
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 9, SEPTEMBER 2002 2245

Variational Bayes for Generalized
Autoregressive Models

Stephen J. Roberts and Will D. Penny

Abstract—We describe a variational Bayes (VB) learning algo-
rithm for generalized autoregressive (GAR) models. The noise is
modeled as a mixture of Gaussians rather than the usual single
Gaussian. This allows different data points to be associated with
different noise levels and effectively provides robust estimation of
AR coefficients. The VB framework is used to prevent overfitting
and provides model-order selection criteria both for AR order and
noise model order. We show that for the special case of Gaussian
noise and uninformative priors on the noise and weight precisions,
the VB framework reduces to the Bayesian evidence framework.
The algorithm is applied to synthetic and real data with encour-
aging results.

Index Terms—Bayesian inference, generalized autoregressive
models, model order selection, robust estimation.

I. INTRODUCTION

T HE STANDARD autoregressive (AR) model assumes that
the noise is Gaussian and, therefore, that the AR coeffi-

cients can be set by minimizing a least squares cost function.
Least squares, however, is known to be sensitive to outliers.
Therefore, if the time series is even marginally contaminated
by artifacts, the resulting AR coefficient estimates will be seri-
ously degraded (see Bishop [1, p. 209] and Presset al.[2, p. 700]
for a general discussion of this issue and a number of proposed
solutions).

This paper tackles this problem by modeling the noise with a
mixture of Gaussians (MoG) in which different data points can
be associated with different noise levels. This provides a robust
estimation of AR coefficients via a weighted least squares ap-
proach; data points associated with high noise levels are down-
weighted in the AR estimation step. This approach is thus well
suited to situations in which the signal is stationary (and may be
modeled via an AR process), whereas the noise is non-Gaussian.
The development of AR models with non-Gaussian excitation
has a relatively long history. Work presented in [3]–[5] utilizes
essentially the same model as we discuss here. In these pa-
pers, the issue of parameter inference is rightly tackled with
a fully Bayesian approach using Markov chain Monte Carlo
(MCMC) sampling methods. Such schemes may be made effi-
cient by exploiting tractable integration for part of the AR model
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[5], [6]. Recent use of reversible jump methods [7] applied to
AR models [6] allows efficient exploration of model order in
the Markov chain. Although these techniques are shown to be
well suited to AR model analysis, this paper considers an al-
ternative formalism, which is known as variational Bayes (VB)
learning, which offers a tractable (nonsampling) approach. Al-
though the Bayesian methodology has a long history, the use of
VB is relatively new; the key idea of VB is to find a tractable
approximation to the true posterior density that minimizes the
Kullback–Leibler (KL) divergence [8]. Notable recent applica-
tions are to principal component analysis [9] and independent
component analysis [10]. We have also published short confer-
ence papers summarizing some key results for standard autore-
gressive models [11] and non-Gaussian AR models [12]. To our
knowledge, VB has not previously been applied to such models.

Section II describes the autoregressive process as a prob-
abilistic Bayesian model. We then describe the VB method
(Section III) and show how it can be applied to generalized
AR models (Section IV). Section V describes the VB approach
to the standard AR model and compares it with the evidence
framework. Section VI presents results on synthetic and real
data and compares the difference between model evidence for
VB and from a sampling step. Appendices A and B, detailing
some important results required elsewhere in the text, are
included for completeness.

II. GENERALIZED AUTOREGRESSIVEMODELS

We define an autoregressive model as

(1)

where is the th value of a time series, is a
column vector of AR coefficients (weights), and

are the previous time series values.
The AR model has additive noise, which is usually modeled
as a Gaussian. In this paper, however, we model the noise as
a one-dimensional (1-D) Gaussian mixture havingcom-
ponents. Component has mixing coefficient , mean ,
and precision (inverse variance). We can write the param-
eters collectively as the vectors, ,

, and . The
weights are drawn from a Gaussian prior (see later) with pre-
cision . This choice of a Gaussian prior over the parameters
is tantamount to a belief that the modeled data sequence has a
smooth spectrum. For a more detailed discussion of this issue
and the choice of priors in AR models, see [13] and [14].

