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OOThis technical note describes the construction of posterior probability maps (PPMs) for Bayesian model

selection (BMS) at the group level. This technique allows neuroimagers to make inferences about regionally
specific effects using imaging data from a group of subjects. These effects are characterised using Bayesian
model comparisons that are analogous to the F-tests used in statistical parametric mapping, with the
advantage that the models to be compared do not need to be nested. Additionally, an arbitrary number of
models can be compared together. This note describes the integration of the Bayesian mapping approach
with a random effects analysis model for BMS using group data. We illustrate the method using fMRI data
from a group of subjects performing a target detection task.
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Introduction

Given a set of candidate hypotheses, or models, scientists can use
Bayesian inference to update their beliefs about the respective
hypotheses, in light of new experimental data. The most likely
hypothesis can then be identified usingBayesianmodel selection (BMS).

BMS is based on the model evidence, i.e., the probability of
obtaining observed data, y, given model m, p(y|m). In a group study,
one obtains a separate evidence value for each model and for each
subject. Under the assumption that the data are independent from
subject to subject, these evidence values can be multiplied together to
produce a single evidence value for each model. The ratio of resulting
model evidences then forms what is known as the group Bayes factor
(Stephan and Penny, 2007).

In more recent work, Stephan et al. (2009) have shown that the
group Bayes factor approach corresponds to what is more generally
known as a fixed effects analysis (Penny and Holmes, 2006). The fixed
effects (FFX) approach can be understood from a generative model
perspective inwhich a vector of values r correspond to the frequencies
of models used in the population at large. FFX then assigns a model,
drawn using r, to be used by all members of the group. A drawback of
the FFX approach is that it does not account for between-subject
variability which can make the resulting inferences over-confident.
Additionally, it is not robust to the presence of outliers.

Stephan et al. (2009) contrast the FFX approach with a proposed
random effects (RFX) approach, in which a (potentially different)
model is assigned to each member of the group. Stephan et al. (2009)
then describe Bayesian estimation procedures for obtaining the
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Dposterior distribution p(r|Y), where Y comprises data from all subjects.

Contrary to the FFX approach, this method correctly takes into
account the variability between subjects and is also robust to outliers.

In earlier work, Penny et al. (2007) have developed Bayesian
spatiotemporal models for fMRI data, which provide within-subject
model evidence maps. Voxel-wise comparison of these maps allows
neuroimagers to make inferences about regionally specific effects.
These comparisons are analogous to the F-tests used in statistical
parametric mapping (Friston et al., 2007), with the advantage that the
models to be compared do not need to be nested. Additionally, an
arbitrary number of models can be compared together.

The Bayesian approach is useful when there is no natural nesting of
hypotheses. A trend in recent neuroimaging research, for example, is
to fit computational models to behavioural data, and then to use
variables from these data fits as regressors in general linear models of
fMRI data (Montague et al., 2004; Behrens et al., 2008). A natural
extension of this approach is to derive different sets of regressors from
different computational models, and so allow fMRI to provide
evidence in favour of one model or another. An example in the field
of behavioural control would be to compare different models of ‘value
updating’ (e.g., the Rescorla–Wagner model versus the temporal
difference model (Montague et al., 2004)).

In this technical note, we describe the combination of the mapping
approach for providing log-evidencemaps for eachmodel and subject,
with the RFX approach described in Stephan et al. (2009). This
procedure constructs posterior probability maps (PPMs) for BMS
inference at the group level. We illustrate the method using fMRI data
from a group of subjects performing a cued two-choice reaction time
task and compare it with a FFX analysis of the same data.

