w(8, S)],- (80)
We may write (77) as We applied this procedure to the non-Gaussian
Y. S 0 AR(p = 5, m = 2) data analyzed in Section VI. A total
p(Y) = // <M) q(0, S|Y) dS de of 3s of data (384 samples) was generated from the true model,
9(0, S[Y) as before. The VB-AR algorithm was applied to this data, and

then, using the variational inference densities as proposals,
= // w(8, S)q(8, S[Y)dS dé (78) 1000 samples were evaluated using importance sampling to
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estimate the true model posterforThis was repeated over 0.08
all model orders fromp = 1 to 10 and with the number of
Gaussians in the noise model from = 1 to 5. Fig. 8 shows 0.06y
the relative increase in model evidence after the sampliig.04
procedure over the, m grid. We note that the relative dif-

Fig. 5. Noise and AR model order selection. The bar plot sh&%s. m)
againstp, m.

ference between the “true” and approximate posteriors is 0.02

order one part in 10at most (for these models). We note 0

that the maximum model evidence appeared at the true mouc: 5 10 15 20
order in both cases. We note that, as expected from theory, the (b)

variational approximation is always a strict lower bound. Kig. 6. VB model order selection on EEG data from (a) awake subject and
appears that the variational bound is very tight for low mod&) anesthetized subject.

orders but rises with increased numbers of model parameters,

both in terms of the AR model ordep) and, importantly, in cation is as a model for stationary signals contaminated by
terms of the number of mixture components in the noise mod¥n-Gaussian and/or nonstationary noise processes. The VB
(m). This is to be expected due to the factored nature of th@mework prevents overfitting and provides a model order
variational approximation, which gets worse with increasir@'GCtion criterion both for the AR order and the noise model
numbers of parameters_ It is encouraging that the eviderﬂfger. In the eXperimentS presented, we restricted the means in
“peaks” at the correct order in both cases, indicating that tHee noise mixture to be identically zero. The resulting model
variational free energy may offer a realistic model-selectid§sembles weighted least squares and, hence, provides robust
criterion. More importantly, the use of the variational approxestimation of AR coefficients.

mation as a proposal for importance sampling makes the lattefour model provides an alternative to cumulant methods for
very fast, and this approach is to be commended in cases wHapg-Gaussian AR modeling (see, e.g., [24] and [25]) for which
evaluation of the bound is crucial. model order estimation is problematic.

We envisage that a main application of the model is to EEG
data; in an EEG recording, up to 30% [26] of data blocks are
corrupted by muscle, eye-movement, or other artifacts, and tra-

We have proposed a non-Gaussian AR model for thitionally, these data blocks are discarded. As we have shown,
modeling of stationary stochastic processes where the ndiggvever, the non-Gaussian AR model is able to downweight the
is modeled with a mixture of Gaussians. The main appltontaminated section of each block, thus allowing more reliable

. S . AR (and consequently spectral) estimation. We also envisage
~ %As the dimensionality of the model increases, so does the tendency of fﬁr@ing the non-Gaussian AR algorithm to model the sources in
importance weights to be dominated by a small number of large weights. In the

experiments reported here, this did not occur, although we note this tendefi&) indepgndent component analysis mOde|§ this would extend
for high p models. the work in [10] by allowing for dynamic sources at the same

VII. DISCUSSION
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Fig. 7. Top plot: Original EEG trace. Bottom plot: Log-probability that the data belongs to the first (low-variance) noise cormgpneftalculated from (44)].
A high proportion of data in the middle section therefore clearly belongs to the second (high-variance) noise component. These points are eldwntlieight
estimation of the AR coefficients.

ture, is equivalent to a Oth—order hidden Markov model (HMM)
for the noise process with a number of hidden states equal to the
number of components in the MoG. In the eye-movement arti-
fact example, the high variance activity occurred sporadically,
and the HMM(0) model is appropriate. It is arguable, however,
that in some cases, where the high-variance noise occurs in tem-
porally correlated bursts, that a higher order HMM is appro-
priate [a HMM(1), for example]. We have not considered this
here, although it is an important area of future research.