We concatenate all the parameters into the overall parameter
vector . We are given a set of data points
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with . The likelihood of a data point
is given by the mixture model

(2)
where is an indicator variable indicating which component
of the noise mixture model is selected at presentation of theth
datum. These are chosen probabilistically according to

(3)

The joint likelihood of a data point and indicator variable is

(4)

which, given that the noise samples are assumed independent
and identically distributed, gives

(5)

over the whole date set, where T and
T.

Each component in the noise model is a Gaussian, and hence

(6)

A. Model Priors

We choose the standard conjugate priors for each part of the
model. These are either normal, gamma, or Dirichlet densities,
which we define in Appendices A and B for completeness.

The prior on the model parameters is taken to factorize as

(7)

The prior over the mixing parameters of the MoG is a
Dirichlet

(8)

where the hyperparameters are (i.e., a
symmetric Dirichlet). The prior over the precisions is a Gamma
distribution

(9)

the prior over the means is a univariate normal

(10)

and the prior over the weights is a zero-mean Gaussian with an
isotropic covariance having precision

(11)

where

T (12)

Finally, the weight precision itself has a Gamma prior

(13)

B. Gaussian Noise Models

The standard autoregressive model is recovered when the
noise mixture consists of a single Gaussian component with
zero mean and precision (inverse variance). The parameters
now consist of . The likelihood of the data set
[from (2)] now simplifies to

(14)

where

T (15)

in which, as before, is a column vector with entries
, and the th row of the matrix contains .

C. Maximum Likelihood

The standard autoregressive model with Gaussian noise can
be implemented using a maximum likelihood (ML) approach.
The optimal AR coefficients, given by the maximum of (15)
[15], are

T T (16)

From the AR predictions , the ML noise variance
can be estimated as

(17)

The covariance is then estimated as

T (18)

This ML solution provides a method for initializing the
Bayesian analysis.

III. V ARIATIONAL BAYES LEARNING

The central quantity of interest in Bayesian learning is the
posterior distribution , which fully describes our
knowledge regarding the parameters of the model. In nonlinear
or non-Gaussian models, however, the posterior is often diffi-
cult to estimate because, although one may be able to provide
values for the posterior for a particular , the partition
function, or normalization term, may involve an intractable
integral. To circumvent this problem, two approaches have been
developed: the sampling framework and the parametric frame-
work. In the sampling framework, integration is performed via
a stochastic sampling procedure such as Markov chain Monte
Carlo (MCMC). The latter, however, can be computationally
intensive, and assessment of convergence is often problematic.
Alternatively, the posterior can be assumed to be of a particular
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parametric form. In the Laplace approximation, which is em-
ployed, for example, in the “evidence framework,” the posterior
is assumed to be Gaussian [16]. This procedure is quick but is
often inaccurate. Recently, an alternative parametric method
has been proposed: variational Bayes (VB) or “ensemble
learning.” A full tutorial on VB is given in [8]. In what follows,
we briefly describe the key features.

Given a probabilistic model of the data with AR orderand
MoG components in the noise model, the “evidence” or “mar-

ginal likelihood” is given by

(19)

The log evidence can be written as (dropping in the con-
ditioning for brevity)

(20)

where is, as we will see, a hypothesized, or ap-
proximate, posterior density. This has been introduced in both
denominator and numerator in (20). Noting that is
a density function (i.e., it integrates to unity), we may apply
Jensen’s inequality to obtain a strict bound on the true log
posterior as

(21)

To see this bound from another perspective, we may write

(22)

We may write the latter equation as

(23)

where (reintroducing the dependence on )

(24)

is known as the negative variational free energy, and

(25)

is the KL divergence [17] between the approximate posterior
and the true posterior.

Equation (23) is the fundamental equation of the VB frame-
work. Importantly, because the KL-divergence is always posi-
tive [17], provides a strictlower boundon the model
evidence. Moreover, because the KL divergence is zero when
the two densities are the same, will become equal to
the model evidence when the approximating posterior is equal
to the true posterior, i.e., if .

The aim of VB-learning is therefore to maximize
and make the approximate posterior as close as possible to
the true posterior. To obtain a practical learning algorithm, we
must also ensure that the integrals in are tractable.
One generic procedure for attaining this goal is to assume that
the approximating density factorizes over groups of parameters
(in physics, this is known as the mean field approximation).
Thus, following [18], we consider

(26)

where is the th group of parameters. The distributions that
maximize the negative free energy can then be shown to be of
the following form (see Appendix A), which, here, is shown for
parameter group

(27)

where

(28)

and denotes all the parametersnot in the th group. For
models having suitable priors, the above equations are avail-
able in closed analytic form. This leads to a set of coupled
update rules. Iterated application of these leads to the desired
maximization.

