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Introduction

The mainstay of many scientific experiments is the factorial design. These com-
prise a number of experimental factors which are each expressed over a number
of levels. Data are collected for each factor/level combination and then analysed
using Analysis of Variance (ANOVA). The ANOVA uses F-tests to examine a
pre-specified set of standard effects, eg. ‘main effects’ and ‘interactions’, as
described in [Winer et al. 1991].

ANOVAs are commonly used in the analysis of PET, EEG, MEG and fMRI
data. For PET, this analysis usually takes place at the ‘first’ level. This involves
direct modelling of PET scans. For EEG, MEG and fMRI, ANOVAs are usually
implemented at the ‘second level’. As described in the previous chapter, first
level models are used to create contrast images for each subject. These are then
used as data for a second level or ‘random effects’ analysis.

Some different types of ANOVA are tabulated below. A two-way ANOVA,
for example, is an ANOVA with 2 factors; a K1-by-K2 ANOVA is a two-way
ANOVA with K1 levels of one factor and K2 levels of the other. A repeated
measures ANOVA is one in which the levels of one or more factors are mea-
sured from the same unit (e.g, subjects). Repeated measures ANOVAs are also
sometimes called within-subject ANOVAs, whereas designs in which each level is
measured from a different group of subjects are called between-subject ANOVAs.
Designs in which some factors are within-subject, and others between-subject,
are sometimes called mixed designs.

This terminology arises because in a between-subject design the difference
between levels of a factor is given by the difference between subject responses
eg. the difference between levels 1 and 2 is given by the difference between those
subjects assigned to level 1 and those assigned to level 2. In a within-subject
design, the levels of a factor are expressed within each subject eg. the difference
between levels 1 and 2 is given by the average difference of subject responses to
levels 1 and 2. This is like the difference between two-sample t-tests and paired
t-tests.

The benefit of repeated measures is that we can match the measurements
better. However, we must allow for the possibility that the measurements are
correlated (so-called ‘non-sphericity’ - see below).

The level of a factor is also sometimes referred to as a ‘treatment’ or a ‘group’
and each factor/level combination is referred to as a ‘cell’ or ‘condition’. For
each type of ANOVA, we describe the relevant statistical models and show how
they can be implemented in a GLM. We also give examples of how main effects
and interactions can be tested for using F-contrasts.
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The chapter is structured as follows. The first section describes one-way
between-subject ANOVAs. The next section describes one-way within-subject
ANOVAs and introduces the notion of nonsphericity. We then describe two-way
within-subject ANOVAs and make a distinction between models with pooled
versus partitioned errors. The last section discusses issues particular to fMRI
and we end with a discussion.

Notation

In the mathematical formulations below, N(m,Σ) denotes a uni/multivariate
Gaussian with mean m and variance/covariance Σ. IK denotes the K × K
identity matrix, XT denotes transpose, X−T the inverse transpose, X− the
generalized-inverse, 1K is a K × 1 vector of 1’s, 0K is a K × 1 vector of zeros
and 0KN is a K×N matrix of zeros. We consider factorial designs with n = 1..N
subjects and m = 1..M factors where the mth factor has k = 1..Km levels.

One-way between-subject ANOVA

In a between-subject ANOVA, differences between levels of a factor are given
by the differences between subject responses. We have one measurement per
subject and different subjects are assigned to different levels/treatments/groups.
The response from the nth subject (yn) is modelled as

yn = τk + µ + en (1)

where τk are the treatment effects, k = 1..K, k = g(n) and g(n) is an indicator
function whereby g(n) = k means the nth subject is assigned to the kth group
eg. g(13) = 2 indicates the 13th subject being assigned to group 2. This is
the single experimental factor that is expressed over K levels. The variable µ
is sometimes called the grand mean or intercept or constant term. The random
variable en is the residual error, assumed to be drawn from a zero mean Gaussian
distribution.

If the factor is significant, then the above model is a significantly better
model of the data than the simpler model

yn = µ + en (2)

where we just view all of the measurements as random variation about the grand
mean. Figure 2 compares these two models on some simulated data.

In order to test whether one model is better than another, we can use an
F-test based on the extra sum of squares principle (see chapter 8). We refer to
Equation 1 as the ‘full’ model and Equation 2 as the ‘reduced’ model. If RSS
denotes the residual sum of squares (ie. the sum of squares left after fitting a
model) then

F =
(RSSreduced −RSSfull)/(K − 1)

RSSfull/(N −K)
(3)

has an F-distribution with K−1, N−K degrees of freedom. If F is significantly
non-zero then the full model has a significantly smaller error variance than the
reduced model. That is to say, the full model is a significantly better model, or
the main effect of the factor is significant.
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The above expression is also sometimes expressed in terms of sums of squares
(SS) due to treatment and due to error

F =
SStreat/DFtreat

SSerror/DFerror
(4)

where

SStreat = RSSreduced −RSSfull (5)
DFtreat = K − 1
SSerror = RSSfull

DFerror = N −K

DFtotal = DFtreat + DFerror = N − 1

Expressions 3 and 4 are therefore equivalent.

