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a  b  s  t  r  a  c  t

Dynamic  causal  modelling  (DCM)  was  originally  proposed  as a  hypothesis  driven  procedure  in which  a
small  number  of  neurobiologically  motivated  models  are  compared.  Model  comparison  in this  context
usually  proceeds  by  individually  fitting  each  model  to  data  and  then  approximating  the  corresponding
model  evidence  with  a free  energy  bound.  However,  a recent  trend  has emerged  for  comparing  very  large
numbers  of  models  in  a more  exploratory  manner.  This  led  Friston  and  Penny  (2011)  to  propose  a  post-
hoc approximation  to the model  evidence,  which  is computed  by  optimising  only  the  largest  (full)  model
of  a set  of  models.  The  evidence  for any  (reduced)  submodel  is then  obtained  using  a generalisation  of
ree energy bound
ynamic causal modelling
MRI
onnectivity

the Savage-Dickey  density  ratio  (Dickey,  1971).  The  benefit  of  this  post-hoc  approach  is a huge  reduction
in  the  computational  time  required  for model  fitting.  This  is  because  only  a single  model  is fitted  to
data,  allowing  a potentially  huge  model  space  to  be  searched  relatively  quickly.  In  this  paper,  we explore
the relationship  between  the  free  energy  bound  and  post-hoc  approximations  to  the model  evidence  in
the context  of  deterministic  (bilinear)  dynamic  causal  models  (DCMs)  for functional  magnetic  resonance
imaging  data.
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. Introduction

Bayesian model selection (BMS) is a powerful method to com-
are different models for explaining observed data. BMS  is based
n the model evidence, which is the probability of obtaining a par-
icular model, given the data. Even though this quantity is not, in
eneral, straightforward to compute, it is now well established that
tatistical models can be compared using a variational free energy
pproximation to the evidence (Beal and Ghahramani, 2003). This
pproximation has widespread application, and, in neuroimaging,
t has become the method of choice for comparing models of effec-
ive brain connectivity, in particular dynamic causal models (DCMs)
Stephan et al., 2010; Penny, 2012).

Dynamic causal modelling is a mathematical framework to esti-
ate, and make inferences about, the coupling among brain areas

nd how this coupling is influenced by changes in experimental
ontext (Friston et al., 2003). Although it was originally introduced
s a hypothesis driven procedure, in which a small number of neu-
obiologically motivated models are compared, recently, a trend
Please cite this article in press as: Rosa MJ, et al. Post-hoc sele
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as emerged for comparing very large numbers of models in a more
xploratory manner.
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Model comparison in this context has hitherto proceeded by
individually fitting all competing models to data and then approxi- 

mating the model evidence with the variational free energy bound
(Friston et al., 2007). We  refer to this approximation to the model 

evidence as the optimised evidence.
Very recently, Friston and Penny (2011) have proposed an alter- 

native, post-hoc, approximation to the model evidence that is 

computed by fitting only the very largest of a set of models: a full 

model from which all other (reduced) models can be formed by 

removing model parameters. This scheme approximates the evi- 

dence for any nested model within a larger model using only the 

posterior density of the full model. We  refer to this approximation 

as the post-hoc evidence. 

The benefit of this post-hoc approach is a huge reduction in the 

computational time required for model fitting. This is because only 

a single model is fitted to data. This means that a potentially huge 

model space can be searched relatively quickly. 

In addition to the model evidence approximation, Friston and 

Penny (2011) also propose a way to estimate the connectivity 

parameters for all reduced models from the posterior density over 

the parameters of the full model. More specifically, according to 

Friston and Penny (2011) the posterior mean and precision of the 

reduced model can also be determined solely from the mean and 

precision of the parameters of the full model. 
ction of dynamic causal models. J Neurosci Methods (2012),

The post-hoc approach (Friston and Penny, 2011), can also be 63

viewed as a generalisation of the well-known Savage-Dickey den- 64

sity ratio (Dickey, 1971), in which the reduced models have certain 65

parameters fixed at zero. To our knowledge, the Savage-Dickey 66
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ethod (Dickey, 1971), has not yet been applied to neuroimaging
roblems, although it has been applied in other fields, from cogni-
ive psychology (Wagenmakers et al., 2010) to cosmological models
Trotta, 2007). The recently proposed post-hoc approach (Friston
nd Penny, 2011) has been developed with neuroimaging models
n mind, and the authors have shown (Friston et al., 2011), using
tochastic DCMs, that there is a very good agreement between the
ptimised and post-hoc model evidences.

In this paper, we explore the relation between optimised and
ost-hoc approximations to the model evidence in the context of
stablished practises in neuroimaging. Most studies of brain con-
ectivity apply deterministic (rather than stochastic) DCM to data,
nder specific experimental paradigms. In addition, the models
sed in Friston et al. (2011),  stochastic DCMs, are linear dynamical
odels, while most DCMs comprise bilinear dynamics correspond-

ng to modulatory effects on brain connections (i.e., the underlying
tate-space model is nonlinear in the hidden states). Here we  test if
he post-hoc method is applicable to (deterministic) bilinear DCMs.

Since the main goal of DCM is to make inferences on the
onnectivity parameters we also compare the estimates of these
arameters obtained with these two approaches. To this end we use
ynthetic and real functional magnetic resonance imaging (fMRI)
ata from a previously published study on attention to visual
otion (Buchel and Friston, 1997). This is the same dataset used

n Friston et al. (2011).  Although we use fMRI data, the methods
escribed here can also be applied to other data modalities and
tatistical models, as long as the models that are compared are
ested.

This paper is structured as follows. In Section 2 we  review
ynamic Causal Modelling for fMRI. We  then focus on model opti-
isation and different approaches to estimate the model evidence

nd connectivity parameters. We  then present and discuss results
rom comparing these approaches using synthetic and real fMRI
ata.

. Methods

In this section we briefly review dynamic causal models (DCM).
e  then turn to model inversion and scoring. We  look at differ-

nt proxies for the model evidence: the optimised free energy
pproximation and the computationally less-expensive post-hoc
pproximation. The former has been the method of choice in the
ypothesis led comparison of DCMs, whilst the latter allow for
ata-led exploration of much larger model spaces. In addition, we
ompare the estimates for the connectivity parameters obtained
ith these two approaches. Finally, we revisit how these approxi-
ations can be used for Bayesian model selection (BMS).

