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Abstract

Functional magnetic resonance imaging (fMRI), with blood oxygenation level-dependent (BOLD) contrast, is a widely used
technique for studying the human brain. However, it is an indirect measure of underlying neuronal activity and the
processes that link this activity to BOLD signals are still a topic of much debate. In order to relate findings from fMRI research
to other measures of neuronal activity it is vital to understand the underlying neurovascular coupling mechanism. Currently,
there is no consensus on the relative roles of synaptic and spiking activity in the generation of the BOLD response. Here we
designed a modelling framework to investigate different neurovascular coupling mechanisms. We use Electroencepha-
lographic (EEG) and fMRI data from a visual stimulation task together with biophysically informed mathematical models
describing how neuronal activity generates the BOLD signals. These models allow us to non-invasively infer the degree of
local synaptic and spiking activity in the healthy human brain. In addition, we use Bayesian model comparison to decide
between neurovascular coupling mechanisms. We show that the BOLD signal is dependent upon both the synaptic and
spiking activity but that the relative contributions of these two inputs are dependent upon the underlying neuronal firing
rate. When the underlying neuronal firing is low then the BOLD response is best explained by synaptic activity. However,
when the neuronal firing rate is high then both synaptic and spiking activity are required to explain the BOLD signal.
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Introduction

Functional magnetic resonance imaging (fMRI) is an extensively

employed neuroimaging technique that allows the non-invasive

recordings from human brain of neuronal activity with relatively

high spatial resolution. However, the blood oxygenation level-

dependent (BOLD) contrast on which fMRI is based is only an

indirect measure of this activity. The processes that link the

underlying neuronal activity to the BOLD signals are still a topic

of much debate. In particular, there is no consensus on the relative

roles of synaptic and spiking activity in the generation of BOLD

signals. In order to relate findings from fMRI research to other

measures of neuronal activity it is important to understand the

underlying neurovascular coupling mechanism [1].

Most of our present knowledge about neurovascular coupling

comes from animal experiments. These studies have combined

hemodynamic measures such as cerebral blood flow (CBF), with

electrical measurements such as local field potentials (LFPs) and

single/multi-unit activity (S/MUA). LFPs correspond primarily to

weighted averages of synchronised dendro-somatic components of

synaptic signals in a neuronal population, whilst S/MUA measures

the action potentials of a single cell or population of cells,

respectively [2].

In a pioneering study [3], found, in monkey visual cortex, that

although both LFPs and MUA correlate with the BOLD response,

this response could be predicted more accurately from LFPs. This

result has been confirmed in awake animals [4]. On the other

hand, [5], [6] and [7] found strong positive correlations between

blood flow and spiking activity. More recently, [8], [9] and [10]

have shown that when synaptic and spiking activity is uncoupled

(by drug injection in [8,10] and using a stimulus that elicits only

synaptic activity in [9]), changes in CBF do not reflect underlying

spiking activity and relate closer to LFPs.

This growing body of evidence (Table 1) therefore supports the

hypothesis that BOLD signals are more closely coupled to synaptic

input and processing activity than to the output spikes of a population

of neurons. In addition, this work (Table 1) provides support to a

growing consensus in which the BOLD signal is thought to result

from pre-synaptic activity and the release of neurotransmitters, in

particular glutamate [11], as well as vasodilatory substances, such as

nitric oxide [12], [13] and [14]. An increase in pre-synaptic activity

and concomitant release of glutamate induces fluctuations in

transmembrane potential at the post-synaptic neuron, and these

fluctuations are measured with LFPs. This activity is also thought to

be responsible for triggering the release of vasodilatory agents to the

extracellular medium, which induce changes in blood flow and

consequently the BOLD response [11].

However, when it comes to the human brain the number of

studies directly addressing the question of how BOLD relates to

synaptic versus spiking activity is relatively smaller (Table 1 and 2),

and the data in these studies comes exclusively from neurosurgical

patients, whose physiology may be compromised (Table 2). Of the

few such studies [15], observe significant correlations between

BOLD signals and both synaptic and spiking signals in auditory

cortex, whilst [16] found no correlation between BOLD signals

and neuronal firing in the hippocampal area.
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The link between neuronal activity and the BOLD response has

not only been investigated at a microscopic level, using invasive

co-localised recordings, but also at a macroscopic scale using fMRI

and Electroencephalography (EEG). EEG (and Magnetoenceph-

alography (MEG)), are well established non-invasive techniques

that are well suited to studying neuronal activity since they provide

direct (not confounded by the hemodynamic response) measure-

ment of post-synaptic potentials (magnetic fields) in cortical

pyramidal cell populations with high temporal resolution [17].

Studies using both EEG and fMRI in humans have focused on

correlations between BOLD signals and oscillatory EEG power

measured in different frequency bands. For example, [18], [19]

and [20] have shown that reductions in ongoing-scalp EEG alpha

power (8–13 Hz) correlate with increases in BOLD activity in

human occipital cortex. Using intra-cranial recordings in epileptic

patients [21], have found a close spatial correspondence between

regions of fMRI activation and sites showing EEG energy

variation in the gamma band (w40Hz). The main conclusion of

this body of work is that increases in EEG frequency are associated

with increases in BOLD signal. Even though these studies do not

address our question (input versus output) directly, they seem to

point in the direction of the biological hypothesis constructed from

animal evidence (see above): increases in pre-synaptic activity,

decrease effective membrane time-constants and result in faster

oscillatory dynamics; at the same time more neurotransmitters are

released (e.g. glutamate), which lead to increases in BOLD signal

[14].

Here we design a powerful and efficient modelling framework to

explicitly investigate competing hypotheses for the relationship

between neuronal activity and the BOLD response in the healthy

human brain. We use this framework to explore the relative

contribution of synaptic and spiking activity to the generation of

fMRI signals in visual cortex.

The participation of healthy subjects prohibits the use of

invasive electrophysiological measures. Therefore we use a

mathematical modelling framework that allows us to non-

Table 1. Main findings of previous animal studies on neurovascular coupling.

Reference Paradigm Main findings Brain regions Species Signals

[3] Visual (rotating checkerboard) LFP (40–130 Hz) better predictor of BOLD
than MUA (300–1.5 kHz)

V1 Monkey BOLD, LFP, MUA

[4] Visual (rotating checkerboard) BOLDÕs variance best explained by LFP (20–60 Hz) V1 Monkey (awake) BOLD, LFP, MUA, SUA

[5] Visual (moving dots; changing
coherence)

BOLD contrast in human V5 isproportional to
SUA in monkey V5

V5 Monkey/Human BOLD, SUA

[6] Visual (changing contrast) BOLD in human V1 is proportional to SUA in monkey V1 V1 Monkey/Human BOLD, SUA

[8] Resting-state Drug induced increase in Purkinje cell spike activity
was not sufficient to raise blood flow above baseline

Cerebellum Rat CBF, SUA

[9] Visual (sine-wave
gratings, 1–20 Hz)

Correlation between BOLD and LFPs in the absence
of spiking activity (suppressed by the stimulus)

V1 Cat LFP, MUA, TO2

[10] Visual (rotating checkerboard) Injected neuromodulator BP554 induces hyperpolarization
of efferent membrane, reducing MUA (800–3 k Hz)
without affecting either LFP (24–90 Hz) or BOLD activity

V1 Monkey BOLD, LFP, MUA

[70] Visual (sinewave gratings, natural
movies and pink pixel noise)

Agreement between BOLD and LFP (in terms of % of
recording sites) depends on LFP frequency. Best
agreement between 20 and 50 Hz. Poorer agreement
for MUA

Visual cortex
(17,18,19
and 21a)

Cat BOLD, LFP, MUA

[71] Visual BOLD correlates better with gamma-band LFP Visual cortex Cat BOLD, LFP, MUA

[72] Perceptual suppresion Only BOLD and low-Hz LFP (not high-Hz LFP or spikes)
significantly decreased during perceptual suppression

V1 Monkey (awake) BOLD, LFP, Spikes

[68] Whisker pad stimulation Deep layer negative BOLD, adjacent to layers of
positive BOLD, associated with reductions in MUA