The note is structured as follows. In the next section, we briefly
revisit the model evidence. We then describe the commonly used FFX
ion maps for group studies, NeuroImage (2009), doi:10.1016/j.
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Fig. 1. Graphical models underlying (A) fixed and (B) random effects inference on
model space at the group level. FFX assigns a model, drawn using r, to be used by all
members of the group, while for RFX, a (potentially different) model is assigned to each
member of the group. Mult(m;1, r) corresponds to Mult(m; N, r), when the number of
observations N is equal to 1. See the main text for a detailed explanation of the two
different inference approaches.
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approach, and the recently developed RFX approach for BMS at the
group level. We then proceed to describe how BMS maps can be
constructed from previously estimated log-evidence maps and, in the
Results section, apply this method to fMRI group data from a target
detection task.

Theory

Model evidence

The model evidence, p(y|m), is the probability of obtaining
observed data, y, given model, m, and is at the heart of Bayesian
model selection (BMS). In general, the model evidence is not
straightforward to compute, since this computation involves inte-
grating out the dependency on the model parameters, θ:

p y jmð Þ = R
p y jθ;mð Þp θ jmð Þdθ ð1Þ

Sampling or iterative analytic methods can be used to approximate
the above integral. A common technique used in neuroimaging is the
variational Bayes (VB) approach (Penny et al., 2003). This is an
analytic method that can be formulated by analogy with statistical
physics as a gradient ascent on the “negative free energy,” F(m), of the
system. In other words, the aim of VB is to maximise F(m) with
respect to a variational density, or approximate posterior density q(θ),
maximising a lower bound on the logarithm of the model evidence
(log-model evidence) (Beal, 2003):

logp y jmð Þ = F mð Þ + KL q θð Þjjp θ jy;mð Þð Þ: ð2Þ

The last term in Eq. (2) is the Kullback–Leibler (KL) divergence
between the approximate posterior density, q(θ), and the true
posterior, p(θ|y, m). This quantity is always positive, or zero when
the densities are identical, and therefore log p(y|m) is bounded below
by F(m). By iterative optimisation, the KL divergence is minimised and
F(m) becomes an increasingly tighter lower bound on the desired log-
model evidence. Under the assumption that this bound is tight, BMS
can then proceed using F(m) as a surrogate for the log-model evidence.

The variational Free Energy is but one approximation to the model
evidence, albeit one that is widely used in neuroimaging (Woolrich et
al., 2004a; Sato et al., 2004). Other approximations include the
computationally more expensive annealed importance sampling
(AIS) method (Beal and Ghahramani, 2003), and the simpler but
potentially less accurate Bayesian information criterion (BIC) and
Akaike information criterion (AIC) measures (Penny et al., 2004). In
extensive simulations of graphical model structures, Beal and
Ghahramani (2003) found that the variational approach outper-
formed BIC, at relatively little extra computational cost, and
approached the performance of AIS, but with much less computa-
tional cost.

Bayesian model selection

The ratio of model evidences is known as the Bayes factor (BF).
Given uniform priors over models, the posterior model probability is
greater than 0.95 if the BF is greater than 20. Bayes factors have also
been stratified into different ranges deemed to correspond to different
strengths of evidence. ‘Strong’ evidence, for example, corresponds to a
BF of over 20 (Kass and Raftery, 1995). In a group study, one obtains a
separate model evidence value for each model k and for each subject
n. The following sections describe two different approaches for model
inference at the group level.

Fixed effects
Until very recently, most group studies have adopted what is

known as the group Bayes factor (GBF) approach (Stephan and Penny,
Please cite this article as: Rosa, M.J., et al., Bayesian model select
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2007). The GBF can be obtained by simply multiplying the individual
BFs for all N subjects (assuming subjects are independent):

GBFi; j =
YN

n=1

BF nð Þ
i; j

logGBFi; j =
XN
n=1

logp yn jmnið Þ−
XN
n=1

logp yn jmnj

� �
;

ð3Þ

where the subscripts i and j denote the i-th and j-th models being
compared. The log GBF is therefore simply the difference of the model
evidences aggregated over subjects. Although this is a straightforward
method for model selection and has been used in a number of
neuroimaging studies (Summerfield and Koechlin, 2008; Stephan et
al., 2007). Stephan et al. (2009) have recently shown that the group
Bayes factor approach corresponds towhat ismore generally knownas
a fixed effects (FFX) analysis. The FFX approach can be understood
from a generativemodel perspective inwhich a probability vector, r=
[r1, ..., rk], with 0 ≤ rk ≤ 1 and