.1. Dynamic causal modelling

Dynamic causal modelling is a mathematical framework to esti-
ate, and make inferences about, the coupling among brain areas

nd how this coupling is influenced by changes in experimen-
al context (Friston et al., 2003). It uses differential equations to
escribe the neuronal activity of interacting cortical regions and a
orward model of how this neuronal activity is transformed into an
bserved response. This framework has been applied to fMRI, Elec-
roencephalographic (EEG) and Magnetoencephalographic (MEG)
Kiebel et al., 2009), as well as Local Field Potential (LFP) data
Moran et al., 2009). Here, we focus on fMRI but the methods
escribed below can also be applied to other data modalities.
Please cite this article in press as: Rosa MJ, et al. Post-hoc sele
http://dx.doi.org/10.1016/j.jneumeth.2012.04.013

Here we consider DCMs for fMRI that employ a deterministic
ilinear model for the dynamics at the neuronal level (neurody-
amics) and an extended Balloon model for the haemodynamic

evel. For non-linear, two-state or stochastic DCMs see Stephan et al.
 PRESS
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(2008),  Marreiros et al. (2009),  and Friston et al. (2011),  respec- 

tively. The deterministic bilinear neurodynamics are described by 

the following multivariate differential equation: 

ż(t) =

⎛
⎝A +

M∑
j=1

uj(t)Bj

⎞
⎠ z(t) + Cu(t), (1) 

where the dot notation denotes the time derivative. The variable 

z describes changes in neuronal activity resulting from the sum of 

three effects. First, the matrix A encodes direct, or fixed, connec- 

tivity between pairs of regions. The elements of this connectivity 

matrix are not a function of the input and can represent both uni- 

directional and bidirectional connections. Second, the elements of 

Bj represent the changes in connectivity induced by the inputs uj. 

These condition-specific modulations or bilinear terms are usually
the interesting parameters. Third, the matrix C encodes the direct
influence of each exogenous input uj on each area. 

The overall structure of fixed, A, modulatory, B, and input, C, 

connectivity matrices constitutes our assumptions about model
structure. This in turn represents a scientific hypothesis about the 

structure of the large-scale neuronal network mediating the under- 

lying cognitive function. 

As mentioned above, DCM for fMRI uses the extended Balloon 

model to describe how changes in neuronal activity give rise to 

the observed fMRI signals for each region. The full derivation of 

the model equations can be found in Buxton et al. (1998) and 

Friston et al. (2000). See also Stephan et al. (2007) for recent 

developments. In brief, for a particular region, neuronal activity, 

z, causes an increase in a vasodilatory signal, s, that is subject to 

auto-regulatory feedback. Inflow, f, responds in proportion to this 

signal with concomitant changes in blood volume � and deoxy- 

haemoglobin content q: 

ds(t)
dt

= z(t) − s(t)
�s

− f (t) − 1
�f

df (t)
dt

= s(t)

�0
d�(t)

dt
= f (t) − �(t)1/˛

�0
dq(t)

dt
= f (t)

E0
[1 − (1 − E0)1/f (t)] − q(t)�(t)(1−˛)/˛.

(2) 

The haemodynamic parameters comprise the rate constant of 

the vasodilatory signal decay, �s, the rate constant for autoregu- 

latory feedback by blood flow, �f, transit time, �0, Grubb’s vessel 

stiffness exponent, ˛, and the resting oxygen extraction fraction, E0. 

For identifiability reasons, only two  of these parameters are esti- 

mated from the data for each region: h = {�s, �0}. The others are set 

to �f =  ̨ = E0 = 0.32. 

The Blood Oxygenation Level Dependent (BOLD) signal, y is then
taken to be a static nonlinear function that comprises a volume- 

weighted sum of extra- and intra-vascular signals: 

h(q, V) = V0

[
k1(1 − q(t)) + k2

(
1 − q(t)

�(t)

)
+ k3(1 − �(t))

]
. (3) 

The factors k1, k2 and k3 are dimensionless but depend on the 

characteristics of the fMRI recording system. For 1.5 T and TE of
40 ms, k1 ∼= 7E0, k2 ∼= 2 and k3 ∼= 2E0 − 0.2. V0 = 0.02 is the resting 

blood volume fraction. 

The parameters, �, for a bilinear DCM, indexed by m,  comprise 

the connectivity matrices as well as the haemodynamic parame- 

ters, i.e. � = {A, B, C, h}. The priors, p(�|m), on both the connectivity 
ction of dynamic causal models. J Neurosci Methods (2012),

and haemodynamic parameters are described in Appendix A. In 176

current implementations of DCM, independent of modality, the 177

model parameters are estimated from the data, y, using Bayesian 178

methods, and models are compared using the model evidence. 179

dx.doi.org/10.1016/j.jneumeth.2012.04.013
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.2. Model evidence

The model evidence, p(y|m), is the probability of obtaining
bserved data, y, given model m,  belonging to model space M.  This
uantity is at the heart of Bayesian model selection (BMS), but,

n general, it is not straightforward to compute, since this com-
utation involves integrating out the dependency on the model
arameters, �:

(y|m) =
∫

p(y|�, m)p(�|m)d� (4)

Sampling or iterative analytic methods can be used to approxi-
ate the above integral. The method of choice to approximate the

vidence for DCMs has been the variational free energy approx-
mation (Friston et al., 2007; Stephan et al., 2010). This method
nvolves individually fitting (optimising) each model to data and
hen approximating the model evidence with a free energy bound.

e  refer to this approximation as the optimised model evidence.
n contrast, Friston and Penny (2011) have proposed a post-hoc
pproximation to the evidence, which is computed by optimising
nly the largest of a set of models. This approach can be viewed as

 generalisation of the well-known Savage-Dickey ratio (Dickey,
971). In addition to the model evidence, the post-hoc scheme
lso provides estimates of the parameters for all reduced models
rom the full (optimised) model. Below we describe the variational
cheme used to optimise DCMs and the two different approaches
o approximate the model evidence and parameters (optimised and
ost-hoc approximations).