Numerical example

This subsection shows how an ANOVA can be implemented in a GLM. Con-
sider a one-way ANOVA with K = 4 groups each having n = 12 subjects (i.e.
N = Kn = 48 subjects/observations in total). The GLM for the full model in
equation 1 is

y = Xβ + e (6)

where the design matrix X = [IK ⊗ 1n, 1N ] is shown in Figure 1, where ⊗
denotes the Kronecker product (see Appendix A). The vector of parameters is
β = [τ1, τ2, τ3, τ4, µ]T .

Equation 3 can then be implemented using the effects of interest F-contrast,
as introduced in chapter 9

CT =


1 −1/3 −1/3 −1/3 0

−1/3 1 −1/3 −1/3 0
−1/3 −1/3 1 −1/3 0
−1/3 −1/3 −1/3 1 0

 (7)

or equivalently

CT =

 1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0

 (8)

These contrasts can be thought of as testing the null hypothesis H0

H0 : τ1 = τ2 = τ3 = τ4 (9)

Note that a significant departure from H0 can arise from any pattern of these
treatment means (parameter estimates) - they need not be monotonic across
the four groups for example.

The correspondence between this F-contrast and the classical formulation
in equation 3 is detailed in Chapter 10. We now analyse the example data
set shown in Figure 2. The results of a one-way between-subjects ANOVA
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are in Table 2. This shows that there is a significant main effect of treatment
(p < 0.02).

Note that the design matrix in Figure 2 is rank-deficient (see chapter 8)
and the alternative design matrix X = [IK ⊗ 1n] could be used with appro-
priate F-contrasts (though the parameter estimates themselves would include
a contribution of the grand mean, equivalent to the contrast [1, 1, 1, 1]T ). If
β1 is a vector of parameter estimates after the first four columns of X are
mean-corrected (orthogonalised with respect to the fifth column), and β0 is the
parameter estimate for the corresponding fifth column, then

SStreatment = nβT
1 β1 = 51.6 (10)

SSmean = nKβ2
0 = 224.1

SSerror = rT r = 208.9
SStotal = yT y = SStreatment + SSmean + SSerror = 484.5

where the residual errors are r = y −XX−y.

One-way within-subject ANOVA

In this model we have K measurements per subject. The treatment effects for
subject n = 1...N are measured relative to the average response made by subject
n on all treatments. The kth response from the nth subject is modelled as

ynk = τk + πn + enk (11)

where τk are the treatment effects (or within-subject effects), πn are the subject
effects and enk are the residual errors. We are not normally interested in πn, but
its explicit modelling allows us to remove variability due to differences in average
responsiveness of each subject. See, for example, the data set in Figure 3. It is
also possible to express the full model in terms of differences between treatments
(see eg. equation 15 for the two-way case).

To test whether the experimental factor is significant we compare the full
model in equation 11 with the reduced model

ynk = πn + enk (12)

An example of comparing these full and reduced models is shown in Figure 4.
The equations for computing the relevant F-statistic and degrees of freedom are
given, for example, in Chapter 14 of [Howell 1992].

Numerical example

The design matrix X = [IK ⊗ 1N , 1K ⊗ IN ] for equation 11, with K = 4 and
N = 12, is shown in Figure 5. The first 4 columns are treatment effects and the
next 12 are subject effects. The main effect of the factor can be assessed using
the same effects of interest F-contrast as in equation 7 but with additional zeros
for the columns corresponding to the subject effects.

We now analyse another example data set, a portion of which is shown in
Figure 3. Measurements have been obtained from 12 subjects under each of
K = 4 conditions.
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Assuming sphericity (see below), we obtain the ANOVA results in Table 3.
In fact this data set contains exactly the same numerical values as the between-
subjects example data. We have just relabelled the data as being measured from
12 subjects with 4 responses each instead of from 48 subjects with 1 response
each. The reason that the p-value is less than in the between-subjects example
(it has reduced from 0.02 to 0.001) is that the data were created to include
subject effects. Thus, in repeated measures designs, the modelling of subject
effects normally increases the sensitivity of the inference.

