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Abstract

Previous studies using combined electrical and hemodynamic measurements of brain

activity, such as EEG and (BOLD)fMRI, have yielded discrepant results regarding

the relationship between neuronal activity and the associated BOLD response. In

particular, some studies suggest that this link, or transfer function, depends on the

frequency content of neuronal activity, while others suggest that total neuronal power,

accounts for the changes in BOLD. Here we explored this dependency by comparing

different frequency-dependent and independent transfer functions, using simultaneous

EEG-fMRI. Our results suggest that changes in BOLD are indeed associated with

changes in the spectral profile of neuronal activity, and that these changes don’t arise

from one specific spectral band. Instead they result from the dynamics of the various

frequency components together, in particular, from the relative power between high

and low frequencies. Understanding the nature of the link between neuronal activity

and BOLD plays a crucial role in improving the interpretability of BOLD images, as

well as on the design of more robust and realistic models for the integration of EEG

and fMRI.

∗E-mail: mjoao@fil.ion.ucl.ac.uk
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1 Introduction

Functional Magnetic Resonance Imaging (fMRI), with Blood Oxygen Level Dependent

(BOLD) contrast, is an established method for making inferences about regionally spe-

cific activations in the brain (Frackowiak et al., 2003). However, the relationship between

BOLD and neuronal activity is still under debate, in particular, it is still unclear how the

hemodynamic response is influenced by the temporal dynamics of the underlying neuronal

activity.

One of the approaches used to study this relationship is to combine information from

hemodynamic measures such as fMRI and electrophysiological measures, such as Elec-

troencephalography (EEG) and Magnetoencephalography (MEG). EEG and MEG are well-

established non-invasive techniques, and are well suited to studying the temporal dynamics

of neuronal activity, since they provide direct measurement of this activity with high tem-

poral resolution (Hämäläinen et al., 1993).

In humans, the study of correlations between EEG and fMRI signals has been pioneered

by epilepsy researchers, such as Lemieux et al. (2001) and Salek-Haddadi et al. (2002).

However, most of our present knowledge about neurovascular coupling has come from animal

research and the combination of metabolic/vascular measurements, such as Cerebral Blood

Flow (CBF), with Local Field Potentials (LFPs) and Single/Multi-Unit Activity (S/MUA)

recordings. LFPs correspond primarily to weighted averages of synchronised dendro-somatic

components of synaptic signals in a neuronal population, while S/MUA measure the action

potentials of a single neuronal cell or population of cells, respectively (Logothetis, 2008).

These studies confirm that BOLD is indeed related to neuronal activity (Lauritzen, 2001),

and, although both LFPs and MUA correlate with the BOLD response, this response can

be predicted more accurately from the LFPs (Logothetis et al., 2001).

More recently Thomsen et al. (2004) and Viswanathan and Freeman (2007) have used

colocalised measures of LFPs, MUA and CBF in animals to show that when synaptic and

spiking activity is uncoupled, changes in CBF don’t reflect the underlying spiking activity

and relate closer to the measured LFPs. These studies have therefore confirmed that BOLD

primarily reflects changes in the synaptic input of neuronal populations as opposed to their

spiking output. This reflects an emerging consensus in which BOLD is thought to result from

pre-synaptic activity and the release of neurotransmitters, in particular glutamate (Friston,

2008). This release triggers a response in surrounding glial cells, especially astrocytes,

leading to the generation of vasodilatory signals and consequently BOLD (Nair, 2005). As

well as indirectly causing BOLD, glutamate will increase post-synaptic activity and therefore
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the LFP. Increases in LFP frequency would therefore be accompanied by faster glutamate

recycling and consequently a larger BOLD signal.

Whilst the above physiological perspective would suggest that BOLD should be sensitive

to the frequency content of neuronal activity, results from the neuroimaging literature are

not completely clear cut. For example, some studies (see next paragraph) suggest that

BOLD is mainly dependent on the total energy, or total spectral power, of neuronal activity.

Others (see next but one paragraph), suggest that BOLD is sensitive to a certain range of

frequencies or results from more complicated dynamics.

Among those proposing a relationship between BOLD and total neuronal power, Wan

et al. (2006) have found significant correlation between the mean power (mean square Cur-

rent Source Density estimates during visual stimulation) of source reconstructed EEG data

in human primary visual cortex and a neuronal efficacy parameter, derived from fitting a

Balloon model to fMRI data (Friston et al., 2000). Similarly, Nangini et al. (2008) propose

that the energy density, as measured by the square of the Equivalent Current Dipole (ECD)

waveforms from source reconstructed MEG data, is a better representation for the neuronal

input functions, than the stimulus functions conventionally used in convolution models for

the analysis of fMRI data (Friston et al., 1995b). In addition to these studies, theoretical

models for integrating EEG/MEG and fMRI (Nunez and Silberstein (2000); Trujillo-Barreto

et al. (2001); Babajani and Soltanian-Zadeh (2006)) assume a relationship between indices

of neuronal activity and BOLD that is independent of the frequency of this activity. For

instance, Babajani and Soltanian-Zadeh (2006) use a neural mass model of neuronal activ-

ity and propose that the squared post-synaptic membrane potential from both excitatory

and inhibitory cells from a given cortical area drives increases in cerebral blood flow, and

consequently BOLD.

Among those proposing a relation between BOLD and the frequency structure of electro-

physiological signals Goldman et al. (2002), Moosmann et al. (2003) and Laufs et al. (2003)

have shown that reductions in ongoing scalp EEG alpha power in humans correlate with

increases in BOLD activity. Lachaux et al. (2007) have found, using intra-cranial recordings

in epileptic patients, a close spatial correspondence between regions of fMRI activation and

sites showing EEG energy variation in the gamma band. Mukamel et al. (2005) have found

positive correlations between LFPs and BOLD at high gamma-range frequencies ([40, 130]

Hz) and negative correlations at low/alpha-range frequencies ([5, 15] Hz) in auditory cortex

of neurosurgical patients. In addition, Niessing et al. (2005) have shown that fluctuations

in hemodynamic response tightly correlate with the power of LFP oscillations, recorded in

cat primary visual cortex, in the same high frequency (gamma) range.

3



Kilner et al. (2005) note that from the perspective of fMRI, neuronal activation is pro-

portional to relative metabolic demands, or rate of energy dissipation (1/s units). In terms

of EEG, the effect of activation is to shift the spectral profile toward higher frequencies (1/s

units) with a reduction in amplitude. This led Kilner et al. (2005) to propose a ‘Heuris-

tic’ model that links these two observations via a dimensionality analysis. This Heuristic

specifies that BOLD activations are accompanied by an increase in the ‘average’ frequency

of EEG neuronal activity, where average is defined in the Root Mean Square (RMS) sense.