Pk
k = 1 rk = 1, represents frequencies of

models used in the population at large. FFX then assigns amodel (from
the Kmodels considered), drawn using r, to be used by all members of
the group (Fig. 1A). This approach, as is the case with FFX approaches
based on effect size (Penny and Holmes, 2006), does not therefore
correctly take into account between-subject variability.

Random effects
In contrast to the FFX approach, Stephan et al. (2009) have

developed a hierarchical model for making inferences on the posterior
density of the model frequencies themselves, p(r|Y), given the data
from all subjects, Y. This method can be viewed as a random effects
(RFX) approach, in which a (potentially different) model is assigned
to eachmember of the group (Fig. 1B). In other words, the assignment
of different models to subjects is treated as a random process. The
corresponding random variables are drawn from a density, p(r|α),
which then defines a distribution on how likely it is that model k
generated the data for subject n, p(mnk =1)=rk, where mnk∈{0, 1}
and

PK
k = 1 mnk = 1. Because, for each subject, this latter distribution

has amultinomial form (i.e., each subject uses eithermodel k=1, 2, ...,
K), it is natural to choose p(r|α) as a Dirichlet density, as the Dirichlet
is conjugate to the multinomial (Bernardo and Smith, 2001). The
parameters of this Dirichlet, α=[α1, ..., αK], are related to the
unobserved ‘occurrences’ of the models in the population.
ion maps for group studies, NeuroImage (2009), doi:10.1016/j.

http://dx.doi.org/10.1016/j.neuroimage.2009.08.051
http://dx.doi.org/10.1016/j.neuroimage.2009.08.051


181

182

183

184

185

186

187

188189
190

191

192

193194
195

196

197

198

199

200

201202
203

204

205

206

207

208

209

210211
212

213

214

215216
217

218219
220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

3M.J. Rosa et al. / NeuroImage xxx (2009) xxx–xxx

ARTICLE IN PRESS
UN
CO

RR
EC

The same authors then describe an estimation procedure to invert
this hierarchical model and estimate the posterior distribution over r.
Briefly, this optimisation scheme begins by assuming that each model
has been ‘observed’ once, α0=[1, ..., 1], and proceeds by updating
estimates of α until convergence. The following pseudo-code
schematizes this iterative procedure and the quantities computed at
each step:

α = α0
until convergence

compute gnk
compute β
update α = α0 + β

end:

ð4Þ

In the first step, the normalised posterior belief that model k
generated the data from subject n, n, gnk, is computed using the
following equations:

unk = exp log p yn jmnkð Þ + W αkð Þ− W αSð Þð Þ

un =
XK

k=1

unk

gnk =
unk

un
;

ð5Þ

where log p(yn|mnk) is the log-model evidence from subject n and
model k, Ψ is the digamma function, Ψ(αk)=∂logΓ(αk)/∂αk, and
αS=Σkαk. For the results in this paper, we use the variational free
energy approximation to the model evidence, as described in Penny
and Flandin (2007). In the next step, the expected number of
subjects whose data are believed to have been generated by model
k is computed for all models:

βk =
X
n

gnk: ð6Þ

Finally, using the result from the previous step, the α parameters
are updated (Eq. (4)).