.3. Model optimisation

In Bayesian inference, prior beliefs about parameters, �, are
uantified by the prior density, p(�|m), which is specified using bio-
hysical and dynamic constraints. Inference on the parameters, �,
fter observing data, y, is based on the posterior density p(�|y, m).
hese densities are related through Bayes’ rule:

(�|y, m) = p(y|�, m)p(�|m)
p(y|m)

, (5)

here p(y|�, m) is the probability of the data (likelihood) con-
itioned upon the model and its parameters. The normalisation
actor, p(y|m), is the model evidence (Eq. (4)). The posterior density
s an optimal combination of prior knowledge and new observa-
ions, and provides a complete description of uncertainty about the
arameters.

Under Gaussian assumptions, also known as the Variational
aplace (VL) approximation (Friston et al., 2007), the problem of
stimating the posterior density reduces to finding its first two
oments, the conditional mean � and conditional covariance C.

he prior density is also assumed to be Gaussian with mean � and
ovariance  ̇ (see Appendix A).

Non-linear deterministic models, such as DCMs, Eq. (1), can be
inearised by expanding the observation equation about a working
stimate � of the conditional mean:

y = h(�, u) + �
h(�, u) ≈ h(�) + J · (� − �),

(6)

uch that J = ∂h(�) , r = y − h(�) ≈ J · (� − �) + �  and � ∼ N(0, C�),
Please cite this article in press as: Rosa MJ, et al. Post-hoc sele
http://dx.doi.org/10.1016/j.jneumeth.2012.04.013

∂�
here the error covariance is assumed isotropic over the fMRI pre-
ictions, C� = 	2I.

Under the Gaussian assumptions mentioned above, this approx-
mation, Eq. (6),  yields the following equations for the conditional
 PRESS
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mean, �, and precision (inverse of covariance), P = C−1, which can 

be updated recursively in an optimisation scheme, such as VL:

P = JT C−1
� J + ˙−1

� = C(JT C−1
� r + ˙−1�).

(7) 

The variational approximation to the posterior density has been 

verified for DCM for fMRI using Markov Chain Monte Carlo (MCMC) 

(Chumbley et al., 2007). These schemes are more computationally 

intensive but allow one to estimate the posterior density without 

assuming it has a fixed Gaussian form. 

2.3.1. Optimised evidence 

As mentioned before, VL updates the moments of the poste- 

rior density, q(�|y, m)  by maximising the negative variational Free 

Energy (henceforth ‘free energy’, Fm), which provides a lower bound 

on the log model evidence, log p(y|m), Beal and Ghahramani (2003):

log p(y|m) = Fm + KL(q(�)||p(�|y, m)). (8) 

KL is the Kullback–Leibler divergence between the approximate 

and true posterior. This quantity is always positive, or zero when
the densities are identical. 

It is usually assumed that Eq. (8) is a tight bound such that model
comparison can then proceed using Fm as a surrogate for the log- 

evidence. We  call this approximation optimised evidence because it
comes out of the optimisation scheme described above. The Laplace 

approximation to the free energy (Friston et al., 2007) yields an 

estimate, which is not strictly a lower bound on the model evidence 

(Penny, 2012; Wipf et al., 2010). Nevertheless, it provides a very 

useful model comparison criterion (Penny, 2012). 

Other approximations to the optimised model evidence exist, 

including the computationally more expensive Annealed Impor- 

tance Sampling (AIS) method (Beal and Ghahramani, 2003), and the 

simpler but potentially less accurate Bayesian Information Crite- 

rion (BIC) and Akaike Information Criterion (AIC) measures (Penny 

et al., 2004). In extensive simulations of graphical model structures, 

Beal and Ghahramani (2003) found that the variational approach 

outperformed BIC and AIC, at relatively little extra computational 

cost, and approached the performance of AIS, but with much less 

computational cost. In addition, Penny (2012) shows that for the 

comparison of DCMs, the free energy approach also performs better 

than either AIC or BIC. In this work we use the Laplace approxima- 

tion to the free energy (optimised) evidence described above. 

All these approximations to the model evidence, however, 

are based on inverting all models in the model space. This is 

feasible only in a hypothesis driven procedure in which the 

model space comprises a small number of models. In large 

model spaces, optimising all models to obtain the evidences 

rapidly becomes computationally unfeasible. For instance, in 

more exploratory analyses, one might be interested in looking 

at most, if not all, the possible connections and modulatory 

effects. The model space in this case can easily have thou- 

sands or millions of different networks. Below, we  describe a 

less computationally expensive alternative to compute the model 

evidences. 

2.3.2. Post-hoc evidence 

This approach provides the model evidence and parameters
for any nested (reduced) model within a larger (full) model as a 

function of the posterior density of the full model (Friston and 

Penny, 2011). This is a flexible approach that allows for post-hoc 

model selection without the need to invert more than a single 
ction of dynamic causal models. J Neurosci Methods (2012),

model. In DCM the full model may  be, for example, the fully con- 289

nected network and the reduced models would correspond to 290

networks with a sparser connectivity contained within this larger 291

model. 292

dx.doi.org/10.1016/j.jneumeth.2012.04.013
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The method assumes only the existence of a full model, mF ∈ M,
hich shares the same likelihood with the set of reduced models,
i ∈ M and ∀i : mi ≺ mF:

(y|�, mi) = p(y|�, mF ). (9)

This means the reduced models are constructed from the full
odel only by changing the priors on certain parameters �u ⊂ �

s described below. This also implicitly assumes that the hyper-
arameters describing observation noise levels, 
obs, are the same
or the full and reduced models. This is not the case for the opti-

ised model evidence approach, where 
obs are optimised for each
odel.
We  can then use Bayes rule to transform the above equality,

q. (9).  By re-arranging the terms we can write the ratio of model
vidences in terms of the posterior and priors of the full and reduced
odel:

p(y|mi)
p(y|mF )

= p(�|y, mF )
p(�|y, mi)

p(�|mi)
p(�|mF )

(10)