Somato-sensory
cortex

Rat BOLD, LFP, MUA,
OHb, dHb, CBV

[64] Optical stimulus Negative BOLD signal caused by optically
driving genetically modified inhibitory cells

Motor cortex Rat Optogenetics

S/MUA refers to single/multi-unit activity. CBF refers to cerebral blood flow; TO2 to tissue oxygenation concentration; OHb, dHb, CBV to oxy and deoxy-Hemoglobin
and cerebral blood volume, respectively.
doi:10.1371/journal.pcbi.1002070.t001

Author Summary

Functional magnetic resonance imaging (fMRI), with blood
oxygenation level-dependent (BOLD) contrast, is a widely
used technique for studying the human brain. However,
the relationship between neuronal activity and blood flow,
the basis of fMRI, is still under much debate. A growing
body of evidence from animal studies suggests that fMRI
signals are more closely coupled to synaptic input activity
than to the spiking output of a neuronal population.
However, data from neurosurgical patients does not seem
to support this view and this hypothesis hasn’t yet been
tested in the healthy human brain. Here we design a
powerful and efficient modelling framework that can be
used to non-invasively compare different biologically
plausible hypotheses of neurovascular coupling. We use
this framework to explore the contribution of these two
aspects of neuronal activity (synaptic and spiking) to the
generation of hemodynamic signals in human visual
cortex, with Electroencephalographic (EEG)-fMRI data.
Our results provide preliminary evidence that depending
on the frequency of the visual stimulus and underlying
firing rate, fMRI relates closer to synaptic activity (low-
frequencies) or to both synaptic and spiking activities
(high-frequencies).

Comparison of Neurovascular Models Using EEG-fMRI
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invasively infer the degree of local synaptic and spiking activity,

together with EEG-fMRI data, in which subjects were exposed to

a reversing checkerboard of varying frequencies. This is similar in

spirit to the use of ‘virtual electrodes’ in EEG analysis [22], but

provides more specific biophysical information. This framework

consists of a biophysically informed forward model from neuronal

activity to the observed EEG and fMRI signals.

Models linking neuronal activity to EEG/MEG signals have been

proposed by [23], [24] and [25], to mention a few. These models

usually use one or two state variables to represent the mean electrical

activity of neuronal populations at the macro-column level, and are

referred to as neural mass models [26]. Models linking ‘neuronal

activity’ to BOLD signals include the metabolic models proposed by

[27,28] and the Balloon model, proposed by [29]. The Balloon model

describes how evoked changes in blood flow are transformed into the

BOLD response and has been extended by [30], who introduced a

blood flow-inducing signal relating ‘neuronal activity’ and CBF and

by [31], where different metabolic pathways have been proposed for

supporting excitatory and inhibitory synaptic activity. In the above

work ‘neuronal activity’ is usually not explicitly modelled and often

corresponds to the stimulus input functions.

Models linking a common underlying neuronal substratum to

both EEG and fMRI signals have also been developed [32]. Some

models are phenomenologically motivated, such as the ‘Heuristic’

proposed by [33]. This model aims to explain empirical results

which relate frequency-specific power changes in EEG with fMRI

signals and predicts that increases in the BOLD contrast reflect

increases in the Root Mean Squared (RMS) frequency of EEG.

We have validated these predictions in previous work [34] using

simultaneous EEG-fMRI data in humans with a visual flicker

stimulation task. As predicted by [33], the RMS frequency

significantly explained more BOLD activity than the total time-

varying spectral power or any linear combination of frequency-

band amplitude modulations (e.g. alpha or gamma power).

Biophysically motivated models include [35–37]. Most of these

theoretical frameworks combine the neural mass model approach

for EEG with the Balloon model for fMRI, but the coupling

between neuronal activity and blood flow differs from model to

model. For instance [35], propose that the squared post-synaptic

membrane potential from both excitatory and inhibitory cells from

a cortical area drives increases in cerebral blood flow, whilst [37]

consider all the incoming action potentials from populations

within and outside the voxel to be the input to the BOLD

response. In [36] this input is proportional to the total

concentration of nitric oxide (NO) synthesised by neurons in the

cortical unit. The parameters of this model have been estimated

using EEG-fMRI data from the visual cortex of one subject

exposed to a reversing checkerboard with varying frequency [38].

Despite these theoretical efforts, the existing modelling frame-

works have not yet been used in conjunction with real

electrophysiological and hemodynamic data to compare different

neurovascular coupling mechanisms, although important steps in

this direction have been taken by [36,39]. In [39], the authors

have compared different models to investigate the role of

excitatory and inhibitory activity in the generation of BOLD

signals, using fMRI data from one subject. They found BOLD

signals to be best explained by excitatory activity alone.

Here we use the forward model proposed by [36] and embed it

within a Bayesian framework. Using EEG and fMRI data in

combination with Bayesian inference allows us to estimate the

underlying synaptic and spiking activity, along with other

biophysical model parameters. These quantities are computed

using the variational Laplace method described in [40]. This

optimisation scheme has been successfully applied to other input-

state-output systems, such as [41,42].

However, inverting generative models using multi-modality

datasets, can be a technically demanding task, if the temporal

characteristics of the datasets are very different, which is the case for

EEG-fMRI data. Here we develop a computationally efficient

scheme for model inversion. Instead of inverting the model in a

single (computationally demanding) step we adopt a ‘multi-step

inversion’ approach. This approach is based on partitioning model

inversion into multiple, independent and computationally efficient

steps that are motivated by the time-scales of data involved. This is a

general procedure that can be used with other datasets and in other

multimodal studies, such as with MEG-fMRI or LFP-fMRI data.

Table 2. Main findings of previous human studies on neurovascular coupling.

Reference Paradigm Main findings Brain regions Species Signals

[15] Movie segment Significant correlation between patients predicted BOLD
signals from SUA and signals measure in healthy subjects

Auditory cortex Human
(patients)

BOLD, LFP, SUA

[16] Spatial navigation in
virtual environment

Correlation between the BOLD signal andtheta-band activity;
no significant correlation with MUA/SUA

Hippocampal areas Human
(patients)

BOLD, LFP, MUA,
SUA

[18–21] Resting-state Reductions in alpha power correlate with increases in BOLD Occipital cortex Human
(healthy)

BOLD, EEG

[21] Semantic decision task Close spatial correspondence between BOLD activation
regions and gamma-ECoG sites

Temporal and
sulcal cortex
and insula

Human
(patients)

BOLD, ECoG

[34] Visual (flickering
checkerboard 4–60 Hz)

Root-mean squared frequency explains more BOLD activity than the
total spectral power or any linear combination of frequency-bands

Visual cortex Human
(healthy)

BOLD, EEG

[73] Movie segments Gamma-LFP coupled well to BOLD; coupling for SUA highly variable Auditory cortex Human
(patients)

BOLD, LFP, SUA

[74] Wakefulness (AW), slow-
wave and rapid-eye-
movement sleep (REM)

State-invariant significant structural correlation between BOLD and
slow cortical potentials (v4Hz). Gamma band potentials only
correlate with BOLD during AW and REM

Sensori-motor
cortex

Human
(patients)

BOLD, ECoG

[75] Resting-state BOLD response is negatively correlated with GABA concentration
and gamma oscillation frequency

Visual cortex Human
(healthy)

MEG, GABA
concentration

ECoG refers to Electrocorticography.
doi:10.1371/journal.pcbi.1002070.t002

Comparison of Neurovascular Models Using EEG-fMRI
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Finally, once equiped with this mathematical and computation-

al framework we posit models embodying different hypotheses

about neurovascular coupling and adjudicate between them using

Bayesian model evidence [43]. We compare three models. The

first assumes that blood flow depends on the amount of

vasodilatory substances (e.g. nitric oxide) released as a result of

synaptic activity (synaptic input model), as proposed by [36]. The

second assumes blood flow is driven by the firing rate of pyramidal

cells from the same unit (spiking output model). These hypotheses are

then compared against a third model where both these quantities

contribute to the BOLD response (mixture model). In the long term,

we anticipate that this modelling framework will be used to test

neurovascular coupling hypotheses in a variety of experimental

contexts with a range of subject cohorts.