After optimisation, the posterior distribution p(r|Y; α) can be used
for model inference at the group level. One can, for instance, use this
distribution to compute the expected multinomial parameters, 〈rk〉,
which encode the expected posterior probability of model k being
selected for a randomly chosen subject:

hrki = αk = α1 + ::: + αKð Þ; ð7Þ

Another option is to use p(r|Y; α) to compute an exceedance
probability, φk, which corresponds to the belief that model k is more
likely than any other (of the Kmodels compared), given the data from
all subjects:

uk = p
Y
j ≠ k

rk N rj jY;α
0
@

1
A: ð8Þ

Exceedance probabilities are particularly intuitive when comparing
just two models (see, for example, Fig. 6B) as they can be written:

u1 = p r1 N r2 jY;αð Þ = p r1 N 0:5 jY;αð Þ: ð9Þ

In the next section, we describe how this approach can be applied
voxel-wise to previously obtained log-evidence maps, in order to
construct posterior probability maps and exceedance probability
maps for Bayesian inference at the group level.

Bayesian model selection maps

Within-subject maps
In an earlier work, Penny et al. (2005) developed a Bayesian

spatiotemporal model for fMRI data, which allows inferences to be
Please cite this article as: Rosa, M.J., et al., Bayesian model select
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made about regionally specific effects using posterior probability
maps (PPMs). Similar approaches have been developed previously by
Hartvig and Jensen (2000) and Woolrich et al. (2004b). PPMs
represent images of the probability that a contrast of parameter
estimates exceeds some specified threshold and their construction
has previously been described in Friston and Penny (2003).

The model developed by Penny et al. (2005) extends previous
Bayesian modelling approaches for fMRI (Friston et al., 2002a,b) by,
among other things, introducing a spatial prior on the regression
coefficients. This prior embodies the knowledge that activations
are spatially contiguous and results in an ability to detect more
subtle activations. Although this spatial prior was initially two-
dimensional (limited to voxels contained in the same slice), this
work has since been extended to three-dimensional priors (Harrison
et al., 2008).

In more recent work, Penny et al. (2007) have shown how the
model evidence can be used to construct within-subject PPMs for
model selection. As compared to model comparison based on F-tests
using classical inference, this approach has the advantage of allowing
the comparison of non-nested models. Additionally, it allows for the
simultaneous comparison of an arbitrary number of models. As
compared to earlier work (Friston and Penny, 2003) based on PPMs of
effect size, the approach is advantageous in not requiring an effect size
threshold.

In this technical note, we have combined the mapping approach
used in Penny et al. (2007) to provide log-evidence maps for each
model and subject, with the RFX approach described in Stephan et al.
(2009) in order to produce group maps for model selection.

Group maps
Once the log-evidence maps have been estimated for each subject

and model, as described above, it is possible to construct between-
subject posterior probability maps that enable inference on model
space at the group level. These maps are created by applying the RFX
approach described above at every voxel, i, of the log-evidence data,
which produces a family of posterior distributions, p(rki|Yi). We can
then construct the PPMs for each model k by plotting the posterior
expectation, 〈rki|Yi〉 for every voxel i (Eq. (7)) at which the value
exceeds a user-specified threshold, γ.

In addition to the group-level PPMs, the RFX approach also allows
the construction of exceedance probability maps (EPMs). These
constitute an exceedance probability for each voxel i, φki (see
Eq. (8)) and for each model k. Again, these maps are thresholded at
a user-specified value γ.

The maps described here can be constructed as whole-brain
images or images from selected regions of interest. The latter can be
created by specifying a mask image, which limits the construction of
the maps to voxels contained in the mask. Such masks can be created,
for example, using a functional localiser analysis (Friston et al., 2006).
The overall approach for creating BMS maps for group studies is
shown in Fig. 2.

It is also possible to create groupmaps using an FFX rather than the
above RFX approach. This is implemented simply by summing the log-
evidence images over subjects for each model (see Eq (3)). Posterior
model probabilities are then obtained by exponentiating the resulting
sums and normalising to unity.