Friston and Penny (2011) consider Eq. (10), under the Laplace
pproximation, as mentioned above. Under this approximation the
osteriors, q, and priors, p, of the full and reduced models are Gaus-
ian densities:

q(�|mi,F ) = N(�i,F , Ci,F ) : Ci,F = P−1
i,F

p(�|mi,F ) = N(�i,F , ˙i,F ) : ˙i,F = ˘−1
i,F

,
(11)

here �i,F and ˘ i,F are the prior means and precisions for the
educed (i) and full model (F), while �i,F and Pi,F are the posterior
eans and precisions. Making use of the assumptions of Eq. (11)

n Eq. (10) the log model evidence for any reduced model can be
ritten as a simple analytic function of the means and precisions

f the prior and posterior of the full and reduced model:

il = log p(y|mi) = 1
2

log
|˘i||PF |
|Pi|||˘F |

− 1
2

(�T
F PF �F + �T

i ˘i�i − �T
F ˘F �F − �T

i Pi�i) + FF . (12)

This is useful because the requisite means and precisions of the
educed model can be derived in a straightforward way  from the
eans and precisions of the full model (see below).
The post-hoc approach can also be viewed as a generalisation

f the Savage-Dickey density ratios (Dickey, 1971), in which the
educed models have certain parameters fixed at zero. To obtain
hese ratios we integrate Eq. (10) over the parameters. To do this
e first partition the parameter space into two subsets of parame-

ers � = {�u, �c}. The subset �u ⊂ � contains all the parameters which
iffer between the full, F, and reduced model, i. The remaining
arameters �c are shared between the models, with equal priors:
(�c|mi) = p(�c|mF). We  refer to �u and �c as the unique and com-
on  parameters, respectively, and assume the priors factorise, i.e.

(�|mi) = p(�u|mi)p(�c|mi). With this notation, we can write Eq. (10)
s follows:∫

p(�|y, mi)
p(y|mi)
p(y|mF )

d� =
∫

p(�|y, mF )
p(�|mi)
p(�|mF )

d�

p(y|mi)
p(y|mF )

=
∫ ∫

p(�|y, mF )
p(�|mi)
p(�|mF )

d�u d�c,
(13)

here
∫

p(�|y, mi)d� = 1. If we then use p(�u, �c|y, mF) = p(�c|�u, y,
Please cite this article in press as: Rosa MJ, et al. Post-hoc sele
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F)p(�u|y, mF) and the fact that the priors over �c are the same for
oth models we obtain the following result:

p(y|mi)
p(y|mF )

=
∫ ∫

p(�c |�u, y, mF )p(�u|y, mF )
p(�u|mi)
p(�u|mF )

d�u d�c

370
and  posterior. The interpretation is very simple: if it is less likely that parameters �
equal 0 after seeing the data (posterior) than before (prior), then p(y|mi)/p(y|mF) < 1
and we have evidence in favour of the full model, mF , and vice-versa.

=
∫

p(�u|y, mF )
p(�u|mi)
p(�u|mF )

d�u. (14) 

When the reduced prior is a point mass (delta function),
p(�u|mi) = ı(�

u
), that fixes the subset of parameters �u to a 

particular value, �
u
, the last equation, Eq. (14), reduces to the 

Savage-Dickey ratio (usually considered when �
u = 0): 

p(y|mi)
p(y|mF )

= p(�u = 0|y, mF )
p(�u = 0|mF )

. (15) 

This ratio has a simple intuitive interpretation: if we  believe it is
more likely that parameters �u are zero after seeing the data than 

before, then p(y|mi)/p(y|mF) > 1 and we have evidence in favour of
the reduced model mi. This is depicted in Fig. 1. 

The posterior of the full model can again be obtained using the 

VL optimisation scheme, q(�|y, mF), described above. Again under 

Gaussian assumptions we can write the previous ratio, Eq. (15), as 

follows: 

Fu
i = log p(y|mi) = 1

2
log

|Pu
F |

|˘u
F | − 1

2
(�uT

F Pu
F �u

F − �uT

F ˘u
F �u

F ) + Fu
F . (16) 

This analytic formula is a special case of the post-hoc approach, 

Eq. (12), to calculate the model evidence of any reduced model as
a function solely of the posterior mean and precision of the full 

model. The difference between Eq. (12) and Eq. (16) is the absence 

of quantities from the reduced model and the fact that all means 

and precisions are taken only for the subset of unique parameters, 

�u, which are not allowed to vary in the reduced model. 

2.3.3. Post-hoc parameters 

Once the full model has been optimised, Eq. (12) can be used 

to compute the model evidences for all reduced models from the 

full model. This results from the fact that, as we  describe in the 

following, the posterior mean and precision of the reduced model
ction of dynamic causal models. J Neurosci Methods (2012),

parameters can also be determined from the mean and precision of 371

the full model. 372

To obtain these estimates we  again assume that the models dif- 373

fer only in the specification of the priors, i.e. they share the same 374
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ikelihood, Eq. (9).  Using this assumption we can subtract the lin-
arised approximation to the conditional precision, Eq. (7), of the
ull model from the precision of the reduced model and eliminate
he terms that do not depend on the priors, such as JT C−1

� J. These
erms are the same for all models and therefore cancel out in the
ubtraction. This yields the following result:

Pi − PF = JT
i

C−1
� Ji + ˘i − JT

f
C−1

� Jf − ˘F = ˘i − ˘F ,

Pi = PF + ˘i − ˘F .
(17)

Following exactly the same procedure we obtain the conditional
ean of the reduced model as a function of the mean of the full
odel and the priors for both models. To summarise, the post-hoc

pproach provides estimates of the parameters (means and preci-
ion) under the Laplace assumption for any reduced model that can
e obtained by inverting only the full model:

Pi = PF + ˘i − ˘F

�i = Ci(PF �F + ˘i�i − ˘F �F ).
(18)

This method is exact for linear models (Friston and Penny, 2011).
n the results section we test the validity of this approximation for
ilinear deterministic DCMs. We  compare the parameter estimates
btained with the post-hoc approach to the variational estimates
btained from optimising all models, using synthetic and real fMRI
ata. Finally, once the model evidence and parameters have been
stimated for each model, m,  using the optimised or post-hoc
pproximations, these estimates can then be used for model selec-
ion as described in the following section.

.4. Bayesian model selection

The posterior model probability, p(m|y), can be obtained from
he model evidence through Bayes’ rule:

(m|y) ∝ p(y|m)p(m), (19)

here p(m) is the prior distribution over models. Selecting the opti-
al  model corresponds to choosing the model m that maximises

he posterior p(m|y). If no model is favoured a priori then p(m) is
 uniform distribution, and the model with the highest posterior
robability is also the model with the highest evidence, p(y|m) (Kass
nd Raftery, 1995).