Thus increases in higher frequencies, such as the gamma range, relative to lower frequencies,

such as the alpha range, would lead to increases in BOLD. Conversely, increases in alpha

relative to gamma would lead to decreases in BOLD.

Moreover, using data from Niessing et al. (2005) the Heuristic model has been shown to

provide a better fit than a model based on gamma correlation alone (Kilner et al., 2007).

In similar spirit to the idea underlying the Heuristic, Laufs et al. (2006a) have found that

BOLD deactivations in humans are associated with increases in the ratio between theta and

alpha bands (measured with scalp EEG), and that these deactivations cease when there is

a decrease in this ratio and an increase in the beta/alpha ratio.

More recently, Goense and Logothetis (2008) used simultaneous intra-cortical LFP-

BOLD recordings and a multiple regression model in which activity in many different fre-

quency bands, covering the entire LFP range of frequencies, were used to predict BOLD

activity in alert behaving monkeys. The results showed that all bands explained a significant

part of the BOLD response.

The link between neuronal activity and BOLD has been investigated at both a micro-

scopic scale, using invasive, co-localised recordings in animals (e. g. Logothetis et al. (2001);

Niessing et al. (2005); Goense and Logothetis (2008)), and at a macroscopic scale using si-

multaneous EEG-fMRI in humans (Lemieux et al., 2001; Goldman et al., 2002; Laufs et al.,

2003; Moosmann et al., 2003). A problem with the macroscopic approach is that the elec-

trophysiological measure, EEG, is not co-localised with BOLD. This issue can be addressed

by the use of Principal Component Analysis (PCA) (Laufs et al., 2006b), Independent Com-

ponent Analysis (Eichele et al., 2005, 2009) or source reconstruction (Wan et al., 2006).

In this paper we use simultaneous EEG-fMRI in humans and employ a visual flicker

stimulation paradigm to elicit evoked activity in sensory cortex. As scalp EEG measures

the activity of multiple distributed neuronal processes we used a PCA approach to isolate

activity that was primarily related to the stimulus paradigm. The resulting time series was

then used as a surrogate for neuronal activity.

We then regressed the fMRI data onto convolved features of the power spectrum of the
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first principal component of the EEG data. We use a standard Statistical Parametric Map-

ping (SPM) approach employing F-tests to compare models embodying different transfer

functions. These are (i) a total power model (ii) a frequency response model, comprising

multiple regression onto power in different frequency bands, and (iii) a Heuristic model in

which BOLD is predicted by the RMS EEG frequency.

The paper is structured as follows. In section 2 we describe the experimental paradigm

and the simultaneous acquisition of EEG and fMRI data. We also describe the preprocessing

steps used for artefact removal, define the transfer functions investigated and the methods

used to compare models. Section 3 presents the results from the SPM analysis and in section

4 these results are discussed in light of previous results from the literature.

2 Materials and methods

Subjects and task:

Three healthy volunteers (three male, mean age 35± 4 years) participated in the study

after giving informed consent. Subjects were exposed to visual flicker stimuli of a number

of different frequencies. A reversing black and white checkerboard (11 x 11 squares, size

13 cm x 13 cm) was delivered via a computer monitor (60 Hz refresh rate) and projected

on a screen positioned 47 ± 1 cm from a 45◦ mirror located 11 ± 3 cm from the subject

(visual angle = 6.5 ± 0.5◦). The stimulation (reversing) frequencies used were 2.00, 3.75,

5.00, 6.00, 7.50, 10.00, 15.00 and 30.00 Hz. Stimuli were delivered in epochs of 5 scans (15.3

s), followed by periods of 15.3 s of rest (blank screen), and the order of stimulus blocks (eg.

10 Hz, 6 Hz, 5 Hz etc.) was randomised. Subjects were instructed to view a fixation cross

which was visible during both rest and stimulus periods, and no overt response was required

in either condition. Three consecutive sessions of the same experimental task were recorded

for each subject. Although luminance levels were not held constant for the different flicker

frequencies, the variations in luminance were measured using a lux meter placed in front

of the visual display unit. This allowed luminance variations to be regressed out during

subsequent statistical analyses, when required.

As the aim of our experiment was to investigate the neurovascular coupling driven by

a large electrophysiological response in sensory cortex, the inter-subject variability was ex-

pected (and found) to be low. It is therefore appropriate (Penny and Holmes, 2006) to

acquire data from a small number of subjects (three), to report results in the form of case

studies, and to summarize these results using fixed effects SPMs (see below). This follows
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the precedent of Wan et al. (2006) who also used a case study approach with a small number

of subjects (five).

EEG acquisition:

EEG was acquired simultaneously with fMRI using a synchronized imaging protocol

(Mandelkow et al., 2006) and an MR-compatible BrainAmp amplifier and BrainCap EEG

cap with ring Ag/AgCl electrodes (Brainproducts GmbH, Munich, Germany). Raw EEG

was sampled at 5 kHz and a low pass filter (cut off frequency: 1 kHz) was used. This system

provided 29 EEG channels, 2 EOG channels, and 1 ECG channel. The electrodes were

distributed according to the 10/20 system, and the reference electrode was located between

Fz and Cz. EEG was also recorded outside of the MRI environment (in a dark and acousti-

cally isolated room), so that the effect of MRI-induced artefacts and their removal could be

assessed. We additionally measured the pulse using a pulse oxymeter attached to the sub-

ject’s finger and the locations of the EEG electrodes were digitised with a Polhemus digitiser.

fMRI acquisition:

Images were acquired from a 1.5 T whole-body scanner (Magnetom Sonata, Siemens

Medical, Erlangen, Germany) operated with its standard body transmit and CP head re-

ceive coil. The manufacturers standard automatic 3D-shim procedure was performed at the

beginning of each experiment. The scanner produced T2*-weighted images with a single-

shot gradient-echo EPI sequence. Whole brain images consisting of 34 contiguous transverse

slices, on a 64-by-64 grid, were acquired every 3.06 seconds resulting in a total of 320 func-

tional scans for each of the three sessions of each subject (slice thickness = 2 mm, gap

between slices = 1 mm, repetition time TR = 90ms, flip angle = 90◦, echo time TE = 50

ms, field of view FOV = 192 × 192 mm2, and therefore 3 × 3 × 3 mm voxel resolution).