Materials and Methods

Local electro-vascular (LEV) model
We use a realistic biophysical model, proposed by [36], of how

electrical and vascular dynamics are generated within a cortical

unit. The unit comprises three subpopulations of cells: two layer

IV GABAergic interneuron populations (the transmission and

feedback interneurons (INs)) and a layer V pyramidal cell (PC)

population (Figure 1(a)). Interneurons are modelled as single

compartment neurons, whilst the pyramidal cell has three

compartments (soma, basal and apical tuft dendrites). Here we

briefly describe the forward model. A summary of all the equations

and parameters of the model can be found in Text S1. For a more

detailed description please consult the original work [36].

Neural mass model
A neural mass model (NMM) characterises the population

dynamics of electrical states such as the membrane potentials in the

somas of the neurons and electric currents flowing in the neuropil.

This modelling framework is appropriate for data that reflect the

behaviour of neuronal populations, such as EEG and fMRI data.

The neural mass model can be viewed as a special case of ensemble

density models, where the ensemble density is summarised with a

single number representing mean activity [44]. Assuming that the

equilibrium density of the neuronal states has a point mass (i.e., a

delta function), we can reduce the density dynamics to the location

of that mass. What we are left with is a set of non-linear differential

equations describing the evolution of this mode.

The time variations of membrane potential in the individual

compartments of the pyramidal cell and single compartment

interneurons, V (t), are determined by the differential equation for

a simple voltage source circuit:

tm

dV (t)

dt
zV (t)~I(t)Rm, ð1Þ

where Rm is the effective membrane resistance of the compart-

ment, and is cell-type and compartment specific. tm is the

membrane time constant (same for all cells and compartments).

The current, I(t), that flows through the membrane of the cell

depends on the connections between different elements of the

cortical unit and its external inputs (Figure 1(a)). The cortical unit

receives external excitatory input in different subpopulations,

whilst its sole output is the firing rate of the pyramidal cells, Iz.

The excitatory inputs to the transmission interneuron, Iz
3 , and

basal dendrites of the pyramidal cell, Iz
1 , correspond to thalamo-

cortical afferent projections. The input to the apical tuft dendrites,

Iz
2 , mediates cortico-cortical interactions. These currents can be

found in Figure 1(a).

In terms of synaptic connections within the cortical unit, the

total inhibitory synaptic effect on the pyramidal cell is given by:

I{~I{
T zI{

F , where I{
T is the transmission inhibitory current

and I{
F the feedback inhibitory current. The inhibitory synaptic

currents depend nonlinearly on the membrane potential of the

GABAergic cells through a threshold function: I{!f (VIN ). The

excitatory synaptic current generated by the pyramidal cell has the

same form: Iz!f (VPC):

f (V )~Alz
Au

(1zTe{c(V (t){V0))1=T
: ð2Þ

The parameters are set to Al~0 and Au~1 to ensure that the

output stays between 0 and 1. The V0 and c parameters determine

the voltage sensitivity by setting the membrane potential

maximum growth and growth rate, respectively. These parameters

are estimated from the data. T~0:03 determines the membrane

potential near the asymptote where maximum growth occurs. The

threshold function, f (V ), is also used to construct the firing rate

coupling model (see below).

The equations for the membrane potential at the soma of the

three-compartment pyramidal cell, as well as the extracellular

potential along its apical dendrites can be determined from the

potentials and currents at the individual compartments (given by

[Eq. 1]). These equations can be found in Text S1. The apical

dendrites of the layer V pyramidal cells are arranged in parallel to

each other and perpendicularly oriented to the surface of the

cortex. This geometry facilitates the summation of electric currents

in the neuropil. The mesoscopic effect resulting from the spatial

average of these extracellular currents corresponds to the electrical

signal measured with EEG.

The state variables, xN, and parameters, h
N

, of the neural mass

model described above are summarised in Table 3 of the main text

and Tables 1 and 2 in Text S1.

Extended Balloon model
The coupling between local neuronal activity, described by the

neural mass model, and subsequent changes in vascular dynamics

is our question of interest. These changes are expressed in the

BOLD signal and have previously been modelled in an extended

Balloon approach [30], in which a set of four ordinary differential

equations comprise the hemodynamic forward model from

‘neuronal activity’ to hemodynamic responses. The full derivation

of these equations can be found in [29] and [30]. In brief, for a

particular region, neuronal activity, z, causes an increase in a

vasodilatory signal, s, that is subject to auto-regulatory feedback.

Inflow, f responds in proportion to this signal with concomitant

changes in blood volume n and deoxyhemoglobin content q. These

equations are summarised in Text S1.

The hemodynamic parameters, h
H
~fts, tf , t0, a, E0g, com-

prise the rate constant of the vasodilatory signal decay, the rate

constant for autoregulatory feedback by blood flow, transit time,

Grubb’s vessel stiffness exponent, and the resting oxygen

extraction fraction, respectively.

The whole dynamic system is driven by the input z(t). Different

inputs, z, correspond to different aspects of neuronal activity and

consequently different coupling hypotheses between neuronal

activity and the BOLD response. A summary of the hemodynamic

model’s state variables, xH~fs, f , n, qg, and parameters, h
H

, can

be found in Table 3 of the main text and Tables 1 and 2 in Text S1.

In the next section we specify the neurovascular coupling

mechanisms we are interested in comparing.

Comparison of Neurovascular Models Using EEG-fMRI
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Observation equations
The original electro-vascular model proposed by [36] is

represented by a set of stochastic differential equations describing

the dynamics of the neuronal and vascular states, x(t). In [36] the

stochastic aspect of the model is instantiated by incorporating an

additive multidimensional Wiener process to model physiological

noise. In this paper, however, we use a deterministic version of the

model. This means that the dynamics are completely determined

by the state of the system and stochastic effects enter only at the

observation level (Eq. 3). This deterministic approach resulted in

very similar frequency-response curves to those in [36] (see

Results: synthetic data below) and allows us to use standard

Bayesian estimation routines, widely used with deterministic

forward models for EEG (e.g. [42]) and fMRI (e.g. [40]).

The observation equations for EEG, y
N

, and fMRI, y
H

, data are

then given by:

y
N,H

(t)~h
N,H

(x
N,H

(t))ze
N,H

t , ð3Þ

where the errors are assumed to be i.i.d., e
N,H

*N(0,s
N,H

I).

The temporal variations of the EEG signal are well approxi-

mated by the extracellular electric current in the neuropil, r(t),
obtained from the NMM multiplied by the lead field matrix, L.

This matrix contains information about the geometry and

conductivity of the head, and is therefore employed to map the

distributed electric sources within the brain to scalp EEG

recordings [45]:

h
N

(x
N

(t))~Lr(t): ð4Þ

The observation function for fMRI is a static nonlinear function

of the cerebral blood volume and the concentration of deox-

yhemoglobin directly [30]:

h
H

(x
H

(t))~V0½k1(1{q(t))zk2 1{
q(t)

n(t)

� �
zk3(1{n(t))�: ð5Þ

The factors k1, k2 and k3 are dimensionless but depend on the

characteristics of the fMRI recording system. For 1.5 T and TE of

Figure 1. Local electro-vascular model: cortical unit. a) The unit comprises three subpopulations of cells, two layer IV GABAergic interneurons
and a layer V pyramidal cell. The unit receives input from cortical or thalamic connections, Iz

1 , Iz
2 and Iz

3 , whilst its output is the firing rate of layer V
pyramidal cells, Iz; b) Non-linear function of the transmembrane capacitive currents used to calculate the NO concentration. This function is
symmetric because both positive and negative currents increase the amount of NO released. This function is used in the synaptic input coupling
model. c) Sigmoid function from membrane potential to firing rate. This function is used as the input to the vascular equations in the spiking output
model.
doi:10.1371/journal.pcbi.1002070.g001

Comparison of Neurovascular Models Using EEG-fMRI
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40 msec, k1%7E0 k2%2 k3%2E0{0:2. V0~0:02 is the resting

blood volume fraction.

Neurovascular coupling
To link the two main components of the biophysical model, the

neural mass model and the Balloon model, we specified three

different biologically plausible neurovascular coupling mechanisms

based on previous empirical results. These mechanisms are

described below:

Synaptic input model. The first model considered assumes

that the input to the Balloon model, z(t), depends on the amount

of nitric oxide (NO) released by synaptic activity, as originally

proposed by [36]. We refer to this model as the synaptic input model.