Given two models, mi and mj, we can compare these models
sing Bayes Factors (BFs), which are defined as the ratio of the cor-
esponding model evidences. Equivalently, log-Bayes factors are
iven by differences in log-evidences:

n Bij = ln p(y|mi) − ln p(y|mj) = Fi − Fj. (20)

Bayes factors have been stratified into different ranges deemed
o correspond to different strengths of evidence (Kass and Raftery,
995). ‘Strong’ evidence, for example, corresponds to a BF of over
0 (log-BF over 3) in favour of model mi when compared to model
j. Under uniform priors, Bayes’ rule gives:

(mi|y) = 1
1 + 1/Bij

, (21)

nd a posterior model probability greater than 0.95 is equivalent to
 Bayes factor greater than 20.

In the following section we evaluate the methods described here
ith a synthetic and real fMRI dataset from an attention to visual
otion paradigm.

. Results
Please cite this article in press as: Rosa MJ, et al. Post-hoc sele
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vidences and parameter estimates with synthetic and real fMRI
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The data were acquired by Buchel and Friston (1997) during an 

attention to visual motion paradigm. This dataset has been used 

to illustrate the post-hoc model selection approach on stochastic 

DCMs (Friston and Penny, 2011), as well as other methodologies 

from psychophysiological interactions (Friston et al., 1997) to Gen- 

eralised Filtering (Friston et al., 2010). This dataset is publicly 

available on the SPM website (http://www.fil.ion.ucl.ac.uk/spm/). 

In this paper we  use ‘DCM10’ as implemented in SPM8, revision 

4010. 

fMRI data were acquired from a normal subject with a 2 Tesla 

Magnetom VISION (Siemens, Erlangen) whole body MRI  system, 

during a visual attention study. Contiguous multi-slice images 

were obtained with a gradient echo-planar sequence (TE = 40 ms; 

TR = 3.22 s; matrix size = 64 × 64 × 32, voxel size 3 × 3 ×3 mm). 

Four consecutive 100 scan sessions were acquired, comprising a 

sequence of ten scan blocks of five conditions. The first was a
dummy  condition to allow for magnetic saturation effects. In the
second, Fixation, the subject viewed a fixation point at the cen-
tre of a screen. In an Attention condition, the subject viewed 250 

dots moving radially from the centre at 4.7◦/s and was asked to 

detect changes in radial velocity. In No attention, the subject was 

asked simply to view the moving dots. In a Static condition, the 

subject viewed stationary dots. The order of the conditions alter- 

nated between Fixation and visual stimulation (Static, No Attention, 

or Attention). In all conditions the subject fixated the centre of the 

screen. No overt response was required in any condition and there 

were no actual changes in the speed of the dots. The data were 

pre-processed and analysed using the conventional SPM analysis 

pipeline (http://www.fil.ion.ucl.ac.uk/spm/), as described in Buchel 

and Friston (1997).  

For this work we  chose three representative brain regions 

defined as clusters of contiguous voxels in an 8 mm sphere sur- 

viving an F-test for all effects of interest at p < 0.001 (uncorrected), 

using SPM. These regions are: the primary visual cortex (V1), [0, 

− 93, 18] mm  in MNI  space, the middle temporal visual area (V5), 

[− 36, − 87, − 3] mm,  and the superior parietal cortex (SPC), [− 27, 

− 84, 36] mm (Buchel and Friston, 1997). The activity of each region 

was summarised with its principal eigenvariate to ensure an opti- 

mum  weighting of contributions from each voxel within the region 

of interest (ROI). 

3.1. Synthetic data 

Model space. Model space comprised 128 models. These models 

have full fixed connectivity (bidirectional connections) between V1 

and V5 and between V5 and SPC (Fig. 2a). We  allowed Motion to 

modulate only the connection from V1 to V5, but Attention was  

allowed to modulate any connection in the network, including the 

three self-connections (one for each region). In total we have 7 con- 

nections that can be modulated by Attention (3 self-connections + 4 

intrinsic connections) resulting in 27 = 128 different models. The 

full model (Fig. 2a) is the model for which Attention modulates all 

these 7 connections. 

We  note that we chose to specify different models by changing 

only modulatory parameters because these connections comprise 

the bilinear terms (B matrices) in Eq. (1).  This way we can evalu- 

ate Eq. (18), which provides estimates for the reduced parameters 

based on the full model, under non-linear conditions. 

We  started by generating data from model 96 by integrating 

the DCM equations (Friston et al., 2003) and adding Gaussian noise 

corresponding to a Signal to Noise Ratio (SNR) of 2.6 (data and 

noise had a standard deviation of about.350 and 0.135, respec-
ction of dynamic causal models. J Neurosci Methods (2012),

tively, SNR = 0.350/0.135 = 2.59), as used in Friston et al. (2011).  488

In this model, Attention only modulates the connection between 489

V1 and V5. Therefore, we refer to this model as the Forward model 490

(Fig. 2b). Fig. 2c shows another example model, in which Attention 491

dx.doi.org/10.1016/j.jneumeth.2012.04.013
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Fig. 2. Model space: (a) Full model. In this model Attention modulates all the intrinsic connections and self-connections. This is the only model that needs to be inverted
in  order to estimate the evidence and parameters of all 27 = 128 models, when using the post-hoc and Savage-Dickey approximations. The following models vary in which
connections are modulated by Attention (dashed arrows). (b) True model from which synthetic data were generated. In this model Attention only modulates the connection
from  V1 to V5. Consequently, we call it the Forward model (as opposed to the Backward model). (c) Backward model: in this model Attention modulates the connection from
SPC  to V5.