Whole-brain structural scans were also acquired using a T1-weighted 3D-Modified Driven

Equilibrium Fourier Transform (MDEFT) sequence (Deichmann et al., 2004) in 176 sagittal

partitions with an image matrix of 256 × 256 (TR = 12 ms, TE = 4 ms, flip angle = 23◦,

and voxel size 1 × 1 × 1 mm).

EEG data analysis:

Acquisition of EEG in the MRI environment induces Gradient and Cardiac related arte-
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facts, such as the Ballistocardiogram artefact (Goldman et al., 2000). The data acquired

inside the scanner were corrected off-line using facilities in the Brain Vision Analyzer soft-

ware package (Brainproducts GmbH, Munich, Germany) (Allen et al., 2000). First, the

Gradient artefact was removed via mean subtraction with template drift compensation.

Cardiac related artefacts were then removed by subtracting the first three principal com-

ponents that were time-locked to pulse oxymeter readings. EEG data acquired outside the

scanner were not processed in this way. Both the data acquired inside and outside the

scanner were then high-pass filtered (0.5 Hz) to reduce slow drifts in the signal.

After MR-related artefact removal and filtering, the inside and outside EEG data were

visually inspected for other artefacts, such as eye-blinks, as well as movement related arte-

facts. Due to their proximity to the subjects’ eyes, the Fp1 and Fp2 electrodes contained

too many eye-blink artefacts to be included in the analysis.

After visual inspection, the EEG data from the remaining channels were then processed

to form a single representative ‘scalp EEG’ time series, by projecting the data onto a sub-

space defined by its first principal eigenvector u1.

In previous work Moosmann et al. (2003) and Laufs et al. (2003), have generated a single

representative time series by computing the mean over a subset of activated electrodes (e.g.

01, 02, P1, P2). We have used a spatial eigendecomposition method because this data

driven approach produces the single time series which, out of all possible linear projections,

captures most variance in the original data. However, as brain activity in our paradigm is

primarily driven by activity in visual cortex this spatial eigenmode is primarily loaded onto

posterior electrodes, as is shown below.

The principal eigenvectors can be computed from a Singular Value Decomposition (SVD)

of the data. If Y is an ne × nt matrix of EEG data, with ne electrodes and nt time points,

then an SVD gives Y = USV T , and the projection is given by: ỹ = uT
1 Y , where u1 is the

first column of U .

To investigate the spectral properties of the scalp signal, ỹ(t), we decomposed it into

the time-frequency domain. This decomposition was obtained by convolving the signal with

Morlet wavelets, G, where for each time point t and frequency f :

G(f, t) = A exp(−t2/(2σ2
t )) exp(2iπft), (1)

where A = (σt
√
π)−1/2, σt = 1/(2πσf ), σf = f/R, and R = 7 is the ”wavelet factor”. The

time-varying power of the signal around frequency f , is then given by the squared modulus

of the convolution (Tallon-Baudry and Bertrand, 1999):

P (f, t) = |G(f, t) ∗ ỹ(t)|2, (2)
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and the power spectrum for all frequencies and time points can be represented by the matrix

P with dimensions nf × nt, where nf is the number of frequencies.

Transfer functions:

From the spectrum of the EEG data, P , we constructed regressors defining the different

transfer functions we were interested in comparing. These represent the functional link

between neuronal activity and BOLD.

The first model, motivated by the result of Wan et al. (2006), assumes that neurovascular

coupling is a power transducer. To this end we derived a feature corresponding to the ‘Total

Power’ in the scalp EEG time-series. This was obtained by summing the EEG power over

all frequencies analyzed ([1, 40] Hz):

q
T P

(t) =
nf∑

f=1

P (f, t). (3)

The second model, following Goense and Logothetis (2008), assumes that BOLD is best

explained by a linear combination of activity in different frequency bands. We refer to

this as the ‘Frequency Response’ model and consider three variants, each with a different

number of frequency bands. These comprise (i) three bands of low frequencies [1, 7] Hz,

alpha frequencies [8, 15] Hz and higher frequencies [15, 40] Hz, (ii) five bands of delta [1, 4]

Hz, theta [4, 8] Hz, alpha [8, 13] Hz, beta [13, 30] Hz and lower gamma [30, 40] Hz activity

and (iii) eight bands of 5 Hz each, from 1 to 40 Hz. The time-series for each band were

obtained by summing the power in the corresponding frequency interval, b = [fmin, fmax]:

q
F R

(t)b =
fmax∑

f=fmin

P (f, t). (4)

The resulting time-series for each band, b, correspond to different columns of the same

design matrix (see below).

The third model, which we refer to as the ‘Heuristic’ model based on Kilner et al. (2005),

assumes that BOLD is best explained by a linear convolution of the ‘Root Mean Squared

Frequency’ (RMSF) function. This is given by

q
RMSF

(t) =

√√√√ nf∑
f=1

f2P̃ (f, t), (5)

where P̃ is the corresponding normalised power spectrum of the representative scalp time

series. This function describes how changes in the relative power of the different frequencies

in the EEG spectrum could be associated with changes in BOLD.
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We also investigated two variants of the Heuristic. The first, uses the un-normalised

power spectrum P , instead of P̃ :

q
uRMSF

(t) =

√√√√ nf∑
f=1

f2P (f, t). (6)

We refer to this as the ‘un-normalised Heuristic’ (u-Heuristic). Second, to test for the

importance of the non-linearity introduced by the square root in the RMSF function we

defined the function,

q
MSF

(t) =
nf∑

f=1

f2P̃ (f, t), (7)

which is a linear version of Eq.4. We refer to this as the ‘linear Heuristic’ (l-Heuristic)

model.

To further test the importance of the non-linearity we defined another function based

on a linear convolution of the ‘Mean Frequency’ (MF) of the EEG signal:

q
MF

(t) =
nf∑

f=1

fP̃ (f, t). (8)

Finally, we constructed one last frequency-independent transfer function purely based on

variations of amplitude in the EEG signal, as captured by the Global Field Power (GFP).

The GFP corresponds to the root-mean-square deviations between all electrodes in a given

potential field (Skrandies, 1995):

qGFP (t) =

√√√√ ne∑
i=1

(Ui(t)− Ū(t))2, (9)

where Ū(t) = 1
ne

∑ne

j=1 Uj(t) is the mean of the potential across electrodes at a given time

point. This is a reference-free measure and allowed us to compare the previously described

transfer functions, which are all based on the power spectrum of the EEG data, with a

measure based simply on the amplitude of the EEG signal.