Results

In this section, we illustrate the application of our method to fMRI
data acquired from subjects performing a simple Posner-type cued
target detection task. Imaging data were recorded using a Siemens
VISION system (Siemens, Erlangen, Germany) operating at 2 T. A total
of 330 functional volumes (28 slices) were recorded for each subject,
using T2⁎-weightedMRI transverse echo-planar images (EPI) (64×64
matrix, 3×3×5 mm3 voxel size, TE=40 ms) with blood oxygenation
ion maps for group studies, NeuroImage (2009), doi:10.1016/j.
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using a threshold, γ, to visualise the resulting image. See the main text for a detailed explanation of the different steps involved in this procedure.
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level dependent (BOLD) contrast. Effective repetition time (TR) per
volume was 2.15 s.

Imaging data were preprocessed using Statistical Parametric
Mapping (SPM5, Wellcome Trust Centre for Neuroimaging, http://
www.fil.ion.ucl.ac.uk/spm/) implemented in Matlab 6 (The Math-
works Inc., USA). Functional volumes were realigned and unwarped
(Andersson et al., 2001), and the resulting volumes were normalised
to a standard EPI template based on the Montreal Neurological
Institute (MNI) reference brain in Talairach space (Talairach and
UN
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Fig. 3. Group-level PPMs for the ‘Validity’ model from (A) fixed and (B) random effects ana
thresholded to show regions where the posterior model probability of the ‘Validity’ mod
variability and, consequently, can appear over-confident.

Please cite this article as: Rosa, M.J., et al., Bayesian model select
neuroimage.2009.08.051
TE
DTournoux, 1988) and resampled to 3×3×3 mm voxels. The time

series in each voxel were high pass filtered at 1/128 Hz to remove low
frequency confounds and scaled to a grand mean of 100 over voxels
and scans within each session.

Twelve subjects responded to a right- or left-sided target (“+O” or
“O +”) appearing for 250 ms on a screen by spatially compatible
button presses using the right and left index finger, respectively. The
target was preceded by a visuospatial cue (“b + b” or “N + N”)
presented for 250 ms and appearing 1000 ms before the target. Four
lysis. The maps therefore show brain regions encoding cue validity. These maps were
el is greater than γ=0.75. The FFX approach does not account for between-subject

ion maps for group studies, NeuroImage (2009), doi:10.1016/j.
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The position of the crossbars (Talairach coordinates: [−21, −73, 59] mm) indicates a
cluster that is only visible for the FFX maps, suggesting that this approach may be over-
confident.
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different event types were presented randomly: validly cued right and
left button presses (66 trials each), and invalidly cued right and left
button presses (17 trials each). During null events (165 trials), the
central fixation cross was maintained with no presentation of cue or
target, and no corresponding button press. The intertrial interval was
2000 ms. Responses were recorded by computer using COGENT
Cognitive Interface Software (Wellcome Trust Centre for Neuroima-
ging, London, UK).

Nested models

To construct the BMS maps described above, we began by
specifying two different models for the acquired fMRI data.

First, we specified a ‘Validity’model (model 1), including a column
of 1's for the session mean and additional regressors for validly and
invalidly cued trials. These two regressors were parametrically
modulated by reaction times. Second, we specified a ‘Null’ model
(model 2) comprising a single column for the session mean.
Comparison of these two models could therefore be implemented
using a standard F-test approach with classical SPMs, because model 2
is nested within model 1. More generally, however, the BMS approach
does not require the models to be nested (see below).

Each model was estimated with SPM5, using the first-level
Bayesian estimation procedure described in Penny et al. (2005).
This produced a voxel-wise whole-brain log-model evidence map
for every subject and model estimated (see left panel of Fig. 2).
UN
CO

R

Fig. 5. Posterior model probabilities obtained by comparing the ‘Validity’ and ‘Null’ model
coordinates), using a (A) fixed and (B) random effects analysis. For the RFX analysis, we in
produces lower posterior probabilities for model 1 than does the FFX approach.
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These maps were then smoothed with an 8 mm half width Gaussian
kernel.

We then applied the RFX approach described above to the group
model evidence data in a voxel-wisemanner. This procedure yielded a
posterior probability map (PPM) and exceedance probability map
(EPM) for each model. In addition, we compared these PPMs with
those obtained using a FFX analysis.