A. Model Order Selection

By computing the evidence for models of different order (i.e.,
and ), we can estimate the posterior distribution overand
using the negative free energy. We may thus use this to per-

form model order selection. The posterior over is given via
Bayes’ theorem as

(29)

where, for example, we may have uniform priors over model
orders and .

The evidence is estimated using . To see that
is an intuitively suitable model order criterion, we

decompose it as follows. Using
and assuming that the approximate posterior factorizes as in
(26), i.e., , we can write

(30)
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where

(31)

corresponds to the average likelihood, and

(32)

is the KL divergence between the approximate posterior
and the prior . Now, because the KL term increases with the
number of model parameters, it acts as a penalty term in (30),
which penalizes more complex models.

As the number of samples increases, the parameter posterior
becomes sharply peaked about the most probable values (which
are also the ML values). It can then be shown that in the
large sample limit , becomes equivalent to
the Bayesian information criterion (BIC) [18], [19]

BIC (33)

where is the total number of adjustable parame-
ters in the model. The BIC is itself equal to the negative
of the minimum description length (MDL) measure, i.e.,
BIC MDL . These popular model order
selection criteria can therefore be seen as limiting cases of the
VB framework.

IV. VB FOR GENERALIZED AR MODELS

To apply VB to non-Gaussian autoregressive models, we ap-
proximate the posterior distribution over parameters with the
factorized density

(34)

and the posterior distribution over hidden variables by .
We then set each distribution to maximize by applying
(27) and substituting in the joint log-likelihood of the general-
ized AR model

(35)

Given our choice of prior and model likelihood, the optimal ap-
proximating densities take the following forms. For the preci-
sions, we have and Gamma densities

(36)

for the means, we have and univariate normal
densities

(37)

for the mixing coefficients, we have a Dirichlet

(38)

for the weights, we have a multivariate normal

(39)

and for the weight precision, we have a Gamma density

(40)

We note finally that for the indicator posteriors, we have
.

Each distribution is updated as described in what follows.
First, the responsibilities (i.e., the probabilities over the indi-
cator variable set) of the Gaussian components in the noise
model are updated, along with the hyperparameters that govern
their distribution. Second, the component means and precisions
are updated as are the AR coefficients. All hyperparameters
associated with the distributions over these variables are also
updated during this second step. We detail the specific update
equations for the variables in the following subsections.

A. Step 1

1) Component Responsibilities:We first define some inter-
mediate variables

(41)

where is the digamma function [2], and

T (42)

in which is the mean AR prediction. If we define
to be the posterior of the indicator variable for

the th component of the MoG (i.e., the probability that compo-
nent is responsible for data point ), then this step consists
of updating the indicator posterior according to

(43)

These variables are then normalized to give

(44)

B. Step 2

We now define some intermediate variables

(45)
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TABLE I
PSEUDO-CODE FORVB-AR UPDATES

i.e.,
proportion of data associated with component;
number of data points associated with componentand
the quantities ;
weighted data values.

1) Component Mixing Fractions:The hyperparameters,
of the Dirichlet [Equation (38)] are updated in the stan-

dard manner by adding the data counts to the prior counts, i.e.,

(46)

2) Component Precisions:If we define the expected vari-
ance of component as

(47)

then the hyperparameters for the precisions [see (36)] are up-
dated as

(48)

We can understand these equations by considering the corre-
sponding mean variance (the inverse of the mean precision),
which is given by . If we ignore terms involving the
prior, this comes out to be , which is the expected vari-
ance of that component reweighted according to the number of
examples for which the component is responsible.

3) Component Means:In this step, the hyperparameters
governing the posterior distribution over the component means
are updated [see (37)]. If we first define the means and preci-
sions (i.e., the hyperparameters) of the component meansas
estimated from the dataas

(49)

then the posteriors of these hyperparameters are given by

(50)

where is the prior precision, and is the
posterior precision.