For Gaussian AR models, our experiments show that VB
model order selection is superior to the BIC/MDL criterion.
We have shown that for noninformative priors on the precision
of the coefficientsy and the precision of the noisg the VB
update rules are identical to those of the evidence framework.
This is an extension of work by Mackay [21], who showed that
for a linear regression model with knowt the updates fos

* are the same. This link therefore provides further justification
for the updating rules used in the evidence framework (as
the VB update rules probably increase a lower bound on the
log-evidence, whereas no such convergence proof previously

Fig. 8. Re[ative incre'as'e in eviden_ce versus model order after importansgisted in the evidence framework). We have also shown that

sampling using the variational posterior as proposal. apart from minor differences that have no practical impact, the
VB and evidence model order selection criteria are identical
time as using VB for model order estimation. It is noted that tagain, under the assumption of noninformative priorscon

model we use, in which the noise model has no dynamic strwd 3).
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APPENDIX A B. Multivariate Normal Density

DERIVATION OF VARIATIONAL LEARNING The multivariate normal density is given by

We start by restating (27), which conjectures that the optimal
form of the proposalg) distribution that maximizes the negativel(x; p, =) = (2r)~%?|x|~1/2
free energy (model evidence measure), with respect to param- . exp(_%(x — )" E Hx - u)) . (86)
eter groupd;, is
The KL-divergence for normal densitigéx) = N(x; p,, C,)

1 .
2(0:]Y) = —- exp[1(6:)] (81) andp(x) = N(x; p,, Cp) is
where Z; is the partition function (hormalizing constant), an 1. |G| -1
where, as before, we define %L (allp) = 1 |C | £ (CC)
4 1 ) d
169" [ (0¥[¥) 10200y, Slo)p(0) 8. (82) T3 ) Gy g ) =5 67)
This maximization is equivalent to stating that the negatiéhere|C,| denotes the determinant of the mate,.
KL-divergence betweew(8;|Y) and exp[I(8;)]/Z; is max- .
imized [this is strictly nonpositive and reaches its maximur%' Gamma Density
when (81) holds]. The negative KL-divergence is given as The Gamma density is defined as
c—1 _
~KL(Y), expl16)/2) = [ dbia(@lY) calas o) = s e (30) . @
C C
~(logexp[(8;)] — log q(0;|Y) — log Z;). (83)
o _ For Gamma densitieg(x) = Ga(x; by, ¢;) and p(x) =
Substituting from (82), we obtain Ga(x; by, ¢,), the KL-divergence is
~KL{q(0:[Y), exp[1(6:)]/Z:) KL(q||p) = (cq—1)¥(c;)—log by—cy —log T(cy)+log [(cp)
— (0. (0.7~ L \i o [\ by
= [dva@ryyesaory)™ [a0'afo"|¥) +eploghy — (¢ — 1)(U(ey) +logby) + 4 (89)
log[p(Y, 8|6)p(6)] — log Z; !
:/ doido\iq( 0i|Y)q(0\i Y) whereW() is, as before, the digamma function [2].

D. Dirichlet Densit

q(0:]Y) The Dirichlet density is given by
- / d0g(8]Y) [M} ~log Z; (84) .
(01 ()
where the last step follows from the factored representation of Dir(m; A) = ms;l mye Tt (90)
the proposal, i.e., (26). Note that this is (to within an additive Ulr()\s) s=1

constant) the contribution to the free energy of (24) of the pa-

rameter grou;. As the free energy is strictly non-negative, ityhere ), is the sth element ofA, andI'(z) is the Gamma
is maximized by maximization of each contribution, e.g., maXjunction [2].

mization of ] (84). This is achieved when (81) holds, and hence, For them-state Dirichlet density witly(x) = Dir(w; A,),

we obtain a simple methodology to obtain densities for eagly) = pir(r; A and Ay = 27 A(s), A =
component of. ™ A\p(s), the KL-divergence is
APPENDIX B INOY ™
DENSITIES AND DIVERGENCES KL(q| p) =log FE;S + 3 (Als) = Ap(s))
p s=1
For completeness, we include definitions of the normal, (A (s))
gamma, and Dirichlet densities and their entropies and .(\I/()\q(s))—\lf()\qt)JerogLs, (91)
KL-divergencies. I'(Aq(s))

A. Univariate Normal Density

For univariate normal densitiegz) = Ny (z; iy, 02) and ACKNOWLEDGMENT

p(x) = Ni(x; pp, 02), the KL-divergence is The authors would like to thank R. Daniel and P. Sykacek for
interesting discussions and helpful comments and criticism of

(85) this work. The comments of the anonymous referees were most
valuable in the final revision of this paper.

2
+ —l—ff -2
KL(q|lp)= —108 §+uq by Haltp _
(1

1
203 2’
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