NO is a potent vasoactive and rapidly diffusing gas [46], being a

good candidate for regulating blood flow during functional

activation [13,47]. Although its synthesis is not yet fully

understood, neuronal NO is thought to be generated pre-

synaptically [12] and increases in NO concentration have been

reported following increases in synaptic activity [48].

The total concentration of NO in the cortical unit is modelled as

a nonlinear function, g, of the transmembrane capacitive currents

in the somas of the interneurons and of the pyramidal cell.

Although the genesis of NO is thought to be pre-synaptic [36],

assume a direct causal relation between pre-synaptic activity and

changes in post-synaptic transmembrane currents. These currents

can be obtained from the derivative of the membrane potential,

I~CdV=dt, (see Eq. 1) and therefore the total concentration of

NO is given by:

C
NO

(t)~
X

i~fT ,Fg
x

IN
g

IN
(C0

m

dVINi
(t)

dt
)zx

PC
g

PC
(Cm

dVPC(t)

dt
): ð6Þ

The energetic factors x
IN

and x
PC

are introduced in order to

make a distinction between relative metabolic demand in neurons

of different types. C0
m and Cm are the effective membrane

capacitances in the somas of the neurons. To take into account

both inward and outward ionic currents, the nonlinear function, g,

is required to be symmetric around zero and to include a

saturation effect (Figure 1(b)):

gk(x)~rk(1{exp({x2=vk)), ð7Þ

where k~fPC,INg and rk and vk are parameters to be

estimated from the data.

The amount of NO released in the cortical unit (Eq. 6) is then

passed through a low-pass filter with gain A, cut-off frequency v0

and damping factor d. Finally, the input to the extended Balloon

model, zin (and derivative r), is given by:

dr(t)

dt
~{2dv0r(t){v2

0zin(t)zv2
0ACNO(t)

Table 3. Estimated parameters: these are the parameters estimated from synthetic and measured EEG-fMRI data (one example
session, all frequencies).

Electrical, vascular and coupling parameters

Synthetic Observed

Type Description Symbol Units Prior True Estimated Estimated

Electrical (hN )

Synaptic input Iz
1

pA 1.00 0.80 0.85 0.94

Synaptic input Iz
2

pA 1.00 1.00 1.00 1.00

Synaptic input Iz
3

pA 1.00 0.50 0.60 0.60

GABAergic IN synaptic factor a
IN

pA 0.30 0.50 0.49 0.53

PC voltage-ampere function VPC
0

mV 0.60 0.90 0.78 0.42

V PC voltage-ampere function c
PC mV{1 6.00 4.00 5.62 5.95

Vascular (hH )

Signal decay ts ms 0.65 0.50 0.65 0.59

Autoregulation tf ms 0.41 0.28 0.41 0.40

Transit time t0 ms 0.98 0.78 0.98 0.91

Stiffness a no dim. 0.32 0.25 0.32 0.32

Resting O2 extraction fraction E0 no dim. 0.34 0.30 0.34 0.34

Coupling

NO model (h
in

) NO concentration baseline z0 no dim. 0.10 0.30 0.29 0.29

NO synaptic current factor (IN) p
in s{2 1.59e03 1.50e03 1.59e03 1.59e03

FR model (h
out

) PC voltage-ampere function VPC
0

mV 0.78 0.90 0.63 0.17

PC voltage-ampere function c
PC mV{1 5.62 4.00 5.70 7.98

Mixture model (h
mix

) NO coefficient vin no dim. 0.50 0.40 0.40 0.29

FR coefficient vout no dim. 0.50 0.60 0.60 0.71

The parameter p
in

for the synaptic input model corresponds to: p
in
~Ax

IN
r

IN
v2

0 (see Eq. 6–8 and Table 2 in Text S1).
doi:10.1371/journal.pcbi.1002070.t003
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dzin(t)

dt
~r(t): ð8Þ

The baseline concentration of NO before stimulation,

z0~zin(t~0), is estimated from the data. In total, this model

has seven free parameters, h
in
~fpin, z0, h

H
g, which are estimated

from the data (Table 3). The time series of zin (input to the Balloon

model) can be found in Figure 2 for most frequencies.

Spiking output model. For the second neurovascular

coupling hypothesis we consider blood flow to be driven by the

output spikes of the cortical unit, i.e the firing rate of the pyramidal

cells. We refer to this model as the spiking output model.

The spiking activity of the layer V pyramidal cells is the

outcome of the processing of information in the cortical unit and

contains the information that is transmitted to other areas within

and outside the cortex. Therefore this model looks at how BOLD

signals are related to the output of local neuronal information

processing as opposed to the synaptic input assessed by the

previous model.

In this model the generalised logistic function (Eq. (2)) is

employed to transform the average membrane potential of the

pyramidal cell population, V (t), into the average rate of action

potentials fired by these neurons [49] (Figure 1(c)):

zout(t)~f (V (t)): ð9Þ

This model has seven free parameters (the same number of

parameters of the input model), h
out

~fVPC
0 , c

PC
, h

H
g, which are

estimated from the data (Table 3). The time series of zout (input

to the Balloon model) can be found in Figure 2 for most

frequencies.

Mixture model. The third coupling model assumes that both

synaptic and spiking activities can contribute to the generation of

the hemodynamic signals. Therefore, the mixture model is a sum

of the amount of NO released by synaptic activity in the cortical

unit and the firing rate of its pyramidal cells:

zmix(t)~vinzin(t)zvoutzout(t), ð10Þ

where vin and vout~1{vin are coefficients to be estimated from

the data and represent the relative contribution of each type of

activity. This model has ten free parameters (three more

parameters than the previous models), h
mix

~fpin, z0, VPC
0 ,

c
PC

, vin, h
H
g . The time series of zmix (input to the Balloon

model) can be found in Figure 2 for most frequencies.

EEG-fMRI data
Subjects and task. We use EEG and fMRI data from a

previous study [34] to compare the neurovascular coupling

models. In brief, the data were concurrently acquired using a

synchronised acquisition protocol [50] for three healthy volunteers

(three male, mean age 35+4 years exposed to visual flicker stimuli

of varying frequencies. Three consecutive sessions of the same

experimental task were recorded for each subject. A reversing

black and white checkerboard (11611 squares, size 13 cm6
13 cm) was delivered via a computer monitor (60 Hz refresh rate)

and projected on a screen positioned 47+1cm from a 450 mirror

located 11+3cm from the subject (visual angle ~6:5+0:50). The

reversing frequencies used were 4.0, 7.5, 10.0, 12.0, 15.0, 20.0 and

30.0 Hz. Stimuli were delivered in epochs of 5 scans (15.3 sec),

followed by periods of 5 scans of rest (blank screen), and the order

of stimulus blocks was randomised. Subjects were instructed to

view a fixation cross which was visible during both rest and

stimulus periods, and no overt response was required in either

condition. The paradigm used here was designed to induce a large

response in sensory cortex, in order to study a basic physiological

mechanism, the neurovascular coupling. Although luminance

levels were not held constant for the different flicker frequencies,

these values were measured and taken into account by scaling the

input to the model appropriately.

fMRI data. Images were acquired from a 1.5 T whole-body

scanner (Magnetom Sonata, Siemens Medical, Erlangen,

Germany) operated with its standard body transmit and

circularly polarised head receive coil. The manufacturer’s

standard automatic 3D-shim procedure was performed at the

beginning of each experiment. The scanner produced T2*-

weighted images with a single-shot gradient-echo EPI sequence.

Whole brain images consisting of 34 contiguous transverse slices,

on a 64-by-64 grid, were acquired every 3.06 seconds resulting in

a total of 320 functional scans for each of the three sessions of

each subject (slice thickness = 2 mm, gap between slices = 1 mm,

repetition time TR = 90 ms, flip angle = 900, echo time TE =

50 ms, field of view FOV~192|192mm2, and therefore

3|3|3mm voxel resolution). Whole-brain structural scans

were also acquired using a T1-weighted 3D-Modified Driven

Equilibrium Fourier Transform (MDEFT) sequence [51] in 176

sagittal partitions with an image matrix of 256|256 (TR = 12 ms,

TE = 4 ms, flip angle = 230, and voxel size 1|1|1mm).