4) AR Coefficients:The distribution of AR coefficients is
multivariate normal with hyperparameters governing the mean

and covariance of the distribution [see (39)]. These hyperparam-
eters are updated via

T

T T (51)

where diag , the th row of contains
, the th entry in the column vector is , and is a column

vector of 1s of length .
5) AR Coefficient Precisions:The update equations for the

coefficient precision and associated hyperparameters [see (40)]
are

T

(52)

in which denotes the trace of a matrix.

C. Co-Mean Noise Model

While it is possible to use a full Gaussian mixture model
for the noise (as described previously), the numerical examples
in this paper use a simplified model in which all the means
are zero. The resulting model then resembles weighted least
squares, where the weights are given by the precisions and re-
sponsibilities of the noise components. This simplifies a number
of update equations. For step 1, as before, we now have [cf. (42)]

T (53)

In this case, (49) and (50) are dispensed with, and the second
line in (51) simplifies to

T (54)

D. Pseudo-Code

The previous steps may be conveniently implemented in the
algorithm shown in pseudo-code form in Table I.

E. Practicalities

The prior distribution is chosen to be uniform, and we
set . For the Gamma distributions, we use vague priors
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(see, e.g., [16]); for , we set , , and for
, we set and . It is noted that we do

not find particular sensitivity to these values.
The posterior distributions , , , and

have the parameters, , , , , , and , which
are initialized as follows. The posterior for the AR coefficients is
initialized using the ML solutions of (16)–(18). The posterior for
the weight precision is then initialized using (52). The remaining
posteriors are set as follows. We first calculate the errors
from the ML model and then define a new variable

, which is the absolute deviation of each error from
the mean error. We then apply -means clustering [1] to ,
which results in mixing coefficients and means .
We then set . The parameters and are then
set to achieve means of and variances of var
(the mean and variance of a Gamma density areand ,
respectively).

The VB equations are then applied iteratively until a consis-
tent solution is reached. Convergence is measured by evaluating
the negative free energy

(55)

where we use the shorthand notation
. The first term of (55) is given as

(56)

The entropy over the hidden variables is

(57)

The KL terms for normal, gamma, and Dirichlet densities are
given in Appendices A and B. As the update for the AR coeffi-
cients is computationally more intensive than the updates for the
other parameters (as it involves a matrix inversion), we perform
this step only once every iterations. In our experiments, we
used . We evaluate every iterations (after
the AR updates) and terminate optimization if the proportionate
increase from one evaluation to the next is less than 0.01%.

We note that the formalism adopted in this paper does not, un-
like many AR modeling approaches,guaranteea stable model
(i.e., the poles of the characteristic function do not lie outside
the unit circle in the -domain). Although it is possible to en-
force stability by reflecting poles across the unit circle, we do
not regard this as an elegant solution. Placing stability priors on
thereflection coefficientsof the model is another possibility (as
described in [20]), but this leaves analytically troublesome de-
scriptions of the AR coefficients themselves for which (slow)
sample-based approaches must therefore be used. It is noted,
however, that in all examples in this paper, and indeed all data
analyzed thus far, no unstable models have been found.

V. GAUSSIAN AUTOREGRESSIVEMODEL

The standard autoregressive model is recovered when the
mixture consists of a single zero-mean Gaussian. Because of
the factored form of the prior distribution, the form of the
approximate posterior that maximizes the negative free energy
is also of factorized form (we note that unlike the general case
in variational Bayes methods, we do not have toassumethis),
i.e.,

(58)

The weight posterior is a normal density
. By inspection of (51), noting that there is

now only a single value of , that , and that the
weighting matrix is an identity matrix, we get

T

T (59)

The weight precision posterior is a Gamma density with pa-
rameters as before [see (52)]. The noise precision posterior is

, where

(60)

and

T (61)

We note that in previous work, MacKay has derived VB updates
for the weight and weight precisions in a linear regression model
[21] and that, reassuringly, (52) and (59) are identical to his. We
note that these update rules can also be derived directly, i.e.,
without considering the model as a special case of GAR.