For each of the above models, the time series were convolved with an informed basis

set to accommodate variability in the hemodynamic response. This basis set includes the

canonical Hemodynamic Response Function (HRF), as well as its first temporal and disper-

sion derivatives (Friston et al., 1995a). The two derivative regressors allow for variations,

across subjects and across the brain, in the peak response time and duration of the hemo-

dynamic response. The temporal derivative, for example, allows for peak responses that are

approximately one second earlier or later than is usual.
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The convolved time series were then downsampled to match the fMRI sampling rate,

and served as regressors of interest in the subsequent general linear model (GLM) (Friston

et al., 1995b).

As we are using an informed basis set with 3 basis functions, the Total Power, Heuris-

tic, u-Heuristic, l-Heuristic, MF and GFP models are implemented using 3 design matrix

columns. There are therefore 3 corresponding regression coefficients of interest to estimate

for each of these models. The Frequency Response model is implemented with 9, 15 or 24

columns for the 3, 5 or 8 band-model, respectively. The coefficients of interest, as well as

the total number of parameters estimated for each function are summarised in Table 1.

fMRI data analysis:

The fMRI data were pre-processed with SPM8 software (http://www.fil.ion.ucl.ac.uk/

spm/) implemented in Matlab (The Mathworks, Inc.). The first five scans of each session

were discarded, and the pre-processing steps included: (a) realigning the images to the

first scan and coregistering the structural scan of each subject with the mean functional

image from all sessions; (b) correcting for differences in acquisition time between slices and

normalising all the functional and structural scans to a standard EPI template based on

the Montreal Neurological Institute (MNI) reference brain in Talairach space (Talairach

and Tournoux, 1988) (c) smoothing the functional images (Gaussian kernel, 8 mm half

width). The movement parameters obtained from the realignment step were included in the

subsequent GLM analyses as confounding covariates (Table 1). The data were also high-pass

filtered, with a cut off period of 128 s.

We report analyses based on the first 100 scans of each session due to suspected movement-

related (i.e. high amplitude and high-frequency) artefacts present in the EEG signal, after

approximately 5 minutes of recording, in more than one session and subject. However, we

later visually re-inspected the EEG signal and decided to include some of the previously

discarded scans, and re-analysed the data using 200 scans per session. This new analy-

sis yielded very similar results and strengthened the findings obtained with less data (see

below).

For each subject we first looked at the effect of the experimental task. We used the

onsets of the stimuli as regressors, and inferences based on the statistical parametric maps

(SPMs) from a fixed effects group analysis were considered significant at p < 0.05, corrected

for multiple comparisons using Random Field Theory (Friston et al., 1995b). Inference was

based on F-tests, which test for the additional variance explained by a set of regressors of
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interest. We also used these maps to generate a mask image, which we refer to as the ‘BOLD

activation mask’. This mask allows us to look at correlations between model predictors and

BOLD, limited to the voxels activated by the checkerboard stimuli.

Model comparisons:

In this section we describe the comparisons between transfer functions that were per-

formed in order to investigate the link between neuronal activity and BOLD.

We began by looking at correlations between individual functions and the BOLD signal,

by using these functions in separate design matrices. This was followed by a more formal

comparison, which included regressors from multiple models in the same design matrix.

Inference in both cases was based on F-tests. In the first case we test for the effect of each

model alone, i.e. without taking into account the rest of the models. This is to reproduce

previously published results, that each feature of neuronal activity is predictive of BOLD.

In the second case, a significant F-statistic for a particular transfer function suggests that

model explains BOLD variability that can’t be explained by any of the other functions in

that design matrix (Friston et al., 1995b). This allows us to infer that one model is better

than another.

These tests were performed using contrast vectors (Friston et al., 2007) that select the

regressors of interest for each model, including the temporal and dispersion derivative regres-

sors (Table 1). The criteria used to evaluate the models included the F scores, the number

of voxels above the p < 0.05 (FWE corrected) and p < 0.001 (uncorrected) thresholds, as

well as the location of these voxels (inside or outside the ‘BOLD activation mask’) for each

function (Table 3).

The transfer functions were compared as follows (a summary of these comparisons can

be found in Table 1):

i. In order to ascertain whether our main transfer functions showed significant correla-

tions with BOLD, as suggested by the results from the literature on which these functions

were based (see Transfer Functions section), we correlated the Total Power, Heuristic and

Frequency Response (3 bands) models individually with BOLD, as described above.

ii. Subsequently, we compared the frequency-dependent functions (Heuristic and Fre-

quency Response) with the main frequency-independent function, Total Power. We imple-

mented two pair-wise comparisons (a) Total Power versus Heuristic and (b) Total Power

versus Frequency Response (3 bands), which allowed us to probe whether the link between

BOLD and neuronal activity is frequency-dependent.
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iii. We then implemented a three-way comparison (Total Power, Frequency Response

with 3, 5 or 8 bands and Heuristic) to finally determine which transfer function provides a

better fit to the BOLD data, when all models are taken into account.

iv. We also performed a similar comparison but we’ve included the GFP transfer function

together with the previous models. This allowed us to assess whether a model based on the

amplitude of the EEG signal, rather than its spectral content, was a better predictor of

BOLD.

v. To determine whether the Frequency Response model performs better with less fre-

quency bands, in particular with just a single band, we’ve performed two pairwise compar-

isons between (a) the Heuristic and the power in the Alpha frequencies (8 to 15 Hz) and

between (b) the Heuristic and the power in the high (Beta/Gamma) frequency band (15 to

40 Hz).

vi. Finally, to investigate different properties of the Heuristic model, as described above,

we implemented several pair-wise comparisons. These included the Heuristic versus (a) the

u-Heuristic, (b) the l-Heuristic, (c) the MF function and (d) the Frequency Response model

with 5 and 8 bands constructed using the normalised power spectrum.

For each of the above comparisons we used a fixed effects group analysis using 3-sessions

of data from three subjects (9 sessions in total), giving rise to a total of 900 scans. Subsequent

analyses based on 1800 scans (200 scans per session, as mentioned above) produced very

similar results. These fixed effects SPMs summarise the results over the three subjects

(Penny and Holmes, 2006). We also computed SPMs for each subject in isolation, in a case

study approach (see below).

The total number of regressors for each of the design matrices used is summarised in

Table 1. For example, for the main three-way comparison (iii.) the design matrix employed

198 regressors (198 = 3 regressors of interest for Total Power, 3 for the Heuristic, 9 for the

three-band Frequency Response model, 6 for the movement regressors and 1 for the session

mean × 9 sessions). The stimulus onset-based regressors were not included in these design

matrices, since they do not provide a plausible biological model, or link, between BOLD

and underlying neuronal activity.