Nonsphericity

Due to the nature of the levels in an experiment, it may be the case that if
a subject responds strongly to level i he may respond strongly to level j. In
other words there may be a correlation between responses. In figure 6 we plot
subject responses for level i against level j for the example data set. These show
that for some pairs of conditions there does indeed seem to be a correlation.
This correlation can be characterised graphically by fitting a Gaussian to each
2D data cloud and then plotting probability contours. If these contours form a
sphere (a circle, in two dimensions) then the data is Independent and Identically
Distributed (IID) ie. same variance in all dimensions and there is no correlation.
The more these contours look like ellipses, the more ‘nonsphericity’ there is in
the data.

The possible nonsphericity can be taken into account in the analysis using
a correction to the degrees of freedom. In the above example, a Greenhouse-
Geisser (GG) correction (see appendix and chapter 10) estimates ε = .7, giving
DFs of [2.1, 23.0] and a p-value (with GG we use the same F-statistic ie. F =
6.89) of p = 0.004. Assuming sphericity, as before, we computed p = 0.001.
Thus the presence of nonsphericity in the data makes us less confident of the
significance of the effect.

An alternative representation of the within-subjects model is given in the
appendix. This shows how one can take into account nonsphericity. Various
other relevant terminology is also defined in the appendix.

Two-way within-subject ANOVAs

The full model for a two-way, K1-by-K2 repeated measures ANOVA, with P =
K1K2 measurements taken from each of N subjects, can be written as

ynkl = τkl + πn + enkl (13)

where k = 1...K1 and l = 1...K2 index the levels of factor A and factor B
respectively. Here we can think of indicator functions k = gk(i), l = gl(i) and
n = gn(i) that return the levels of both factors and subject identity for the ith
scan. Again, πn are subject effects and enkl are residual errors. This equation
can be written in matrix form

y = Xβ + e (14)

where X = [IP ⊗ 1N , 1N ⊗ IP ] is the design matrix and β = [τkl, πn]T are the
regression coefficients. This is identical to the one-way within-subject design
but with P instead of K treatment effects.
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However, rather than considering each factor/level combination separately,
the key concept of ANOVA is to model the data in terms of a standard set
of experimental effects. These consist of main effects and interactions. Each
factor has an associated main effect, which is the difference between the levels
of that factor, averaging over the levels of all other factors. Each pair of factors
(and higher-order tuples; see below) has an associated interaction. Interactions
represent the degree to which the effect of one factor depends on the levels
of the other factor(s). A two-way ANOVA thus has two main effects and one
interaction.

Equation 13 can be rewritten as

y = Xβ + e (15)
= XC−T CT β + e

= Xrβ̃ + e

where Xr = XC−T is a rotated design matrix, the regression coefficients are
β̃ = CT β, and C is a ‘contrast matrix’. This equation is important as it says
that the effects β̃ can be estimated by either (i) fitting the data using a GLM
with design matrix Xr or (ii) fitting the original GLM, with design matrix X,
and applying the contrast matrix β̃ = CT β.

For our two way within-subjects ANOVA we choose C such that

β̃ = [τA
q , τB

r , τAB
qr ,m, πn]T (16)

Here, τA
q represents the differences between each succesive level q = 1...(K1−1)

of factor A (eg. the differences between levels 1 and 2, 2 and 3, 3 and 4 etc.),
averaging over the levels of factor B. In other words, the main effect of A is
modelled as K1−1 differences among K1 levels. The quantity τB

r represents the
differences between each successive level r = 1...(K2 − 1) of factor B, averaging
over the levels of factor A; and τAB

qr represents the differences between the
differences of each level q = 1...(K1 − 1) of factor A across each level r =
1...(K2−1) of factor B. The quantity m is the mean treatment effect. Examples
of contrast matrices and rotated design matrices are given below.

Pooled versus partitioned errors

In the above model, e is sometimes called a pooled error, since it does not
distinguish between different sources of error for each experimental effect. This
is in contrast to an alternative model in which the original residual error e is split
into three terms eA

nq, eB
nr and eAB

nqr, each specific to a main effect or interaction.
This is a different form of variance partitioning. Each error term is a random
variable and is equivalent to the interaction between that effect and the subject
variable.

The F-test for, say, the main effect of factor A is then

F =
SSk/DFk

SSnk/DFnk
(17)

where SSk is the sum of squares for the effect, SSnk is the sum of squares for the
interaction of that effect with subjects, DFk = K1− 1 and DFnk = N(K1− 1).
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Note that, if there are no more than two levels of every factor in an M-way
repeated measures ANOVA (i.e, Km = 2 for all m = 1...M), then the covariance
of the errors Σe for each effect is a 2-by-2 matrix which necessarily has compound
symmetry, and so there is no need for a nonsphericity correction 1. A heuristic
for this is that there is only one difference q = 1 between two levels Km = 2.
This is not necessarily the case if a pooled error is used, as in equation 15.