For Gaussian noise models, the negative free energy simpli-
fies to

(62)

where

(63)

and

(64)

where is the digamma function.
An alternative Bayesian approach is that offered by the

evidence framework [16]. Given that the observation noise is
zero-mean Gaussian with precisionand that the weights are
drawn from a prior distribution with zero mean and isotropic
covariance having precision, the posterior distribution is
Gaussian with mean and covariance, which is also given by
(59). In the evidence framework, there are no priors overor
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. The evidence for the model is therefore given by (see, e.g.,
[1, p. 409])

(65)

The log of the evidence can then be written as

(66)

The precision parameters are then set to maximize the evidence
as

(67)

(68)

where , which is the number of “well-determined” coefficients,
is given by

(69)

where is calculated using the “old” value of. The update for
is therefore an implicit equation. We can also write it as the

explicit update

(70)

This is equivalent to the update forfrom the VB framework
[see (52)] if we choose uninformative priors on. Similarly, if
we choose uninformative priors for, then the VB update is
[from (60)]

T

(71)

which is equivalent to (68) as, from an eigendecomposition of
, it can be shown that T .

A. Model Order Selection

As mentioned Section III-A, the BIC model-selection crite-
rion is a limiting case of the VB framework. For the AR model,
we have

BIC (72)

where is the precision of the ML model.
The model order selection criterion for the evidence frame-

work [see (66)] can be rewritten in terms of the KL-divergence
between the weight posterior and the weight prior . For
the prior and the posterior

, it can be shown that

(73)

Because [see (68)], we can combine (73)
with (66) to give

(74)

where we have dropped the constant term .
The VB criterion is given by

(75)

where, again, we have dropped the constant term
. The evidence and VB criteria are therefore identical,

except for the divergences ofand . However, as these do not
scale with , we can ignore them. We also note that for large
data sets, the distribution overis sufficiently peaked for the
first expectation term not to make a significant difference, i.e.,

. We may also thus see the evidence approach
as a limiting case of the VB framework.

If we assume,a priori, that different model orders are equally
likely, then the posterior probability distribution over model
order is given by (29). This can also be applied to BIC/MDL.

VI. RESULTS

A. Synthetic Data: Gaussian Noise Model

We generated multiple three second-blocks of 128 Hz data
from AR(6) models with varying signal-to-noise ratios (SNRs).
We also generated data from AR(25) models, again with varying
SNRs. We generated ten data sets of each type (each with a dif-
ferent realization of the noise process) and applied the VB and
BIC/MDL model order selection methods. Typical results are
shown in Figs. 1 and 2, which are for , SNR 2 and

, SNR 20, respectively.1 We have plotted the proba-
bility of each model order averaged over the ten runs (the aver-
aging was done on the probabilities rather than the log probabil-
ities in order to show a greater spread). For both the AR(6) and
AR(25) data, model order selection is more difficult at lower
SNR. For the AR(6) data, both methods essentially pick out the
correct model order, with VB overestimating it on a small pro-
portion of runs. For the AR(25) data, the BIC/MDL criterion
significantly underestimates the model order. On longer blocks
of data (e.g., 10 s), both methods were seen to converge to the
same estimate of model order (as predicted by theory).

B. Synthetic Data: Non-Gaussian Noise Model

We generated 3 s of synthetic data from an AR(5) model with
coefficients

T

(76)
and noise drawn from a two-component Gaussian mixture
model with mixing coefficients , and
variances , . We repeated the data generation
process ten times and used the negative free energy as
a model order selection criterion. The results in Figs. 3–5 show
that the VB model order selection criterion selects both the
correct AR order and the correct noise model order. For more
on VB model order selection, including a comparison with the
minimum description length (MDL) criterion, see [11].

We also calculated the error with which the AR coefficients
were estimated using the measure . Over the ten

1The SNR was altered by adjusting the noise variance.
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(a)

(b)

Fig. 1. Model order selection for AR(6) data (SNR= 2) with (a) BIC/MDL
and (b) VB with 3-s blocks of data.

runs, the errors from the non-Gaussian AR model with two com-
ponents were less than those from the Gaussian AR model by
an average factor of six.

C. EEG Data: Gaussian Noise Model

We applied AR models to short blocks of EEG data recorded
while a subject was awake or in an anesthetized state. Fifty 1-s
blocks were selected randomly from each 30-min recording,
and BIC/MDL and VB model order selection criteria were
compared.

The results from VB in Fig. 6 show that in the waking state,
there are modes at and , and in the anesthetized
state, the modes are at and . The results clearly
show a decrease in model order from the waking state to the
anesthetized state; according to a t-test, this decrease is signifi-
cant at the 0.0004 level. The results from BIC/MDL, however,
showed no such discrimination. The difference of means was not
significant; from a t-test, we get a significance level of 0.062.