Fig. 3 shows the group-level PPMs for the ‘Validity’ model (model
1) constructed using the FFX (A) and RFX (B) method, and
thresholded in order to show the brain regions where the posterior
probability for model 1 is above γ=0.75.

These regions show strong evidence in favour of the ‘Validity’
model. More specifically, these regions comprise brain areas one
would a priori expect to be generally involved in a Posner-type task as
used in the example data set presented here (Rounis et al., 2006),
including motor areas (peak voxel Talairach coordinates [x, y, z] in
millimeters: left supplementary motor area [0, 5, 56], right precentral
gyrus [33,−4, 53], and left precentral gyrus [−51,−4, 56]) as well as
visual- and attention-related regions (Talairach coordinates [x, y, z] in
millimeters: right inferior temporal gyrus [57, −67, 2], left inferior
temporal gyrus [−51, −76, 2], and left middle temporal gyrus [−54,
−73, 5]). Fig. 3 shows that the FFX and RFX approaches for inference
on model space yielded similar results. However, because the FFX
approach does not accommodate between-subject variability the
resulting inferences are somewhat over-confident. This is also
illustrated in Fig. 4 where, for example, the position of the crossbars
indicates a cluster that is only visible for the FFX maps.

The probabilities obtained for bothmodels at the peak voxel of this
cluster are shown in Fig. 5. As can be seen, the RFX analysis produces
lower posterior probabilities for model 1 than does the FFX approach.
Moreover, this probability is approximately 0.7 (Fig. 5B), which is
slightly below the threshold, γ=0.75, used for constructing the maps
in Fig. 4. For this reason the corresponding cluster is missing in the
RFX map (Fig. 4B).

Fig. 6A plots the exceedance probability map (EPM) for the
‘Validity’ model using a threshold of γ=0.95. For this model, the
exceedance probability is given by φi1=p(ri1N0.5) and Fig. 6A plots
φi1 only at those voxels for which φi1Nγ. This map is similar to the
PPM shown in Fig. 3B, which plots 〈ri1〉 at those voxels for which
〈ri1〉Nγ.

To better illustrate what is being plotted in Fig. 6A, we have plotted
the posterior distribution for the same model, p(r1|Y), obtained at one
example voxel (Fig. 6B). The shaded region corresponds to r1N0.5 and
for this voxel encompasses 94.1% of the total mass of the posterior
distribution. Therefore, the exceedance probability value plotted for
this voxel is 0.941.
(models 1 and 2, respectively) at an example voxel, [−21, −73, 59] mm (Talairach
clude the exceedance probabilities at the same voxel. As can be seen, the RFX analysis
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Stephan et al. (2009) have noted that the RFX approach is more

robust in the presence of outliers than is the FFX method. We
examined this in our data by inspecting regions in the BMS maps
showing contradictory results for FFX and RFX. Consequently, we
found groups of voxels at which model 1 was clearly the best model
for the FFX analysis and model 2 for the RFX. We then looked at the
log-model evidence values for all subjects at these voxels and found
that the reason for the discrepancy was indeed an outlying subject.
Fig. 7 shows an example of this, where almost all subjects indicate that
model 2 is best, except for a single outlying subject with an extreme
evidence value favouring model 1.

The posterior probabilities obtained for this voxel (for which one
of the subjects is an outlier) reveal that the FFX results are in favour of
the ‘Validity’model, while RFX suggests that the ‘Null’model is better
(Figs. 8A and B), as can also be seen in the respective PPMs (Fig. 9).
Moreover, the exceedance probability value for the ‘Null’ model is
almost 80%, which indicates strong evidence in favour of model 2 at
this voxel.
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Fig. 7. Log-model evidence differences between the ‘Null’ and ‘Validity’ models (model
2 and model 1, respectively) at voxel [−29, 0, 49] mm (Talairach coordinates), for the
12 subjects analysed. The data clearly show that one subject (bottom row) is an outlier.
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shown that the RFX approach is more robust in the presence of
outliers.