Models and null hypotheses

The difference between pooled and partitioned error models can be expressed
by specifying the relevant models and null hypotheses.

Pooled errors

The pooled error model is given by equation 15. For the main effect of A we
test the null hypothesis H0 : τA

q = 0 for all q. Similarly for the main effect of
B. For an interaction we test the null hypothesis H0 : τAB

qr = 0 for all q, r.
For example, for the 3-by-3 design shown in Figure 8 there are q = 1..2

differential effects for factor A and r = 1..2 for factor B. The pooled error
model therefore has regression coefficients

β̃ = [τA
1 , τA

2 , τB
1 , τB

2 , τAB
11 , τAB

12 , τAB
21 , τAB

22 ,m, πn]T (18)

For the main effect of A we test the null hypothesis H0 : τA
1 = τA

2 = 0. For the
interaction we test the null hypothesis H0 : τAB

11 = τAB
12 = τAB

21 = τAB
22 = 0.

Partitioned errors

For partitioned errors we first transform our data set ynkl into a set of differential
effects for each subject and then model these in a GLM. This set of differential
effects for each subject is created using appropriate contrasts at the ‘first-level’.
The models that we describe below then correspond to a ‘second-level’ analy-
sis. The difference between first and second level analyses are described in the
previous chapter on random effects analysis.

To test for the main effect of A, we first create the new data points ρnq

which are the differential effects between the levels in A for each subject n (see
eg. section ). We then compare the full model

ρnq = τA
q + enq

to the reduced model ρnq = enq. We are therefore testing the null hypothesis,
H0 : τA

q = 0 for all q.
Similarly for the main effect of B. To test for an interaction we first create

the new data points ρnqr which are the differences of differential effects for each
subject. For a K1 by K2 ANOVA there will be (K1 − 1)(K2 − 1) of these. We
then compare the full model

ρnqr = τAB
qr + enqr

to the reduced model ρnqr = enqr. We are therefore testing the null hypothesis,
H0 : τAB

qr = 0 for all q, r.

1Although one could model inhomegeneity of variance.
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For example, for a 3-by-3 design, there are q = 1..2 differential effects for
factor A and r = 1..2 for factor B. We first create the differential effects ρnq.
To test for the main effect of A we compare the full model

ρnq = τA
1 + τA

2 + enq

to the reduced model ρnq = enq. We are therefore testing the null hypothesis,
H0 : τA

1 = τA
2 = 0. Similarly for the main effect of B.

To test for an interaction we first create the differences of differential effects
for each subject. There are 2× 2 = 4 of these. We then compare the full model

ρnqr = τAB
11 + τAB

12 + τAB
21 + τAB

22 + enqr

to the reduced model ρnqr = enqr. We are therefore testing the null hypothesis,
H0 : τAB

11 = τAB
12 = τAB

21 = τAB
22 = 0 ie. that all the ‘simple’ interactions are

zero. See Figure 8 for an example with a 3-by-3 design.

Numerical example

Pooled Error

Consider a 2x2 ANOVA of the same data used in the previous examples, with
K1 = K2 = 2, P = K1K2 = 4, N = 12, J = PN = 48. The design matrix for
equation 15 with a pooled error term is the same as that in Figure 5, assuming
that the four columns/conditions are ordered

1 2 3 4
A1B1 A1B2 A2B1 A2B2

(19)

where A1 represents the first level of factor A, B2 represents the second level
of factor B etc, and the rows are ordered; all subjects data for cell A1B1; all
for A1B2 etc. The basic contrasts for the three experimental effects are shown
in Table 4 with the contrast weights for the subject-effects in the remaining
columns 5-16 set to 0.

Assuming sphericity, the resulting F-tests give the ANOVA results in Table 5.
With a Greenhouse-Geisser correction for nonsphericity, on the other hand, ε is
estimated as .7, giving the ANOVA results in Table 6.

Main effects are not really meaningful in the presence of a significant in-
teraction. In the presence of an interaction, one does not normally report the
main effects, but proceeds by testing the differences between the levels of one
factor for each of the levels of the other factor in the interaction (so-called sim-
ple effects). In this case, the presence of a significant interaction could be used
to justify further simple effect contrasts (see above), e.g. the effect of B at the
first and second levels of A are given by the contrasts c = [1,−1, 0, 0]T and
c = [0, 0, 1,−1]T .