(a)

(b)

Fig. 2. Model order selection for AR(25) data (SNR= 20) with (a) BIC/MDL
and (b) VB with 3-s blocks of data.

D. EEG Data: Non-Gaussian Noise Model

We applied the model to a short sample of EEG data shown
in Fig. 7, the middle section of which is contaminated by an
eye-movement artifact. For a Gaussian noise model ( ),
the optimum AR model order was at , having

. For and , the best models were also at
(this is not always the case) with and

. This shows that the non-Gaussian AR process
with two noise components is the preferred model. This model
took 25 iterations to converge. The final mixing coefficients in
the noise model were and , and the vari-
ances (inverse precisions) were and ,
i.e., a low and high variance component. Fig. 7 shows which data
points “belong” to which noise component. The first compo-
nent corresponds to the majority of the data (78% of it), and the
second component picks out the outliers that are mostly in the
middle section. These points are then effectively downweighted
in the corresponding weighted least squares regression. The out-
liers therefore have a minimal influence on the estimation of the
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(a)

(b)

Fig. 3. AR model order selection (a)F (p; 2) versus p and (b) the
corresponding probabilitiesP (p; 2) versusp.

AR coefficients; this can be seen from (54), whereand
weight the samples accordingly.

E. How Good is the Variational Bound?

From (23) we saw that the negative free-energy term
formed a strict lower bound to the true posterior (the KL term is
strictly non-negative). How tight this bound is will clearly affect
the confidence we have in the variational approach. We consider
here a simple experimental validation of the bound and present
results on the non-Gaussian noise example in Section VI.

Consider the marginal of (19), where once more, we drop, for
notational convenience, dependence on

(77)

We may write (77) as

(78)

(a)

(b)

Fig. 4. Noise model order selection (a)F (5; m) versusm and (b) the
corresponding probabilitiesP (5; m) versusm.

in which we define the weight function

(79)

As noticed by others [22, ch. 4], this enables the variational ap-
proximation to be used as the proposal in animpor-
tance samplingstep. We do not cover the details of importance
sampling as they may be found in standard texts (e.g., [23, ch.
5]). Suffice to say, the true posterior may be estimated via im-
portance weights, which are evaluated as an expectation under
the proposal, i.e., (78) may be written as

(80)

We applied this procedure to the non-Gaussian
AR( ) data analyzed in Section VI. A total
of 3s of data (384 samples) was generated from the true model,
as before. The VB-AR algorithm was applied to this data, and
then, using the variational inference densities as proposals,
1000 samples were evaluated using importance sampling to
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Fig. 5. Noise and AR model order selection. The bar plot showsP (p; m)
againstp; m.

estimate the true model posterior.2 This was repeated over
all model orders from to 10 and with the number of
Gaussians in the noise model from to 5. Fig. 8 shows
the relative increase in model evidence after the sampling
procedure over the grid. We note that the relative dif-
ference between the “true” and approximate posteriors is of
order one part in 10 at most (for these models). We note
that the maximum model evidence appeared at the true model
order in both cases. We note that, as expected from theory, the
variational approximation is always a strict lower bound. It
appears that the variational bound is very tight for low model
orders but rises with increased numbers of model parameters,
both in terms of the AR model order () and, importantly, in
terms of the number of mixture components in the noise model
( ). This is to be expected due to the factored nature of the
variational approximation, which gets worse with increasing
numbers of parameters. It is encouraging that the evidence
“peaks” at the correct order in both cases, indicating that the
variational free energy may offer a realistic model-selection
criterion. More importantly, the use of the variational approxi-
mation as a proposal for importance sampling makes the latter
very fast, and this approach is to be commended in cases where
evaluation of the bound is crucial.

VII. D ISCUSSION

We have proposed a non-Gaussian AR model for the
modeling of stationary stochastic processes where the noise
is modeled with a mixture of Gaussians. The main appli-

2As the dimensionality of the model increases, so does the tendency of the
importance weights to be dominated by a small number of large weights. In the
experiments reported here, this did not occur, although we note this tendency
for high p models.