The fMRI data were pre-processed with SPM8 software

(http://www.fil.ion.ucl.ac.uk/spm/) implemented in Matlab

(The Mathworks, Inc.). The first five scans of each session were

discarded, and the pre-processing steps included: (a) realigning the

images to the first scan and coregistering the structural scan with

the mean functional image from all sessions; (b) correcting for

differences in acquisition time between slices and normalising all

the functional and structural scans to a standard EPI template

based on the Montreal Neurological Institute (MNI) reference

brain in Talairach space [52] (c) smoothing the functional images

(Gaussian kernel, 8 mm half width). The movement parameters

obtained from the realignment step were included in the

subsequent general linear model (GLM) analysis as confounding

covariates. The data were also high-pass filtered with a cut off

period of 128 sec, to remove scanner drift and physiological noise.

In previous work [34] we identified the brain regions activated

by the flickering checkerboard in each subject. These regions are

located in the subjects’ visual cortex, as expected (see Figure 3(a)

for an example subject). The coordinates of the corresponding

cluster maxima are: ½27,{71,{9� mm, ½18,{104,21� mm and

½{9,{101,12� mm (Talairach coordinates). From these location

we extracted the BOLD signal (200 scans per session) by

calculating the first principal component of the adjusted data

(removing the global drift and other confounds) from voxels within

a 6 mm spherical volume centered on the cluster maximum. The

resulting time-series for each session were then epoched and

averaged (in the time domain) across epochs (Figure 3(b)). These

time-series were used to estimate the parameters of the

neurovascular coupling model, as described below.

EEG data. EEG was acquired with an MR-compatible

BrainAmp amplifier and BrainCap EEG cap with ring Ag/AgCl

electrodes (Brainproducts GmbH, Munich, Germany). Raw EEG

was sampled at 5 kHz and a low pass filter (cut off frequency: 1 kHz)

was used. This system provided 29 EEG channels, 2 EOG channels,

and 1 ECG channel. The electrodes were distributed according to

the 10/20 system, and the reference electrode was located between

Comparison of Neurovascular Models Using EEG-fMRI
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Fz and Cz. We additionally measured the pulse using a pulse

oxymeter attached to the subject’s finger and the locations of the

EEG electrodes were recorded with a Polhemus digitiser.

The EEG data were pre-processed as described in [34]. The data

acquired inside the scanner were corrected off-line using facilities in

the Brain Vision Analyzer software package (Brainproducts GmbH,

Munich, Germany) [53]. The gradient artefact was removed via

mean subtraction with template drift compensation, whilst cardiac

related artefacts were removed by subtracting the first three

principal components that were time-locked to pulse oxymeter

readings. The data were then high-pass filtered (0.5 Hz) to reduce

slow drifts in the signal. The quality of the data acquired inside the

scanner was assessed by comparing it to the data acquired outside

the MR-environment, as described in [34]. In addition, electrodes

Fp1 and Fp2 were discarded due to eye-blink artefacts.

Here we use the scalp steady state visual evoked responses

(SSVERs) to reconstruct the electrical activity at the source level.

SSVERs were computed by first epoching the artefact-corrected

27-electrode EEG data acquired inside the MRI scanner, for each

session, in a 15-second post-stimulus window and then averaging

(in the time domain) across trials. This procedure yielded 7

averaged 15-second time-series for each session corresponding to

the 7 different flicker frequencies used. The source electrical

activity was then obtained as follows. Given a source region with

known anatomical location, we can form the NS|1 lead field

vector L where NS is the number of EEG sensors. This vector was

obtained with SPM8 using a template mesh for the location and

orientation of the cortical source and a boundary element method

for the head model. The source location was chosen to be the

corresponding cluster maximum identified with the fMRI data (see

previous section). Given that the number of sources (NS~1) is

smaller than the number of scalp channels (NC~27), activity in

the source region can be estimated as follows [54]:

rk(t)~Lzyk
N (t), ð11Þ

where Lz denotes the Moore-Penrose pseudo-inverse of the lead

field vector Lz~(LT L){1LT . Here yk
N (t) is the artifact-free

Figure 2. Input to Balloon model for different frequencies. Synaptic input model (blue), zin , spiking output model (black), zout , and mixture
model (red), zmix. The signals have been standardised (mean corrected and divided by the standard deviation of the signal).
doi:10.1371/journal.pcbi.1002070.g002
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SSVER for frequency k and one session. The resulting source time-

series (for all frequencies and all sessions), r(t), were used to estimate

the parameters of the neural mass model (see below) (Figure 3(c)).

Bayesian model inversion
Using EEG-fMRI data in combination with Bayesian inference

allows us to estimate the underlying synaptic and spiking activities,

along with other parameters of the biophysical framework.

Additionally, we can compare the different neurovascular coupling

hypotheses using Bayesian model evidence.

In Bayesian inference, prior beliefs about parameters, h, of

model m are quantified by the prior density, p(hjm). Inference on

the parameters, h, after observing data, y, is based on the posterior

density p(hjy, m). These densities are related through Bayes’ rule:

p(hjy, m)~
p(yjh, m)p(hjm)

p(yjm)
, ð12Þ

where p(yjh, m) is the probability of the data (likelihood)

conditioned upon the model and its parameters. The normalisa-

tion factor, p(yjm), is called the model evidence and plays a central

role in model comparison (see below).

The posterior density is an optimal combination of prior

knowledge and new observations, weighted by their relative

precision (i.e., inverse variance), and provides a complete

description of uncertainty about the parameters. Generally, the

choice of priors reflects either empirical knowledge (e.g., previous

measurements) or formal considerations (e.g., biological or

physical constraints). Here we use empirical knowledge for both

the neural mass model parameters and the coupling/hemody-

namic parameters, based on estimates obtained by [36].

Under Gaussian assumptions, also known as a fixed-form

Laplace approximation [55], the problem of estimating the

posterior density reduces to finding its first two moments, the

conditional mean g and conditional covariance C. The prior

density is also assumed to be Gaussian with mean gh and

covariance Ch (see Table 3 for a list of prior mean values).

A non-linear model, such as the local electro-vascular (LEV) model

used here, Eq. (3), can be linearised by expanding the observation

equation about a working estimate g of the conditional mean:

y~h(h, u)ze

h(h, u)&h(g)zJ:(h{g), ð13Þ

such that J~
Lh(g)

Lh
, y{h(g)&J:(h{g)ze and e*N(0,Ce). In this

Figure 3. EEG-fMRI data. a) SPM results (3 sessions, example subject): effect of visual flicker stimulation on fMRI data. The voxel location
corresponds to the most significant cluster maximum (Talairach space), p{valuev0:05 (FWE). b) Epoched BOLD signal (eigenvariate) from the most
significant cluster maximum - one example session. c) 2 second source SSVER, r, from the same cluster peak from 1 example session and frequency
(10 Hz). Both signals have been standardised (mean corrected and divided by the standard deviation of the signal) as used in the optimisation
scheme.
doi:10.1371/journal.pcbi.1002070.g003
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paper, the error covariance is assumed isotropic over the EEG and

fMRI predictions Ce~blkdiag½s2
NI ,s2

BI �.
The linearised model, Eq. (13), can be used in a Variational

Laplace (VL) optimisation scheme that iteratively updates the

moments of the conditional density, q(h)~N(g,C). VL is a

generic approach to estimate the posterior density, and can be

formulated by analogy with statistical physics as a gradient ascent

on the ‘negative Free Energy’, F (m), of the system. The full

derivation of the algorithm is described in [56].

The maximisation of F (m) with respect to q(h) in effect

maximises a lower bound on the log model evidence, log p(yjm),
[57]:

log p(yjm)~F (m)zKL(q(h)jjp(hjy, m)): ð14Þ

The model evidence is the probability of obtaining observed

data, y, given model, m, and is at the heart of Bayesian Model

Selection (BMS). The last term in Eq. (14) is the Kullback-

Leibler (KL) divergence between the approximate posterior

density, q(h), and the true posterior, p(hjy ,m). This quantity is

always positive, or zero when the densities are identical, and

therefore log p(yjm) is bounded below by F (m). Through the

iterative optimisation described above, the KL divergence is

implicitly minimised and F (m) becomes an increasingly tighter

lower bound on the log-model evidence. Model comparison can

then proceed using F (m) as a surrogate for the log-model

evidence.