Non-nested models

The BMS approach presented here is particularly suited for
comparing non-nested models. Here, we use the aforementioned
example dataset to illustrate how BMS can be applied to compare
models for which there is no natural nesting.

In principle, there is no upper bound on the number of models
to be compared; however, for the purpose of this technical note, we
focus on two alternative non-nested models. Previous work has
shown that the history of past events in an experimental task can
be formalized using information theory (Strange et al., 2005;
Harrison et al., 2006), under ideal observer assumptions. One
finding was that activity in a widespread frontoparietal network,
including bilateral fusiform, parietal, lateral and medial premotor
and inferior frontal regions, as well as in bilateral thalamus relates
to the surprise conveyed by a trial event. This activation pattern is
similar to the task-related activity shown by our ‘Validity’ model.
The ‘surprise’ inherent in an event (e.g., an infrequently occurring
invalidly cued trial) is based on the probability of that event, given
previous trials. Here, we calculated surprise from posterior
probabilities updated on a trial-by-trial basis using Bayes rule
(see Strange et al. (2005) and Mars et al. (2008) for further details).
This was then used to predict neuronal responses measured in our
fMRI experiment. More specifically, we modeled the onsets of trials
with a stick function that was parametrically modulated by the
surprise on a given trial. We refer to this model as the ‘Ideal
Observer’ model.

Alternatively, one can relax the assumption that participants are
ideal observers. One could, for example, compare a number of models
in which the duration and rate of decay with which past observations
(trials) are weighted are differently parameterized. For illustrating the
BMS approach, we here focus on one case only, in which only a
window of data comprising the four most recent trials was taken into
account for computing surprise (see Bestmann et al. (2008) for
details). We refer to this model as the ‘Window’ model. This model is
suboptimal from an information theoretic perspective because the
observer fails to properly accumulate the evidence available within a
ion maps for group studies, NeuroImage (2009), doi:10.1016/j.
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block. However, as the brain also has other criteria to optimise (e.g.,
energy use, speed of response), it could be that imaging data provide
evidence for it.

Each of the above models was estimated using the first-level
Bayesian estimation procedure, as described above, producing voxel-
wise whole-brain log-model evidence maps for every subject and
model estimated. These maps were then smoothed with an 8 mm half
width Gaussian kernel.

Fig. 10 shows the group-level PPM for the two locations in which
the posterior model probability for the ‘Ideal Observer’ model is
greater than γ=0.6. We focused explicitly on task-related brain
regions, as identified in the group-level PPM for the ‘Validity’ model
(see Fig. 3B). Our BMS suggests that activity in these two regions
(Talairach coordinates [x, y, z] in millimeters: supplementary motor
area [6, 5, 56] and right superior parietal lobule [36, −58, 59]) is best
explained by the surprise conveyed by an event, as estimated by an
ideal observer.

Discussion

In this note, we have presented the construction of posterior
probability maps allowing for Bayesian model selection at the group
level. These maps are produced by combining a model evidence
mapping approach with an RFX approach for model selection.

We have illustrated our method by applying it to fMRI data from a
group study and compared the resulting maps with those obtained
using a FFX analysis. As expected, both analyses yielded similar
UN
CO

R

Fig. 9. Group-level PPMs (slice z=79 mm, Talairach coordinates) for the ‘Validity’
model from (A) fixed and (B) random effects analysis. The maps were thresholded to
show regions where the posterior model probability of the ‘Validity’ model is greater
than γ=0.75. The crossbars indicate a cluster of voxels where one of the subjects is
clearly an outlier (Fig. 7).
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results, but the posterior model probabilities from FFX appeared over-
confident. This observation reflects the fact that the RFX inference
properly accommodates between-subject variability, whereas FFX
does not.