3 Results

Artefact correction and SVD

To remove scanning artefacts from the EEG, the data were processed as described in
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the methods section. Fig. 1 shows the first 10 s of an example time-series from corrected

EEG data for (a) the mean of electrodes O1 and O2 and (b) the scalp signal obtained from

the SVD. As can be seen, the data appears uncontaminated by MR-related artefacts and is

relatively free from other artefacts, such as eye-blinks. A prominent ∼ 10 Hz waveform can

also be easily detected in these signals.

[Fig. 1]

The fact that the time courses of these two signals look very similar (Fig. 1) was expected,

since the first principal component of the EEG is primarily driven by activity from posterior

regions. This is confirmed by plotting the topography of this component, as shown in Fig.

2. In addition, the first component explains 67 % of the total variance of the data, which

should provide a good representation of EEG activity.

[Fig. 2]

After this step we computed Steady State Visual Evoked Responses (SSVERs) to fur-

ther assess the goodness of the MR-related artefact correction method. These SSVERs were

computed by first epoching the artefact-corrected 29-electrode EEG data acquired inside the

MRI scanner, for each subject/session, in half-second (500 ms) post-stimulus window and

then averaging across trials. Spectral analysis was then performed on the epoched and aver-

aged EEG, using the data from electrode O2 (8 averaged epoch time-series corresponding to

the different stimuli used). The time-frequency spectra were constructed using Wavelets, as

previously described in the Methods section (Eq.1 and Eq.2). The same procedure was then

performed to obtain the SSVERs for the EEG data acquired outside the MRI scanner with

the same experimental conditions, including the same paradigm. The responses obtained

for both datasets were then compared. Fig. 3 shows the averaged SSVERs over all sessions

of one representative subject for different frequencies of visual flicker.

[Fig. 3]

As can be seen in Fig. 3 the major component of the spectra is at the second harmonic

of the stimulus frequency. This result was expected since for reversing stimuli the SSVERs

are usually produced at the phase-reversal or alternation frequency, which is twice the

stimulation frequency (Burkitt et al., 2000). This fact also explains why almost no response

is seen for the 30 Hz stimulus, for the range of frequencies here analysed (1 to 40 Hz).

However, for the purpose of this work we were only interested in the similarity between

the responses obtained inside and outside the scanner, and as can be seen in Fig. 3 the close
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correspondence indicates that the MRI artefacts can be removed without filtering out the

signal of interest.

The SSVERs were not used in the subsequent regression analysis. To compare the differ-

ent transfer functions we used the raw (artefact corrected, un-averaged and projected onto

its first principal component) EEG data.

Effect of the experimental task

We then looked at the effects of visual flicker on both the EEG and fMRI data. For

the EEG data, the SSVER spectra shown in Fig. 3 provide evidence that visual cortical

neurons synchronised their firing to the stimuli, leading to strong EEG responses at the

second harmonic of the stimulus frequency.

For the fMRI data, both single subject and fixed effects group analyses showed significant

bilateral activation (p < 0.05 (FWE)) in visual areas of the occipital cortex (Fig. 4). These

areas were identified with the help of the ‘Anatomy Toolbox’ for SPM software (Eickhoff

et al., 2005). Talairach coordinates of cluster maxima [x,y,z] mm: Right Cuneus [12, -101,

18], Left Superior Occipital Gyrus [-9, -101, 15], and Right Calcarine Gyrus [3, -92, 3]

(Table 2). The fMRI images from the group analysis in Fig. 4 were used to create the

BOLD activation mask, so that subsequent analyses could be restricted to BOLD activated

regions.

[Fig. 4]

In a separate analysis (not shown) which controlled for variation in luminance levels

using an additional regressor of no interest, BOLD activity was shown to have an inverted

U-shaped response to flicker frequency. The peak response was for a flicker frequency of

7.5 Hz and dropped off sharply above 15 Hz, agreeing closely with previous studies (Singh

et al. (2003), Parkes et al. (2004) and Wan et al. (2006)). This result also explains why the

amplitude of the SSVERs plotted in Figure 3 decreases with increasing stimulus frequency,

for both the responses obtained inside and outside the scanner (Fig. 3).

Relationship between neuronal activity and BOLD

Figure 5 plots example regressors for the Total Power, Heuristic and Frequency Response
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(3 bands) models derived from Equations 3, 4 and 5, convolved with the Hemodynamic

Response Function and downsampled to the fMRI frequency of acquisition. Fig. 5d plots

an example BOLD time-series for the same time interval and subject, at the most significant

cluster maximum from Figure 4 (fixed effects group analysis), in relation to the paradigm.

As can be seen there is an increase in BOLD during the ‘Task’ blocks which is better

reflected in the Heuristic than in the other models. The highest frequency band of the

Frequency Response model (Fig. 5c, black) also seems to follow BOLD more closely than

the time-series from the other bands.

[Fig. 5]

The SPM analyses with the separate design matrices (one for each model) showed sig-

nificant (p < 0.05 (FWE)) correlations between each model and the observed BOLD signal,

as can be seen in Fig. 6. The locations of maximal correlation for each model were not far

apart and were included in the voxels activated by the experimental task shown in Figure

4. Although all functions correlated with BOLD, the Heuristic produced higher maximal F

scores and more voxels above the chosen threshold (p < 0.05 (FWE)) than the other two

models (Fig. 6).

[Fig. 6]

The contrast estimates for the most significant voxel for each model showed that the

Heuristic correlates positively with the amplitude of the BOLD response, while Total Power

and the first frequency band of the 3-band Frequency Response model correlated negatively

with this response (Fig. 7). Other sites showed significant correlation between BOLD and

the other two frequency bands (not shown).

[Fig. 7]

We then performed two pair-wise comparisons (a) between Total Power and Heuristic

and (b) between Total Power and the Frequency Response model (Fig. 8). We included the

regressors for the two functions we were interested in comparing in the same design matrix.

The results clearly revealed that the Heuristic provides a much better fit to the data than

Total Power. For the second comparison it was difficult to see the effects of each model,

since the regressors for the Total Power and particularly the first band from the Frequency

Response function (3 bands) were highly correlated.