This approximation to the posterior density has been evaluated

using Markov Chain Monte Carlo (MCMC) [58]. These schemes

are more computationally intensive but allow one to estimate the

posterior density without assuming it has a fixed form. Compar-

ison between the model evidence obtained by MCMC methods

and by variational approaches showed similar estimates, confirm-

ing that the approximations entailed by the variational approach

lead to accurate model selection [55].

Multi-step inversion. The use of both EEG and fMRI data

to estimate the electro-vascular model is affected by the difficult

problem of how to deal with the disparity between the two

datasets’ time scales. In our study, for each fMRI point (sampled

every 3 secs) we have 300 EEG data points (sampled at 100 Hz).

The large amount of EEG data renders the model inversion

computationally intensive, as for each parameter update we

must integrate the model equations at a fine temporal scale

(1000 Hz).

To overcome this problem we developed a computationally

efficient inversion scheme based on partitioning model inversion

into separate steps depending on the time-scales of the data

involved. We refer to this scheme as a ‘multi-step inversion’

approach. This procedure generalises to other datasets and can be

used in other multimodal studies, such as MEG-fMRI or LFP-

fMRI, where the amount of data and time scales are very different

between modalities.

This ‘multi-step inversion’ approach works as follows (Figure 4):

(1) First we selected 2 secs of the source SSVERs (Eq. 11) for

each frequency (4 to 30 Hz) and session to identify the

electrical states, x
N

, and parameters, h
N

of the NMM. Using

the EEG data alone to estimate the parameters of the NMM

makes sense because these data are not dependent on the

changes in the vasculature that give rise to BOLD. We chose

to fit only 2 secs for each frequency (concatenated and chosen

from the middle of the stimulation block to avoid onset and

offset transients) because, as reported in [38], the averaged

signal for the entire 15 secs is very regular (stationary), being

sufficient in our view to estimate the model without using the

entire trial block (Figure 4). Reducing the data to 2 secs per

frequency considerably speeds up the inversion process. The

parameters for each session were estimated iteratively using a

time step of 1 msec. At each iteration the predictions were

downsampled by a factor of 10 in order to fit the 100 Hz

source SSVER data. Here we assume the neuronal response is

stationary within a given epoch (15 sec stimulus interval) with

averaged EEG and BOLD signals used here.

(2) After estimating the electrical parameters (previous step), we

used these estimates to integrate the full LEV model.

Importantly, this integration takes place only once (as

opposed to a ‘single-step’ approach, where it would have to

be integrated at every iteration). The integration is

implemented as above but instead of 2 secs, the input to

the model is now 15 secs of stimulation and 15 secs of rest for

each frequency. We integrate the full models with the three

different coupling mechanisms described above and pro-

duced the following time-series as our input to the BOLD

response (next step). For the synaptic input model the output

time-series is the total NO concentration, Eq. (8). For the

spiking output model the output time-series is the firing rate

of pyramidal cells, Eq. (9), whilst for the mixture model both

of these output time-series were produced, Eq. (10). These

output time-series were downsampled to 10 Hz to reduce the

estimation time of the next step and used as inputs to the

Balloon model.

(3) Finally, with the time-series for all coupling models obtained

in the previous step we estimated the extended Balloon model

using the epoched BOLD data for all frequencies. The

estimation was again performed iteratively as described above

(Figure 4), this time with a 100 msec time step because the

vascular dynamics is a much slower process than the electrical

processes. The value of the free energy (surrogate to the log

model evidence) for each neurovascular model was then used

to infer the optimal coupling mechanism.

Bayesian model selection
Again through Bayes’ rule we can relate the model evidence to

the model posterior probability, p(mjy):

p(mjy)!p(yjm)p(m), ð15Þ

where p(m) is the prior distribution over models. Selecting the

optimal model corresponds to choosing the model m that

maximises the posterior p(mjy). If no model is favoured a priori

then p(m) is a uniform distribution, and the model with the highest

posterior probability is also the model with the highest evidence,

p(yjm).

Given two models, mi and mj , we can compare these models

using Bayes Factors, Bij [59], which are defined as the ratio of the

corresponding model evidences, or equivalently the difference in

their log-evidences:

ln Bij~ln p(yjmi){ln p(yjmj): ð16Þ

Bayes factors have been stratified into different ranges deemed

to correspond to different strengths of evidence. ‘Strong’ evidence,

for example, corresponds to a BF of over 20 (log-BF over 3) [59] in

favour of model mi when compared to model mj . The equivalent
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posterior model probability is greater than 0.95 [43]. Here we use

Bayes factors to compare the neurovascular coupling models

defined in the previous section.

Results

Synthetic data
In this section, simulations are used to explore the behaviour of

the model and its ability to reproduce EEG and BOLD data under

the experimental conditions described in the previous section. The

response of the three neurovascular coupling models to changes in

stimulus frequency is also shown. These synthetic signals are used

to test the model inversion routines and to verify that Bayesian

model comparison can be used to infer the correct coupling model.

The LEV model was numerically integrated using the multi-step

Adams-Bashforth-Moulton predictor-corrector algorithm imple-

mented in the MATLAB (The MathWorks, Inc.) function ode113.

The integration step used was 1 msec (1000 Hz) for the electrical

and vascular states. The integrated signals were then down-

sampled to 100 Hz in the EEG case and to 0.3 Hz for the BOLD

signal. The input to the model is described below.

Model input. The input to the LEV model was generated by

creating a series of single events with the same frequency as the

reversing checkerboard (4.0, 7.5, 10.0 … Hz). These events

are modelled as Gaussian functions of s~17:0 msec width:

Iz(t)~
P

i A exp({jt{tij2=2s2). This value of s corresponds to

the screen refresh interval. The amplitudes A are fixed over time but

differ for excitatory versus inhibitory populations. In our simulations

we used the amplitudes A1~1pA and A1~0:4pA for Iz
1 and Iz

3 ,

respectively, as proposed in [36]. These amplitudes are estimated

from the data when using the EEG-fMRI signals (see below). Input

Iz
3 was also delayed by 100 msec with respect to Iz

1 as suggested in

[36]. Cortico-cortical interactions were neglected and so Iz
2 was set

to zero during the entire period of integration. Due to the fact that

luminance levels were not kept constant for the different frequencies

we multiplied the input time-series according to the lux measures

(from low to high frequencies) by: 1.00, 0.96, 0.93, 0.91, 0.88, 0.82,

0.74 (lower frequencies had higher luminance levels).

Figure 4. LEV model inversion. Here we adopted a ‘multi-step’ approach as opposed to inverting the model in a single step. a) Single-step
approach: the EEG and fMRI data are used to estimate the neuronal and hemodynamic parameters (h

N
and h

H
) simultaneously. At each iteration the

model equations are integrated at a small time scale matching that of neuronal activity, Dtsmall , for the entire time interval, Tfull . b) Multi-step method:
here the inversion is performed in three main steps. (1) First the neuronal parameters, h

N
, are estimated (using M1 iterations) from the EEG data with

a fine temporal resolution, Dtsmall , but for a smaller period, Tinter (2 seconds). (2) In the second step these parameter estimates are used to integrate
the neuronal equations of the LEV model, x

N
, with the same temporal resolution Dtsmall but entire time interval Tfull . (3) In the last step we use the

BOLD data to estimate (using M3 iterations) only the hemodynamic parameters, h
H

, with a lower time resolution of Dtbig over the full time interval,
Tfull . The total number of time steps, Stotal , for each approach is displayed in each gray box.
doi:10.1371/journal.pcbi.1002070.g004
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Frequency-response curves. We first generated data from

the LEV model separately for the different stimulus frequencies (4

to 30 Hz). We used the three neurovascular coupling mechanisms

described above. The data were simulated using the parameter

values summarised in Table 3 and Table 2 (Text S1) for a period

of 15 seconds of stimulation and 15 seconds of rest. The simulated

signals showed that all coupling models predict an increase of the

BOLD signal during stimulation, as expected, and synchronisation

of the EEG signal to the input frequency. Figure 5 shows the EEG

and fMRI signals generated for a period of 15 sec of stimulation

and 15 sec of rest using the synaptic input model.