Another important point is the behaviour of the method in the
presence of outliers. Since the RFX approach takes into account group
heterogeneity, it has proven (Stephan et al., 2009) to be more robust
than FFX. In our fMRI analysis, we have confirmed this result.
Moreover, we have observed that the two analyses yield contradictory
results for brain regions where one of the subjects provides strong
evidence in favour of one particular model, contrary to the rest of the
subjects. The results from FFX are adversely influenced by this single
subject, whereas the RFX inference was not.

A minor disadvantage of our new approach is that it relies on the
prior computation of log-evidence maps for each subject and model.
These computations are more time consuming than the standard
statistical parametric mapping approach by a factor of five to ten.
However, these individual subject maps need only be computed once
for all subsequent group BMS analyses. The method proposed here for
constructing BMS maps is not so computationally demanding and
takes on average less than half an hour to create whole-brain PPMs for
Fig. 10. Group-level PPM for the ‘Ideal Observer’ model from random effects analysis.
The map is thresholded to show regions where the posterior model probability of the
‘Ideal Observer’ model is greater than γ=0.6.
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the comparison between two models using the log-evidence images
from 12 subjects on a standard PC. Moreover, we envisage that our
new approach may be most usefully applied to regions or networks of
regions previously identified using functional localiser methods. The
use of these localisers has the advantage of speeding up the
computation and reducing its time to approximately less than a
minute for a region with a few thousand voxels.

In the current work, log-evidence maps were smoothed by a user-
specified FWHM Gaussian kernel. This will be finessed in future work
to include a spatial model over r and its smoothness estimated using a
novel Bayesian framework. This would mirror corresponding devel-
opments in the analysis of group data fromM/EEG source reconstruc-
tions (Litvak and Friston, 2008).

The product of the analysis procedures described in this paper are
posterior probability maps. These show voxels where the posterior
probability over model frequency exceeds some user-specified value.
In a previous work (Friston and Penny, 2003), we have derived PPMs
over effect size. We note that, as is common-place in Bayesian
inference, these posterior inferences could be augmentedwith the use
of decision theory. This requires the costs of false negative and false-
positive decisions to be specified. One can then use decision theory to
make decisions which minimise, for example, the posterior expected
loss (Gelman et al., 1995). In addition, we note a connection between
posterior probabilities and false discovery rate, in which if above
threshold values are declared as activations, a posterior probability of
greater than 95% implies a rate of false discoveries less than 5%
(Friston and Penny, 2003). It is also possible to relate posterior
probabilities to the realised false discovery rate (rather than an upper
bound or the expected FDR) (Muller et al., 2007). Finally, we note that
a comprehensive Bayesian thresholding approach has been imple-
mented by Woolrich et al. (2005). This work uses explicit models of
the null and alternative hypotheses based on Gaussian and Gamma
variates. This requires a further computationally expensive stage of
model fitting, based on spatially regularised discrete Markov random
fields, but has the benefit that false-positive and true-positive rates
can be controlled explicitly.

Unlike classical inference using F-tests, our framework allows for
comparison of non-nested models, which we hypothesize will be
useful in a number of experimental domains. One such domain is
model-based fMRI (O'Doherty et al., 2007) in which computational
models are first fitted to behavioural data, and sets of regressors
derived to be used as predictors of brain imaging data. A typical
example is the study of behavioural control using computational
models and fMRI (Montague et al., 2004). The use of model
comparison maps in addition to model-based fMRI would allow
brain imaging data to directly adjudicate, for example, between
different computation models of value updating (Montague et al.,
2004). In this paper, we have compared information theoretic models
of novelty processing, and this will continue to be the subject of future
publications.

Software note

The algorithms described in this note have been incorporated into
the current version of the SPM software (SPM8, http://www.fil.ion.
ucl.ac.uk/spm/). Bayesian model selection can be implemented and
the results visualised via the user interface (Stats N Bayesian Model
Selection N BMS: Maps). This calls lower-level routines such as the
random effects model selection function, ‘spm_bms’.
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