[Fig. 8]
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The three-way comparison, using regressors from all models in the same design matrix,

showed a much more widespread and stronger relationship between the Heuristic regressors

and the BOLD signal, compared to the Total Power or the Frequency Response functions,

p < 0.001 (unc.) (Fig. 9). Furthermore, only the Heuristic showed significant correlations

when we corrected for multiple comparisons, (p < 0.05 (FWE), using a Small Volume

Correction (SVC) over the Bold activation mask), and the clusters that remained after SVC

were located in the Right and Left Calcarine Gyrus (Talairach coordinates [x,y,z] mm: [3,

-92, 10] and [-6, -77, 15], respectively) and in the Left Cerebellum (Talairach coordinates

[x,y,z]: [-12, -62, -12]) (Table 2).

These results are summarised in Table 3, where the number of voxels and the highest

F-scores obtained for each model, within and outside the activation mask, for different

thresholds can be found. The number of voxels, as well as the F-statistics, in both locations

and thresholds were significantly higher for the Heuristic than for the other models (Table

3).

This three-way comparison is the main result of our paper and it was replicated in a

case study analysis (Penny and Holmes, 2006) in which data from the different subjects

was analysed separately. The individual results were very consistent across subjects: the

Heuristic model was markedly superior for all three subjects (individual SPMs not shown),

by producing higher F-scores than the rest of the models and more activated voxels inside

and outside the Brain Activation Mask. These results are summarised in Table 3 (individual

tables not shown).

These results were also reproduced when we analysed 1800 scans instead of 900 (see

above). Moreover, the inclusion of more data produced even higher statistics and more

significant voxels (in the same brain areas reported) for the Heuristic than for the other

models (not shown).

[Fig. 9]

We also compared our three main models (Heuristic, Total Power and Frequency Re-

sponse (3 bands)) with the Global Field Power of the EEG signal as described in the Methods

section. Therefore we added this model to our fixed-effects design matrix. However, the in-

clusion of this function did not affect the previously obtained results (maps not shown), and

the Heuristic again provided a better fit to the data, by producing more spatially distributed

significant activations (p < 0.05, FWE corrected) and higher F scores than the other mod-

els, including the GFP. These comparisons allowed us to reject the hypothesis that a model

based purely on variations of amplitude across the EEG channels could provide a better fit
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to the BOLD data.

In addition, when we compared the Heuristic with the single-band Frequency Response

models, the Heuristic also revealed more significant voxels and higher statistics than the

Alpha and Beta/Gamma power. Moreover, inside the Brain Activation Mask, the number

of voxels where the Heuristic provided a better fit (FWE corrected) was 939 (maximum

F-statistic: 23.9) when compared with Alpha, and 1480 (max-F: 31.8) when compared with

Beta/Gamma. These two models showed only 69 (max-F: 16.8) and 293 (max-F: 20.9)

activated voxels in this region, respectively. This result showed that reducing the number

of bands in the Frequency Response model didn’t improve the performance of this model

when compared to the Heuristic.

As an aside, we note that although the fMRI data were slice time corrected, significant

variability was explained by the temporal derivative regressors (SPMs not shown), and

therefore their inclusion in data analyses such as these is recommended (see for example

Fig. 7a).

Comparing the Heuristic model and its un-normalised version, the u-Heuristic, revealed

that the Heuristic significantly correlated (p < 0.05 (FWE)) with the observed BOLD data

in most of the brain areas revealed when this function was compared to the Total Power and

the Frequency Response models (Fig. 10). Applying the BOLD activation mask showed

that the site with the most significant result was located again in the Right Calcarine Gyrus

(Talairach coordinates [x,y,z] mm: [15, -80, 15], p = 1.71e-09 (FWE), SVC) (Table 2). In

this area BOLD correlated positively with the Heuristic, and negatively with u-Heuristic.

[Fig. 10]

Finally we looked at the importance of the non-linearity present in the RMSF function

for the Heuristic model, introduced by the square root operator (the R in RMSF). This was

addressed by performing the following two-way model comparisons: between (i) the Heuristic

and its linear version, the l-Heuristic (Eq.5), (ii) the Heuristic and the Frequency Response

model but using normalised power (eight bands of 5 Hz each) and (iii) the Heuristic and the

Mean Frequency function (Eq.6). The rationale behind the second comparison is that the

Frequency Response model based on normalised rather than un-normalised power should

be able to implement the transfer function by assigning regression coefficients, βf = f2.

The results from these comparisons (SPMs not shown) were very similar. Although when

analysed separately all these functions correlate significantly with the BOLD data at a high

statistical threshold (p < 0.05 (FWE)), when put in the same design matrix none of the

models is able to uniquely explain significant variation in BOLD. These results indicate that
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the nonlinearity introduced by the square root function is not critical.

4 Discussion

In this paper we have used simultaneously acquired EEG and fMRI data, with a visual

flicker stimulation task, to probe the transfer function from neuronal activity to BOLD. We

compared three different models, each assuming BOLD is sensitive to a different feature of

the EEG. These were (i) the Total Power model (ii) the Frequency Response model and

(iii) the Heuristic model. When analysed in separate design matrices all transfer functions

correlated with the observed BOLD data, as expected.

For the Frequency Response model all bands showed significant correlations with the

data, in agreement with recent monkey EEG-fMRI results (Goense and Logothetis, 2008).

One initially surprising finding was that, at the location of maximal correlation, Total

Power correlated negatively rather than positively with BOLD. However, this can be under-

stood by noting that most of the power in the EEG signal, over rest and stimulus blocks,

lies in the lower frequencies of the spectrum. This was confirmed by the negative correlation

found in the lowest frequency band of the 3-band Frequency Response model in agreement

with Mukamel et al. (2005) and Laufs et al. (2006a). Work in which positive correlation

was observed, for example Wan et al. (2006), focussed rather on event-related power (rather

than power in both rest and stimulus blocks). In addition, the fact that we modelled the

relation between neuronal activity and BOLD in both stimulus and rest blocks together,

implies that the Heuristic is also applicable to spontaneous neural activity.

The results of the two-way model comparison, between Total Power and the Heuristic,

showed that the transfer function from neuronal activity to BOLD is frequency dependent.

The three-way comparison, was again clearly in favour of the Heuristic which was shown to

explain significantly more BOLD activity than the other two models.

Independent of model, the majority of the voxels that were significantly correlated with

the regressors were in the occipital cortex (Figure 6). This is not surprising as we used

flickering visual stimuli. What is perhaps surprising is that other brain areas outside of

the occipital cortex (such as the cerebellum and temporal cortex) were also significantly

correlated with some of the regressors, most notably for the Heuristic model (Figure 9).

It should be noted that as the Heuristic is a function of the power spectrum and is not

a function of any one particular frequency, it may capture some dynamics that are not a

simple entrainment of neural populations at some harmonic of the flicker rate.