We then looked at the behaviour of the fMRI signal predicted

by the different coupling models for all frequencies. Figure 6

presents the frequency-response curves obtained. These curves

correspond to the maximum amplitude of the BOLD signal for

each stimulus frequency. As can be seen in Figure 6, the synaptic

input model predicts an increase in the BOLD response until

approximately 8 Hz and a decrease afterward. This result

confirms the simulations of [36] who found a similar frequency-

response curve for the NO mechanism between (0.5 and 16 Hz).

In addition, this result validates the use of a deterministic model

instead of the original stochastic model. The stochastic effects are

therefore not necessary to reproduce the frequency response curve

obtained in [36]. Contrary to the synaptic input model, the spiking

output model predicts an increase in the BOLD response with

input frequency without any saturation effect (Figure 6).

Figure 7(a) shows the frequency-response curve for the real

fMRI data. For real data the values plotted in this curve

correspond to GLM coefficients as a function of frequency

(stimulus). These are obtained when we regress the BOLD signal

using the onsets of the stimuli as our regressors, or columns of the

design matrix. Each column corresponds to a different frequency

and the associated coefficient tells us how much BOLD is expected

to increase with that particular frequency. As can be seen in

Figure 7(a), the response of the real BOLD signal to the different

frequencies also peaks at 8 Hz and has a minimum at 15 Hz. This

behaviour has been previously reported in human BOLD data for

frequencies below 16 Hz under similar experimental conditions

[60–62]. Above 15 Hz this curve has a second peak in BOLD

signal amplitude at 20 Hz and a decrease afterward (Figure 7(a)).

The same type of curve is reported in [61]: two maxima at 8 and

20 Hz, a smaller peak at 12 Hz, and the rest of the frequencies

(ƒ20Hz in [61]) lie below these values.

The frequency-response curve for the measured SSVERs is

plotted in Figure 7(b). The curves for all three sessions of an

example subject show a peak at 12 Hz and a decrease in

amplitude afterward. This same curve was found in all other

subjects and sessions. This means the peaks in the BOLD signal

cannot be explained from the electrical signals alone.

Model parameters. Table 3 lists the parameters for the

electric, h
N

and vascular, h
H

, components of the model that are

estimated from the data. These are the same parameters estimated

in [38]. We also summarise the coupling parameters in the same

table: h
in
, h

out
and h

mix
(Table 3). The amplitudes of the three input

currents (Iz
1 , Iz

2 and Iz
3 ) and h

N
are estimated from EEG in step

(1) of the inversion. h
H

are estimated from the BOLD signal in step

(3). h
in

and h
out

and h
mix

are estimated from both EEG and fMRI

data in steps (1) and (3) of model inversion.

When using the observed EEG and fMRI signals, the priors on

the parameters corresponded to the parameter estimates obtained

by [38], that is, from the inversion of the same electro-vascular

model with similar EEG-fMRI data. Prior variances were chosen

to be of the same order of magnitude as the prior means to ensure

a coefficient of variance (CV~
m

s
) of approximately 1 for all

parameters.

Model comparison. We then tested if Bayesian model

comparison could be used to correctly decide upon which

coupling model was used to generate the data, and if despite the

small number of samples of fMRI compared to EEG we could still

infer the right model.

We again generated data using the three coupling models as

described above. We generated data for all the frequencies

concatenated, with additive Gaussian observation noise:

s
N
*N(0,0:3I) and s

B
*N(0,0:008I). These values are based

on the signal-to-noise ratio for the observed data (1 for the

averaged EEG signals and 2 for the averaged BOLD signals). We

Figure 5. Simulated data. a) BOLD response for a stimulation block (15 seconds of stimulation and 15 second of rest) of 8 Hz reversing frequency;
b) EEG signal for the same stimulus (2 seconds). Both signals have been standardised (mean corrected and divided by the standard deviation of the
signal) as used for model inversion.
doi:10.1371/journal.pcbi.1002070.g005
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then fitted the coupling models to each of the three synthetic

datasets.

We verified that Bayesian model comparison inferred the

correct model in all cases, with a minimum Bayes factor of

approximately 20 (log-Bayes factor of 3) (Figure 8). This value

corresponds to strong evidence in favour of the model that

generated the data and a posterior model probability over 0.95

[43]. The parameter values used to generate the data and the

Figure 7. Measured frequency response curves - EEG-fMRI data. a) Measured BOLD response versus reversing frequency. The values on the y-
axis correspond to per cent changes of the global mean signal. b) Frequency-response curve for EEG data. Each point corresponds to the amplitude
of the evoked response (divided by the maximum response) at that frequency (

P
m jSSVERmj2). The maximum value was 2:07mV2 .

doi:10.1371/journal.pcbi.1002070.g007

Figure 6. Model frequency response curves -synthetic data. a) Predicted BOLD response versus reversing frequency for the synaptic input and
spiking output models. The curves show the BOLD response obtained for each stimulus frequency (divided by the maximum peak for each model).
doi:10.1371/journal.pcbi.1002070.g006
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corresponding parameter estimates and priors for each model can

be found in Table 3. As can be seen the parameter estimates were

close to the real values used in data generation.

As an aside, we note that, as with any gradient-ascent based

optimisation algorithms, our inversion scheme is subjected to the

possibility of running into local minima. However, one way to

tackle this problem can be to initialise the inversion in different

parameter regimes. In this work we have only observed once a

clear case of local minimum, where the fit of one of the models to

one session was extremely poor. We have then initialised the

parameters with the estimates from other sessions and the

inversion scheme was able to find new parameter estimates that

provided a good fit to the data, similar to what was obtained for

the other sessions.

EEG-fMRI data
Finally we fit the electro-vascular model with the three different

coupling mechanisms to the EEG and fMRI data. We used the

same ‘multi-step’ inversion procedure described in the previous

section. Figure 9 shows the model predictions for EEG, as well as

predictions of the coupling models and the BOLD response.

Model comparison. Our analysis focused on the relevant

contributions of synaptic and spiking activity models as a function of

stimulation frequency. To this end we divided the stimuli into ‘low-

frequencies’ (4 to 15 Hz), ‘high-frequencies’ (10 to 30 Hz) and ‘all-

frequencies’ (4 to 30 Hz) and the analysis was repeated for these

three regimes. A summary of the model comparison results for all

subjects can be found in Figure 10. The results for all sessions,

subjects and frequency regimes can be found in Table 3 of Text S1.

As can be seen in Figure 10(a), in the low-frequency regime we

found that the synaptic input model best explained the observed

data. In this regime the spiking output model was the worst model.

The difference in log-model evidence between the best model

(synaptic input) and the second best model (mixture) was above 5.

This value corresponds to strong evidence in favour of the synaptic

model and a probability, p, over 0.99 of this model being the best

model to explain the data in this regime [43]. This result was

consistent accross subjects and sessions analysed (5 out of 6

sessions) (Table 3 of Text S1). The model evidence values can be

found in Table 3 in Text S1.

However, when we analysed the high frequencies, the mixture

model was found to be the best model with probability pw0:99
(Figure 10(b)). This result was again consistent across subjects and

for the majority of sessions (7 out of 9 sessions) (Table 3 of Text

S1). In this regime the spiking output model was the second best

and, contrary to the low-frequencies case, synaptic activity

contributed the least to the BOLD response.

For both regimes, the inferred neuronal firing rates were found

to be commensurate with the stimulation frequency. Finally, an

additional analysis across all frequencies revealed that the mixture

model was the best model, again with probability pw0:99
(Figure 10(c)). This result was found in 6 of the 9 sessions

analysed, although in one of the sessions the model evidence for all

three models was nearly identical (Table 3 of Text S1).