Fig. 3. Synthetic data – model evidence: (a) Optimised log-model evidence (relative to worst model) versus post-hoc log-model evidence (128 synthetic models). (b) Same
data  but plotted as a function of graph size (number of edges or modulated connections). The red circles correspond to the post-hoc estimates, while the black correspond
to  the optimised approach. The full circles indicate the best models for each approximation. (For interpretation of the references to colour in this figure legend, the reader isQ3
referred to the web  version of the article.)
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ig. 4. Synthetic data – Bayesian model selection: (a) Optimised model posteriors. T
).  This model is also the best model for both approximations. (b) Post-hoc posterio
he  Forward and Backward model is 1.94 (as expected from Fig. 6).

odulates the connection between SPC and V5. We  refer to this
odel as the Backward model.
To obtain the model evidence and parameter estimates for

ll 128 models using the optimised approach we  had to invert
optimise) all these models. The optimisation procedure took
pproximately 5 h in a 64-bit workstation. In comparison, for the
ost-hoc approach we only had to invert the full model, which took

ess than 2 min.
Model evidence. Fig. 3a shows the optimised model evidence

lotted against the post-hoc evidence for all 128 models. Here the
vidence is relative to the worst model. As can be seen, the post-
oc measures correlate extremely well with the estimates obtained

rom optimising all models (they lie along the y = x line). The actual
orrelation value is almost 1 (r ≈ 1, p-value < 1e−308). Fig. 3b shows
he relative evidences for the two approaches but as a function of
raph size (number of edges). Again, the estimates for the model
vidence obtained using the two approaches are extremely simi-
ar. Reassuringly, the true model (Forward model) has the highest
og-evidence for both approximations and for the correct graph size
full circle): only one connection being modulated, in this case from
rea V1 to area V5.

Using the same synthetic data generated from model 96 (the
orward model in Fig. 2b) we looked at the model posterior proba-
ilities for all 128 models. Again for the optimised approach we

nverted all models, whilst for the post-hoc approach only the
ull model was inverted. As can be seen in Fig. 4, even though, as
Please cite this article in press as: Rosa MJ, et al. Post-hoc sele
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xpected due to the number of models, the posterior mass is diluted
ver the models and no single model has very high probability, the
rue model (marked by the asterisk) has the highest posterior in
oth the optimised and post-hoc approaches.
ta were generated from model 96, Forward model (Fig. 2b) (marked by an asterisk,
abilities. The backward model is model number 126 and the Bayes factor between

Model parameters. We  then looked at the connectivity parame- 

ter estimates obtained with the optimised and post-hoc estimation 

approaches. Fig. 5a shows the true connection strengths that were 

used to generate the data, again from the same model (Forward
model). We  have 7 connections but only one of them (from V1 to 

V5) has a value different from zero. The second row of plots in 

Fig. 5 shows the parameter estimates (mean and 95% confidence 

intervals) obtained with the optimised and post-hoc approaches, 

respectively, corresponding to the best model identified previously 

(Fig. 4). As can be seen, both approaches identify the second param- 

eter as being the only connection significantly different from zero. 

The true parameter value is 0.23 and both the optimised and post- 

hoc posterior means for this parameter are estimated as 0.29. The 

parameter estimates are summarised in Table 1. 

These results show that, even though Eq. (18) is only an approxi- 

mation in the case of non-linear models, it provides good estimates 

for bilinear DCMs. 

Signal-to-noise ratio. The previous results have been obtained 

by generating data from one model and looking at how the differ- 

ent approaches to estimate the evidence and parameters compare 

using a fixed SNR similar to the SNR of the real fMRI dataset. This 

dataset comes from a block design paradigm and therefore has rela- 

tively high SNR. In this section we explore the behaviour of the two 

approaches for different values of SNR. To this end we performed 

two different model comparisons: (i) we  generated data from the 

Forward model and compared this model to another model called 
ction of dynamic causal models. J Neurosci Methods (2012),

the Backward model (Fig. 2); (ii) we  generated data from the full 548

model and compared this model to the Forward model described 549

above. For both these comparisons we  varied the SNR of the data 550

from 0.35 to 3.35 in intervals of 0.1. 551
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ig. 5. Synthetic data – parameter estimates: (a) True parameters from which the d
1  to V5. (b) Optimised and post-hoc parameter estimates for the best model (Fig
orrespond to the 7 connections possibly modulated by Attention.

We  also repeated the data generation, optimisation and model
omparison 10 times for each SNR, in order to have 10 realisations
f the same result. We  then plotted (Fig. 6) the mean log-Bayes fac-
or and 95% confidence intervals for each comparison as a function
f the SNR. To obtain these results with the optimised approach
e had to invert both the Forward and Backward models (first
Please cite this article in press as: Rosa MJ, et al. Post-hoc sele
http://dx.doi.org/10.1016/j.jneumeth.2012.04.013

omparison), and Full and Forward models (second comparison)
or each SNR and realisation. For the post-hoc approach we had
nly to invert the Full model for each SNR and repetition in both
ases.

able 1
arameter estimates: posterior mean and 95% confidence intervals of the best model
btained with the optimised and post-hoc methods for synthetic and real data (first
nd second row of results for each connection, respectively). The subscript op means
ptimised, and ph means post-hoc.

Data Connection �true �op �ph

Parameter estimates
Synthetic V1 0 0.00 ± 0.00 0.00 ± 0.00
Real – 0.80 ± 0.45 0.80 ± 0.45

V1 → V5 0.23 0.29 ± 0.10 0.29 ± 0.10
– 1.14 ± 1.08 1.14 ± 1.08

V5 → V1 0 0.00 ± 0.00 0.00 ± 0.00
– −0.79 ± 0.52 −0.79 ± 0.52

V5 0 0.00 ± 0.00 0.00 ± 0.00
– 0.85 ± 0.96 0.85 ± 0.96

V5 → SPC 0 0.00 ± 0.00 0.00 ± 0.00
– 0.00 ± 0.00 0.00 ± 0.00

SPC → V5 0 0.00 ± 0.00 0.00 ± 0.00
– −2.79 ± 1.16 −2.79 ± 1.16

SPC 0 0.00 ± 0.00 0.00 ± 0.00
– 0.00 ± 0.00 0.00 ± 0.00
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ere generated; Only the second parameter is modulated: forward connection from
he error bars correspond to 95% confidence intervals. The parameters 1–7 (x axis)

Fig. 6a shows that, as expected, the log-Bayes factors increase 

with higher SNR. However, our simulations suggest that the opti- 

mised approach seems to reach significant results (log-Bayes factor 

higher than 3) slightly faster than the post-hoc approach. The fact 

that the log-Bayes factors are positive (with increasing SNR) means 

that both methods are selecting the true model as the best model, 

with increasing confidence. One other thing to note is that the error
bars are relatively smaller for the post-hoc approach, suggesting 

that the results for the optimised evidence are more inhomoge- 

neous. At low SNR (below 1) the log-Bayes factors are close to zero 

with the error bars enclosing this number, as expected. In this case 

none of the methods select a winning model. However, for very 

low SNR (first two  points) both methods seem to slightly prefer 

the backward model (BF < 1). This result might be due to the dif- 

ficulty of estimating the models under very low SNR conditions, 

which can lead to inaccurate model selection results with both 

methods. 