One concern we had regarding the two and three-way comparison results was that the
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Heuristic may be better than the Frequency Response model simply because of the small

number (three) of frequency bands used. However, our conclusions remained unchanged for

frequency response models with additional numbers of bands (five and eight). Conversely,

one might also think that the Frequency Response model could do better with a smaller

number of frequency bands. The limiting case of this is a single frequency band. Two-way

model comparisons, however, revealed the Heuristic to be better than using either (8-15Hz)

alpha or (15-40Hz) high (beta/gamma) power alone.

Our attention then turned to what it is about the Heuristic that makes it a good model.

We first addressed the issue of power normalisation. Comparison with a ‘scaled’ Heuristic,

based on un-normalised rather than normalised spectra, revealed the original Heuristic to

be clearly superior. The use of normalised power therefore seems important.

We then addressed the issue of nonlinearity. This derives from the square root operator

in Eq.4 (the R in RMS). A direct comparison of the Heuristic with its linear version based on

the MSF, as well as the Heuristic and the MF model, showed that when included together in

the same design, the predictive power of both functions were reduced by the other. Similarly,

model comparison of a normalised Frequency Response model with the Heuristic revealed

that neither model showed superior predictive power. These results together indicate that,

empirically, the nonlinearity introduced by the square root function does not appear to

be critical. A caveat however is that this conclusion may only be valid for the range of

frequencies generated in this experiment (1 to 40Hz).

A concern with the model comparison approach taken in this paper is that it is based

on GLMs and F-tests, which restrict one to making inferences about nested models. If no

natural nesting exists, then the regressors from all models are placed in the same design

matrix and F-tests used to infer whether sets of variables explain additional variance. Whilst

this approach is commonplace (Friston et al., 2007) it is nonetheless suboptimal as compared

to direct comparison of models using the Bayesian model evidence criterion (Penny et al.,

2007). We have recently extended this Bayesian model comparison approach to data from

group studies (Rosa et al., 2009) and plan to apply it to our EEG-fMRI data.

A further concern in the analyses we have presented here is in the use of EEG regressors

as a surrogate for neuronal activity. This approach has previously been used by a number

of groups (Lemieux et al., 2001; Goldman et al., 2002; Laufs et al., 2003; Moosmann et al.,

2003). In this paper we followed the same rationale but additionally employed a visual

flicker stimulation paradigm to elicit evoked activity in sensory cortex. We then used the

first principal component of the EEG data to isolate activity that was primarily related

to the stimulus paradigm. We note that this approach could be improved in a number
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of ways. First, one could employ multiple PCA or ICA components (Vigario et al., 2000;

Eichele et al., 2005, 2009), which might better isolate activity from specific processes or

brain regions. Second, one could use regressors derived from EEG source reconstructions as

in Wan et al. (2006). A problem with these approaches, however, is that they are no longer

compatible with a whole-brain SPM analysis approach, as that requires the same design

matrix at all voxels. They are nevertheless worth pursuing and we hope to do so in future

publications.

In the longer term, however, we envisage that such ‘asymmetric’ (Kilner et al., 2005)

regression approaches will be superceded by ‘symmetric’ forward models, such as proposed

in Sotero and Trujillo-Barreto (2008). Interestingly, this forward modelling approach based

on neural mass models also supports the Heuristic, as exogenous input causes both a BOLD

activation and an increase in the mean LFP frequency (Sotero and Trujillo-Barreto, 2008).

Some results in the literature may appear at odds with the Heuristic. For instance the

positive correlations with alpha power found in the thalamus by Goldman et al. (2002) and

in other regions (Gonçalves et al., 2006). However, the Heuristic describes a relationship

based on normalised not absolute power. Therefore if increases in alpha were, for exam-

ple, accompanied by decreases in lower frequencies (delta/theta), this would be compatible

with the Heuristic. Using separately acquired fMRI and source-reconstructed MEG data,

Muthukumaraswamy and Singh (2008) showed stimulus-related increases in gamma band

activity without corresponding changes in BOLD. However, whilst this result clearly speaks

against the gamma-BOLD hypothesis, it does not necessarily speak against the Heuristic.

This is again because the Heuristic depends on the normalised power of the whole spectrum.

An interesting inference to be drawn from Muthukumaraswamy and Singh (2008) is

that gamma-band power may reflect the synchronized activity of local neuronal ensembles.

This view fits in with neural network modelling results (Kopell et al., 2000) and power-law

analyses of electrocorticogram data (Miller et al., 2007). Whilst BOLD can be sensitive to

changes in the gamma band, as many studies have shown, it is also sensitive to activity in

the whole spectral domain, including the more spatially dispersed lower frequencies (Kopell

et al., 2000), and processes reflecting large-scale neuromodulatory input (Logothetis, 2008).

The original paper that described the Heuristic model was partly inspired by the results

of EEG-fMRI integration in the study of epilepsy. In this field, increased slow wave activity

has been shown to be associated with decreased BOLD (Archer et al., 2003) while spike

and wave discharges (with high frequency components) have been shown to cause BOLD

activations (Krakow et al., 2001; Hamandi et al., 2004). This would be entirely in agreement

with the Heuristic model.
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To our knowledge this paper reports the first study where the model proposed by Kilner

et al. (2005) has been empirically tested using human brain imaging data. It is also the first

work in which different putative functions for the relationship between BOLD and spectral

characteristics of neuronal activity, as measured with EEG, have been explicitly compared.

To this end we designed a study providing experimental control over the frequency struc-

ture of the EEG signal by entraining networks to visual stimulation at different frequencies.

Our results suggest that changes in BOLD are indeed associated with changes in the spectral

profile of the underlying neuronal activity, and that these changes don’t arise from a single

spectral band. Instead they result from the dynamics of the various frequency components

together, in particular, the relative contribution of high and low frequencies as proposed in

Kilner et al. (2005).

Although we entrained networks to visual stimulation we have no reason to anticipate

different results if neuronal activity were modulated by different cognitive processes. How-

ever, this is an empirical question that should be addressed in future studies. The current

paper provides evidence in favour of the Heuristic model but, of course, as with any sci-

entific experiment does not prove that the underlying theory is true. We expect that as

data is gathered from additional experimental paradigms and sensory modalities a balance

of evidence will emerge.

We expect that fMRI recorded concurrently with intracranial EEG will play a major

role in these investigations as this will provide more direct access to the various cortical

and subcortical regions that have little impact on the scalp EEG. This may help to resolve

to what extent, if at all, BOLD and EEG are differentially sensitive to endogenous lower

frequency ‘global’ states versus higher frequency local processing (Laufs, 2008).