Figure 8. Model comparison with synthetic data. We generated data with the different coupling models (IN: synaptic input model; OUT: spiking
output model; MIX: mixture model). We then fitted these datasets with the same three coupling models and obtained the results plotted in the
figure. a) Difference in log-evidences relative to worst model. b) Corresponding model posterior probabilities.
doi:10.1371/journal.pcbi.1002070.g008
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We note here that it has come as no surprise the fact that when we

analyse all frequencies the mixture model was found to explain the

data better than the input and output models alone. As we observe in

Figure 7(a), the double peaked frequency-curve of fMRI data can be

easily explained by a weighted combination of the frequency-

response curves predicted for the input and output models

individually (Figure 6). This weighted combination is the definition

of the mixture model and the weights (mixture parameters) depend

on the regime of frequencies analysed, providing, for instance, a one-

peaked or two-peaked curve for low and all-frequencies, respectively.

These results were robust to the choice of partition into low/

high frequencies. Similar results (not shown) were obtained with

partitions such as: low-frequencies (4, 8, 10, 12 Hz) and high-

frequencies (15, 20, 30 Hz).

Figure 9. Model identification from EEG-fMRI data. a) EEG time-series (dotted line) and model fit (solid line) for one example session and
subject (2 seconds of data per frequency). b) Model predictions and BOLD data for the same example session and subject (all frequencies: 4 to 30 Hz).
As can be seen in the figure, the input model (blue) provides the best fit to the BOLD data (black) for the lowest frequencies (e.g. 4.0 and 7.5 Hz),
whilst for the highest frequency (30 Hz) it’s clear that this model underestimates the BOLD response. The output model (green) provides a better fit
for this frequency but predicts a higher response than the one observed. The signals have been standardised (mean centred and divided by the
standard deviation of the signal) as used in the model inversion scheme.
doi:10.1371/journal.pcbi.1002070.g009
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Discussion

In this paper we used EEG-fMRI data and a biophysically

informed mathematical model to investigate the relationship

between neuronal activity and the BOLD signal in human visual

cortex. In particular, we explored the contributions of synaptic

input and spiking output activities to the generation of the BOLD

response.

We have provided preliminary evidence that the BOLD signal is

dependent upon both synaptic and spiking activity but that the

relative contribution of these two factors are dependent upon the

underlying neuronal firing rate. When the underlying neuronal

firing is low then BOLD signals are best explained by synaptic

input, in agreement with previous animal studies, such as [3]. This

result is also in line with more recent studies, such as [9] and [10],

which show that the BOLD response is only affected by changes in

synaptic-related activity (measured with LFPs) and not by changes

in spiking activity (measured with MUA) when these two signals

can be dissociated.

However, when the neuronal firing rate is high then both

synaptic and spiking activity are required to explain the BOLD

signal, as observed in, for example [6], and [15]. We were

particularly encouraged to find that a combination of synaptic

input and spiking output frequency response curves (Figure 6) can

explain the doubly-peaked BOLD response observed by [6] and

replicated in our own data.

One possible explanation for the increased performance of the

output model with higher frequencies comes from neuroenergetic

studies such as e.g. [7] and [63]. In these studies brain metabolism

was found to depend strongly on neuronal spiking, with increases

in oxygen consumption reflecting higher firing rates. More

recently [64], have found that differences in the BOLD response

between different brain areas (motor cortex and thalamus) could

be explained by underlying differences in the firing rates of the

corresponding neuronal populations.

Our results also support the conclusion that the relationship

between synaptic activity, spikes and BOLD signals depends on

the specific neuronal circuitry engaged in task processing.

Moreover, one can speculate that different coupling mechanisms

involving different types of cells and molecules could come into

play depending on the task in question.

Despite our initial concern about the small number of fMRI

samples compared to EEG, our initial results with synthetic data

showed that it is possible to make inferences on different

hypotheses for the neurovascular coupling using a generative

modelling framework and Bayesian model comparison. The issue

of different time-scales was addressed by partitioning the

estimation of electrical and vascular states into a multi-step

approach. In this approach we first estimated the electrical states

and parameters from the EEG data and then integrated the full

electro-vascular model using these estimates. From the integrated

model we extracted the input time-series to the Balloon model,

which we then inverted using BOLD data. The last two steps were

repeated for each coupling model.

This method significantly increases the computational efficiency

of the model inversion. However, this multi-step approach is only

possible with a deterministic model. In this work we used a

deterministic version of the stochastic electro-vascular model

proposed by [36]. Under different experimental conditions, which

do not induce a large sensory response, the introduction of

stochastic effects might be essential to reproduce the empirical

data. In this case, other Bayesian inversion frameworks can be

employed to estimate the model parameters, such as [65] and [66].

It is also worth noting that despite the fact that the mixture

model had more parameters than the input and output models,

this extra complexity did not provide a significantly better fit to the

data in the low-frequency analysis than the input model. This

complexity is correctly penalised using Bayesian methods, such as

the one used here.

One concern about the coupling models defined here regards

the definition of NO concentration. As mentioned in the

Methods section, NO is thought to have a pre-synaptic synthesis

[12,13]. However, here and in [36] the concentration of NO is

modelled through post-synaptic quantities such as the trans-

membrane capacitive currents. Although in principle these two

phenomena are directly related (increases in pre-synaptic

activity mean larger post-synaptic effects) this is not always the

case. Changes in transmembrane currents at the post-synaptic

level can be caused by different processes such as chemical-

gated channels, electric-gated channels, and passive leakage, not

all of them being related to pre-synaptic activity. Therefore the

Figure 10. Model comparison. (MIX: mixture model; IN: synaptic input model; OUT: spiking output model): log-model evidence relative to worst
model (for low, high and all frequencies). These are group results for all subjects and sessions analysed (the log-evidences are summed over subjects).
doi:10.1371/journal.pcbi.1002070.g010
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transmembrane currents are an indirect way of quantifying the

amount of NO released during synaptic activity. However, this

issue is also encountered in experimental measures of synaptic

activity, such as local field potentials. This signal is a surrogate

post-synaptic signal, which is also affected by other slow

potentials occurring at the cellular level that do not have a

purely pre-synaptic origin.

A natural extension to this work is the inclusion of multiple

cortical units in the model representing multiple brain areas. For

instance, sub-cortical areas such as the thalamus and other cortical

areas activated by the experimental task could be included.

Having more than one area would facilitate the differentiation

between input and local processing synaptic activity, such as in

[37]. In a recent study [67], have decomposed the effect of these

two types of synaptic activity on hemodynamic signals by reducing

the thalamic input to a rodent’s cortex. The authors found that

although both input and local neuronal processing contribute to

BOLD signals, as previously found, this contribution is larger from

local processing.

Another extension would be to probe the contribution of

excitatory and inhibitory neuronal populations to the generation

of BOLD signals, such as in [39]. This model-driven approach

could, for instance, be used to study the findings of [68], where a

negative BOLD response in deeper cortical layers, adjacent to

positive-BOLD areas, was found to be associated with a reduction

in local neuronal firing. Very recently [64], have optically driven

genetically modified inhibitory cells and measured a negative

BOLD signal in response to this stimulation, in the rat cortex. This

result can inform the development of new generative models of

neurovascular coupling.

To our knowledge this paper presents the first quantitative

model comparison of different biologically plausible mechanisms

for neurovascular coupling in human cortex using EEG-fMRI

data and a realistic biophysical model.

However, even though our results were consistent across the

three subjects and the majority of sessions, the case study approach

adopted here has its limitations. Namely, it does not quantitatively

address the issue of inter-subject variability and it therefore

precludes inferences at the population level. With a larger sample

of subjects, inter-subject variability can be accommodated using

the Random-Effects (RFX) model selection approach developed

by [69]. This approach fits a Bayesian hierarchical model to group

model evidence data to obtain the frequencies with which each

model is used in the population. This approach can be combined

with the methodology developed in this paper. We hope that

future studies with other datasets and different experimental

conditions will employ our modeling approach so that a balance of

evidence can be reached that clearly disambiguates between

different hypotheses concerning neurovascular coupling.

Understanding the underlying biophysical mechanisms behind

the coupling between neuronal activity and the BOLD response is

vital not only for improving the interpretability of the BOLD

response, but also for relating findings from fMRI research with

results from other neuroscientific disciplines.

Supporting Information

Text S1 We present the full biophysical model (i.e. all the

equations that comprise the neural mass model and Balloon model

used in this work, as well as their parameter values). We also

provide detailed results of model comparisons for all subjects and

sessions.

(PDF)
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