The results for the second comparison, where the true model is 

the full model (Fig. 6b), are very similar. The log-Bayes factors for 

the optimised approach increase significantly faster than the post- 

hoc approach, but the error bars are again slightly bigger. Here too 

the log-Bayes factors increase positively, which means that both 

methods are selecting the full model as the best model, even though 

this model is penalised for extra complexity. However, in the low 

SNR case (first 4 points, between 0.35 and 0.65) both methods seem 

to select the Forward model as the best model (negative Bayes fac- 
ction of dynamic causal models. J Neurosci Methods (2012),

tors). This means that in the almost complete absence of data (i.e. 588

presence of high levels of noise), the full model is highly penalised 589

and both model selection methods prefer the simpler hypothesis, 590

the Forward model. 591
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ig. 6. Signal-to-noise ratio – Bayes factors: (a) log-Bayes factors (between the for
5%  confidence intervals) as a function of the signal to noise ratio used to generate th
veraged over 10 repetitions of the same comparison (with 95% confidence interva

We  then regressed the post-hoc evidences onto the optimised
vidences and looked at the regression coefficients. In Fig. 7 we
lot these coefficients for both comparisons (Fig. 7a and b). As can
Please cite this article in press as: Rosa MJ, et al. Post-hoc sele
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e seen in the first case (Fig. 7a) the regression coefficients are all
ignificantly different from zero and seem to slightly increase as

 function of SNR. In the full versus forward model case (Fig. 7b)

ig. 7. Signal-to-noise ratio – regression: (a) regression coefficients (and 95% confidence
odel,  true model, to the backward model) as a function of the signal to noise ratio; (b) reg

ayes  factors (comparing the full model, true model, to the forward model) as a function 
and backward model) averaged over 10 repetitions of the same comparison (with
a (from forward model); (b) log-Bayes factors (between the full and forward model)

 function of the signal to noise ratio used to generate the data (from full model).

the results are very similar. Again all coefficients are significantly 

different from zero and increase as a function of SNR.
The previous results show that there is a linear relationship 
ction of dynamic causal models. J Neurosci Methods (2012),

between the optimised and post-hoc measures (even in low SNR 601

conditions) and that this relationship increases with increasing 602

SNR. 603

 intervals) between optimised and post-hoc Bayes factors (comparing the forward
ression coefficients (and 95% confidence intervals) between optimised and post-hoc
of the signal to noise ratio.
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Fig. 8. fMRI data – model evidence: (a) Optimised log-model evidence (relative to worst model) versus post-hoc log-model evidence (128 models). (b) Same data but plotted
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In summary, the results obtained with synthetic data show that
oth approximations to the model evidence presented here yield
imilar results but the post-hoc approach reduced the computation
ime from a couple of minutes per model to a couple of seconds. In
ddition, even though the SNR of this dataset is relatively high (it is a
lock rather than event-related design) the post-hoc approach was
lso able to obtain the true model in lower SNR scenarios. The post-
oc estimates of the connectivity strengths were also very similar
o the optimised and true estimates.

.2. fMRI data

After testing the methods on synthetic data we turned to the
MRI dataset acquired by Buchel and Friston (1997).  Here we used
he time-series from the three brain regions V1, V5 and SPC for one
ubject as described above.

Model space. We  used the same set of 128 models as defined
efore. The full model is the same full model used with syn-
hetic data, in which Attention modulates all intrinsic connections
etween the three areas, as well as their three self-connections
Fig. 2a). In the optimised approach all 128 models were fitted to
he fMRI signals. This took roughly the same amount of time to fit
he synthetic data, since we used a similar signal to noise ratio to
he real data. In the post-hoc approach only the full model was fit-
ed to the fMRI data. Again this approach computed the evidences
or all models in a few seconds.
Please cite this article in press as: Rosa MJ, et al. Post-hoc sele
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Model evidence. We  plotted the post-hoc evidences against the
odel evidence obtained with the optimisation approach. As sug-

ested by the results obtained with synthetic data, these measures
orrelate extremely well with the optimised evidences for this
orrespond to the post-hoc estimates, while the black correspond to the optimised
ation of the references to colour in this figure legend, the reader is referred to the

dataset (Fig. 8a), where r ≈ 1 (p-value < 1e−308). The best model 

identified by the optimised evidence is the same model (model 6)
for the post-hoc approach. This model corresponds to a graph-size 

of 5, meaning that Attention modulates five connections (Fig. 8b): 

self-connections of V1 and V5, plus connections from V1 to V5, V5 

to V1, and SPC to V5. 

Fig. 9 shows the model posteriors obtained with both 

approaches for all 128 models using real fMRI data. As shown above 

(Fig. 8b), both methods identify model 6 as the best model with 

posterior probability close to 0.16. 

Model parameters. The parameter estimates (means and 95% 

confidence intervals) for the best model (model 6) are very sim- 

ilar for both approaches (Fig. 10). We  can see that 5 of the total of 

7 parameters seem to have values different than zero (although 

the error bars cross the zero line for the fourth parameter), as 

suggested by the best model by graph size in Fig. 8b (graph size 

5). The values estimated for each connection are summarised in 

Table 1. 

In summary, the results obtained with the real fMRI dataset are 

very similar to the ones obtained for synthetic data. Again the opti- 

mised and post-hoc methods provide very similar results both for 

the evidences and model parameters. 

4. Discussion 

In this paper we  present and evaluate a recent approach, post- 
ction of dynamic causal models. J Neurosci Methods (2012),

hoc approach (Friston and Penny, 2011), for estimating the model 656

evidence and parameters of deterministic DCMs. This method offers 657

substantial computational advantages to the variational free energy 658

approach that is currently used (Friston et al., 2007). 659

dx.doi.org/10.1016/j.jneumeth.2012.04.013
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Fig. 9. fMRI data – Bayesian model selection: (a) Optimised model posteriors.