Understanding the nature of the link between neuronal activity and BOLD plays a

crucial role in improving the interpretability of BOLD imaging, and relating electrical and

hemodynamic measures of human brain function. Finding the optimal transfer function

should also aid the design of more robust and realistic models for the integration of EEG and

fMRI, leading to estimates of neuronal activity with higher spatial and temporal resolution,

than are currently available.
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Figure 1: Example of artefact corrected EEG time-series for the first 10 seconds of the first visual stimulation period: (a) Mean activity of

electrodes O1 and O2. (b) Projection onto first principal component (SVD time-series).
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Figure 2: Topography (2D) of the EEG first principal component for a representative subject. The locations of the occipital and frontal electrodes

are indicated by their respective names.
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Figure 3: Power spectra of the SSVERs for EEG acquired outside (left) and inside the scanner (right) averaged over the three sessions of one

representative subject. The frequencies on top of each plot correspond to the reversing frequencies of the visual flicker stimuli.
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Figure 4: Effect of visual flicker stimulation on fMRI data. Single-subject analyses (3 sessions per subject) and Fixed effects group analysis (9

sessions in total), p < 0.05 (FWE). The voxel locations on the left correspond to the most significant cluster maximum for the group analysis

(Talairach space).
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Figure 5: Example regressors for (a) Total Power, (b) Heuristic and (c) Frequency Response (3 bands) models after convolution with the HRF

(subject 2). (d) Example BOLD time-series for the same period of time and subject, at the most significant cluster maximum ([12, -101, 18]

mm, Talairach space) from the fixed effects group analysis of the main effects of visual stimulation (Figure 4).
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Figure 6: Fixed effects SPM analyses (p < 0.001 (unc.)) for the Heuristic, Total Power and Frequency Response (3 bands) models analysed in

separate design matrices. The voxel locations on the left correspond to the most significant cluster maximum after small volume correction with

the BOLD activation mask (Talairach space).
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Figure 7: Contrast estimates and 90% C.I. for (a) Heuristic, (b) Total Power, and (c) Frequency Response with 3 bands (analysed individually).

The estimates include the canonical HRF, as well as its temporal and dispersion derivatives.
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Figure 8: Two-way model comparison between (a) Total Power versus Heuristic and (b) Total Power versus Frequency Response (fixed effects

SPM analyses (p < 0.001 (unc.)). The voxel locations on the left correspond to the most significant cluster maximum after small volume

correction with the BOLD activation mask (Talairach space). These F-maps show the correlations between EEG and BOLD that are uniquely

attributable to each model within a pair.

34



Figure 9: Three-way model comparison: fixed effects SPM analyses (p < 0.001 (unc.)). Heuristic, Total Power and Frequency Response (3

bands). The voxel locations on the left correspond to the most significant cluster maximum after small volume correction with the BOLD

activation mask (Talairach space). These F-maps show correlations between EEG and BOLD that are uniquely attributable to each model.
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Figure 10: Comparison between Heuristic and its un-normalised version, the u-Heuristic: fixed effects SPM analysis (p < 0.001 (unc.)). The

voxel locations on the left correspond to the most significant cluster maximum after small volume correction with the BOLD activation mask

(Talairach space). These F-maps show correlations between EEG and BOLD that are uniquely attributable to each model.
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Table 1: Summary of model comparisons and corresponding number of estimated parameters. For one session: nR is the number of regressors of

interest for each transfer functions; nBF is the number of basis functions, which is always 3 (canonical HRF, temporal and dispersion derivative);

nC is always 7 and corresponds to the number of confounds (6 motion parameters and 1 mean regressor); nP is the total number of parameters

to be estimated for each comparison.

Model comparisons nR × nBF + nC = nP nP (9 sessions)

i. Heuristic 1× 3 + 7 = 10 90

Total Power (TP) 1× 3 + 7 = 10 90

Frequency Response 3 bands (FR3) 3× 3 + 7 = 16 144

ii. TP vs Heuristic (1 + 1)× 3 + 7 = 13 117

TP vs FR3 (1 + 3)× 3 + 7 = 19 171

iii. TP vs FR3 vs Heuristic (1 + 3 + 1)× 3 + 7 = 22 198

iv. TP vs FR3 vs Heuristic vs GFP (1 + 3 + 1 + 1)× 3 + 7 = 25 225

v. Heuristic vs FR1 (1 + 1)× 3 + 7 = 13 117

vi. Heuristic vs u/l-Heuristic/MF (1 + 1)× 3 + 7 = 13 117

Heuristic vs FR5/FR8 (1 + 5/8)× 3 + 7 = 25/34 225/306
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Table 2: Anatomical location in Talairach space of the sites with significant results from the three-way model comparison (fixed effects SPM

analysis, without SVC).

Regressors [x, y, z] (mm) Location Inference

Stimuli [12, -101, 18] Right Cuneus p < 0.05 (FWE)

[-9, -101, 15] Left Superior Occipital Gyrus

[3, -92, 3] Right Calcarine Gyrus

Heuristic [-6, -77, 15] Left Calcarine Gyrus p < 0.05 (FWE)

[3, -92, 10] Right Calcarine Gyrus

[-54, -17, 9] Left Superior Temporal Gyrus

[60, -11, 15] Right Rolandic Operculum

[-12, -62, -12] Left Cerebellum

Total Power [-48, -74, 12] Left Middle Temporal Gyrus p < 0.001 (unc.)

Frequency Response [-48, -74, 12] Left Middle Temporal Gyrus p < 0.001 (unc.)

[-42, -74, -15] Left Cerebellum
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Table 3: Summary of results for the three-way comparison between Total Power (TP), the Heuristic and the 3-band Frequency Response (FR)

models from the fixed effects group analysis (Figure 9). ‘BAM’ is the Brain Activation Mask obtained from the main effects of stimulation

(Figure 4); nvox is the total number of voxels within a certain area and Fmax the maximum F-statistic within that region.

nvox | Fmax

Location Threshold Heuristic TP FR3

Within BAM

p < 0.05 (FWE) 17 | 13.3 0 | - 0 | -

p < 0.001 (unc.) 620 | 13.3 5 | 8.2 18 | 4.9

Outside BAM

p < 0.05 (FWE) 7 | 13.3 0 | - 0 | -

p < 0.001 (unc.) 801 | 13.3 46 | 9.6 95 | 4.8
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