(a)

(b)

Fig. 6. VB model order selection on EEG data from (a) awake subject and
(b) anesthetized subject.

cation is as a model for stationary signals contaminated by
non-Gaussian and/or nonstationary noise processes. The VB
framework prevents overfitting and provides a model order
selection criterion both for the AR order and the noise model
order. In the experiments presented, we restricted the means in
the noise mixture to be identically zero. The resulting model
resembles weighted least squares and, hence, provides robust
estimation of AR coefficients.

Our model provides an alternative to cumulant methods for
non-Gaussian AR modeling (see, e.g., [24] and [25]) for which
model order estimation is problematic.

We envisage that a main application of the model is to EEG
data; in an EEG recording, up to 30% [26] of data blocks are
corrupted by muscle, eye-movement, or other artifacts, and tra-
ditionally, these data blocks are discarded. As we have shown,
however, the non-Gaussian AR model is able to downweight the
contaminated section of each block, thus allowing more reliable
AR (and consequently spectral) estimation. We also envisage
using the non-Gaussian AR algorithm to model the sources in
an independent component analysis model; this would extend
the work in [10] by allowing for dynamic sources at the same
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Fig. 7. Top plot: Original EEG trace. Bottom plot: Log-probability that the data belongs to the first (low-variance) noise componentlog 
 [calculated from (44)].
A high proportion of data in the middle section therefore clearly belongs to the second (high-variance) noise component. These points are downweighted in the
estimation of the AR coefficients.

Fig. 8. Relative increase in evidence versus model order after importance
sampling using the variational posterior as proposal.

time as using VB for model order estimation. It is noted that the
model we use, in which the noise model has no dynamic struc-

ture, is equivalent to a 0th–order hidden Markov model (HMM)
for the noise process with a number of hidden states equal to the
number of components in the MoG. In the eye-movement arti-
fact example, the high variance activity occurred sporadically,
and the HMM(0) model is appropriate. It is arguable, however,
that in some cases, where the high-variance noise occurs in tem-
porally correlated bursts, that a higher order HMM is appro-
priate [a HMM(1), for example]. We have not considered this
here, although it is an important area of future research.

For Gaussian AR models, our experiments show that VB
model order selection is superior to the BIC/MDL criterion.
We have shown that for noninformative priors on the precision
of the coefficients and the precision of the noise, the VB
update rules are identical to those of the evidence framework.
This is an extension of work by Mackay [21], who showed that
for a linear regression model with known, the updates for
are the same. This link therefore provides further justification
for the updating rules used in the evidence framework (as
the VB update rules probably increase a lower bound on the
log-evidence, whereas no such convergence proof previously
existed in the evidence framework). We have also shown that
apart from minor differences that have no practical impact, the
VB and evidence model order selection criteria are identical
(again, under the assumption of noninformative priors on
and ).
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APPENDIX A
DERIVATION OF VARIATIONAL LEARNING

We start by restating (27), which conjectures that the optimal
form of the proposal () distribution that maximizes the negative
free energy (model evidence measure), with respect to param-
eter group , is

(81)

where is the partition function (normalizing constant), and
where, as before, we define

(82)

This maximization is equivalent to stating that the negative
KL-divergence between and is max-
imized [this is strictly nonpositive and reaches its maximum
when (81) holds]. The negative KL-divergence is given as

(83)

Substituting from (82), we obtain

(84)

where the last step follows from the factored representation of
the proposal, i.e., (26). Note that this is (to within an additive
constant) the contribution to the free energy of (24) of the pa-
rameter group . As the free energy is strictly non-negative, it
is maximized by maximization of each contribution, e.g., maxi-
mization of ] (84). This is achieved when (81) holds, and hence,
we obtain a simple methodology to obtain densities for each
component of .

APPENDIX B
DENSITIES AND DIVERGENCES

For completeness, we include definitions of the normal,
gamma, and Dirichlet densities and their entropies and
KL-divergencies.

A. Univariate Normal Density

For univariate normal densities and
, the KL-divergence is

(85)

B. Multivariate Normal Density

The multivariate normal density is given by

T (86)

The KL-divergence for normal densities
and is

T (87)

where denotes the determinant of the matrix .

C. Gamma Density

The Gamma density is defined as

(88)

For Gamma densities and
, the KL-divergence is

(89)

where is, as before, the digamma function [2].

D. Dirichlet Density

The Dirichlet density is given by

(90)

where is the th element of , and is the Gamma
function [2].

For the -state Dirichlet density with ,
and ,

, the KL-divergence is

(91)
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