Our results show very good agreement between optimised and
ost-hoc model evidences, for both synthetic and real fMRI data.
his suggests that the post-hoc method offers valid estimates of
he evidence with little computational cost. The post-hoc approach
educed the computation time needed to optimise and compare
Please cite this article in press as: Rosa MJ, et al. Post-hoc sele
http://dx.doi.org/10.1016/j.jneumeth.2012.04.013

undreds of models from several hours to a few minutes.
The reason why in some cases (e.g. when comparing the

ull versus a much smaller model (Fig. 6b)), the difference in

ig. 10. fMRI data – parameter estimates: Optimised and post-hoc parameter estimates
ntervals. The parameters 1–7 (x axis) correspond to the 7 connections possibly modulate
est model, model 6, is marked by an asterisk, *. (b) Post-hoc model posteriors.

log-evidences obtained by the post-hoc approach grows slower 

with SNR than the optimised approach, lies in the hyperparame- 

ter estimates. In the post-hoc approach the hyperparameters are 

assumed to be the same for all models (equal to the estimates 

for the full model), while in the optimised approach they are esti- 
ction of dynamic causal models. J Neurosci Methods (2012),

mated for all models. When two  similar models (e.g. forward versus 673

backward model (Fig. 6a)) are compared, there are no significant 674

differences in the behaviour of the two methods with SNR. This 675

 for the best model, model 6 (Fig. 9). The error bars correspond to 95% confidence
d by Attention.

dx.doi.org/10.1016/j.jneumeth.2012.04.013
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esults from the fact that the hyperparameters estimated by the
ptimised approach do not vary significantly (p-value > 0.05 for all
NRs – full results not shown) between the models, and there-
ore both approaches obtain similar log-evidence differences even
or high SNRs. However, when two very different models (e.g. full
ersus forward model) are compared, for high SNRs (e.g. 3.5), the
ifference in the hyperparameter estimates between models can be
ignificant (p-value < 0.05 for SNRs higher than 2.5 – full results not
hown). These estimates enter in the calculation of the optimised
og-evidence and, for this reason, the optimised approach is more
onfident (bigger differences in log-evidences) for high SNRs than
he post-hoc approach. This disparity, however, does not hinder the

odel comparisons since both approaches identify the same best
and true) model in the full range of SNRs studied.

The post-hoc method also provides estimates of the model
arameters. Here we found that the post-hoc and optimised
pproaches yield very similar results. We  have also shown that the
ost-hoc approach for estimating the model parameters, which is
xact for linear models (assuming the hyperparameters are con-
tant), seems to be a reasonably good approximation for non-linear
odels, such as DCMs. This results from the fact that by construc-

ion the models differ only in their priors. The model structure is
he same for all models, and therefore their first-order approxi-

ation should also be the same. Although (bilinear) DCMs are not
ery non-linear, the degree of non-linearity should not affect the
ost-hoc estimates more than it affects the optimised approach.
his is because the optimisation procedure that is implemented
y the Variational Laplace algorithm, linearises the models at each

teration so as to obtain the posterior means and precisions.
As an aside, we note that we have also compared the post-hoc

pproximation to the model evidence, Eq. (12), to the Savage-
ickey approximation, Eq. (16), which is a special case of the

ormer. As expected, these two measures yielded numerically iden-
ical results, including identical model posteriors. Moreover, when
e regressed the Savage-Dickey Bayes-factors onto the post-hoc
ayes-factors for a wide range of SNRs (same as described in Sec-
ion 3), we obtained regression coefficients equal to 1 for all SNRs.

Although the post-hoc approach is very computationally effi-
ient, the number of possible models to compare can rapidly
xplode when considering networks with many regions and all pos-
ible connections between them. In this case, it might be impossible
o compute the evidences and parameters for all models and one

ight have to sample the space of models. For instance, Pyka et al.
2011) use genetic algorithms to accelerate model selection of large
umbers of DCMs. We  are currently working on greedy searches
nd stochastic search algorithms that efficiently compute the post-
oc evidences and parameter estimates in arbitrarily large model
paces.

To conclude, our results provide evidence supporting the use
f the post-hoc method proposed by Friston and Penny (2011) for
odel selection (and parameter inference) of bilinear deterministic
CMs.

. Software

The software used for this work is available in the SPM8 software
ackage (http://www.fil.ion.ucl.ac.uk/spm/).
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Appendix A. Priors 

In this paper we  used the priors from ‘DCM10’ as implemented 

in SPM8 (revision 4010). The priors on both the connectivity and 

haemodynamic parameters are assumed to be Gaussian and fac- 

torise over parameter types: 

p(�|m) = p(A|m)p(B|m)p(C|m)p(h|m). (A.1) 

The priors on the fixed parameters (A) depend on the number 

of regions, n, to encourage stable dynamics. The priors on the fixed 

self-connections (Aii) are defined as follows: 

p(Aii|m)  = N(−1/2, 	2
ii ), (A.2) 

where 	2
ii

= 1/(8 × n). In our case n = 3 regions, therefore 

	ii = 0.0417. The priors on the rest of the fixed parameters (Aij) are 

calculated as follows:

p(Aij|m)  = N
(

1
(64 ∗ n)

,
8
n

+ 1
(8 × n)

)
. (A.3) 

In our case, this yields p(Aij|m) = N(0.0052, 2.7083). The rest of 

the connectivity parameters (modulatory and input parameters) 

have shrinkage priors: 

p(Bk
ij
|m)  = N(0, 1),

p(Cij|m) = N(0, 1).
(A.4) 

The unknown haemodynamic parameters are h = {�s, �0}. These 

are represented as 

�s = 0.64 exp(��s )
�0 = 2 exp(��0 ),

(A.5) 

and have Gaussian priors: 

p(��s ) = N(��s ; 0, 0.135)
p(��0 ) = N(��0 ; 0, 0.135).

(A.6) 

The overall prior density can then be written as p(�|m) = N(�, 

˙),  where � and  ̇ are concatenations of the above means and 

variances. 
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