Equivalent results would be obtained if the design matrix were rotated so that
the first three columns reflect the experimental effects plus a constant term in the
fourth column (only the first four columns would be rotated). This is perhaps
a better conception of the ANOVA approach, since it is closer to equation 15,
reflecting the conception of factorial designs in terms of the experimental effects
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rather than the individual conditions. This rotation is achieved by setting the
new design matrix

Xr = X

[
CT 04,12

012,4 I12

]
(20)

where

CT =


−1 −1 1 1
−1 1 −1 1

1 −1 −1 1
1 1 1 1

 (21)

Notice that the rows of CT are identical to the contrasts for the main effects
and interactions plus a constant term (cf. Table 4). This rotated design matrix
is shown in Figure 7. The three experimental effects can now be tested by the
contrasts weight [1, 0, 0, 0]T , [0, 1, 0, 0]T , [0, 0, 1, 0]T (again, padded with zeros).

In this example, each factor only has two levels which results in one-dimensional
contrasts for testing main effects and interactions. The contrast weights form
a vector. But factors with more than two levels require multi-dimensional con-
trasts. Main effects, for example, can be expressed as a linear combination of
differences between succesive levels (eg. between levels 1 and 2, and 2 and 3).
The contrast weights therefore form a matrix. An example using a 3-by-3 design
is given later on.

Partitioned errors

Partitioned error models can be implemented by applying contrasts to the data,
and then creating a separate model (ie. separate GLM analysis) to test each
effect. In other words, a two-stage approach can be taken, as described in the
previous chapter on random effects analysis. The first stage is to create contrasts
of the conditions for each subject, and the second stage is to put these contrasts
or ‘summary statistics’ into a model with a block-diagonal design matrix.

Using the example dataset, and analogous contrasts for the main effect of B
and for the interaction, we get the results in Table 7. Note how (1) the degrees
of freedom have been reduced relative to table 5, being split equally among the
three effects, (2) there is no need for a nonsphericity correction in this case
(since K1 = K2 = 2, see above), and (3) the p-values for some of the effects
have decreased relative to tables 5 and 6, while those for the other effects have
increased. Whether p-values increase or decrease depends on the nature of the
data (particularly correlations between conditions across subjects), but in many
real datasets partitioned error comparisons yield more sensitive inferences. This
is why, for repeated-measures analyses, the partitioning of the error into effect-
specific terms is normally preferred over using a pooled error[Howell 1992]. But
the partitioned error approach requires a new model to be specified for every
effect we want to test.
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Generalisation to M-way ANOVAs

The above examples can be generalised to M-way ANOVAs. For a K1-by-K2-..
-by-KM design, there are

P =
M∏

m=1

Km (22)

conditions. An M-way ANOVA has 2M − 1 experimental effects in total, con-
sisting of M main effects plus M !/(M − r)!r! interactions of order r = 2...M .
A 3-way ANOVA for example has 3 main effects (A, B, C), three second-order
interactions (AxB, BxC, AxC) and one third-order interaction (AxBxC). Or
more generally, an M-way ANOVA has 2M − 1 interactions of order r = 0...M ,
where a 0th-order interaction is equivalent to a main effect.

We consider models where every cell has its own coefficient (like Equa-
tion 13). We will assume these conditions are ordered in a GLM so that the first
factor rotates slowest, the second factor next slowest, etc, so that for a 3-way
ANOVA with factors A, B, C

1 2 ... K3 ... P
A1B1C1 A1B1C2 ... A1B1CK3 ... AK1BK2CK3

(23)

The data is ordered all subjects for cell A1B1C1, all subjects for cell A1B1C2

etc.
The F-contrasts for testing main effects and interactions can be constructed

in an iterative fashion as follows. We define initial component contrasts2

Cm = 1Km
Dm = −diff(IKm

)T (24)

where diff(A) is a matrix of column differences of A (as in the Matlab function
diff). So for a 2-by-2 ANOVA

C1 = C2 = [1, 1]T D1 = D2 = [1,−1]T (25)

The term Cm can be thought of as the common effect for the mth factor and
Dm as the differential effect. Then contrasts for each experimental effect can be
obtained by the Kronecker products of Cm’s and Dm’s for each factor m = 1...M .
For a 2-by-2 ANOVA, for example, the two main effects and interaction are
respectively

D1 ⊗ C2 = [1 1 −1 −1]T

C1 ⊗D2 = [1 −1 1 −1]T

D1 ⊗D2 = [1 −1 −1 1]T
(26)

This also illustrates why an interaction can be thought of as a difference of
differences. The product C1 ⊗ C2 represents the constant term.

2In fact, the contrasts presented here are incorrect. But we present them in this format
for didactic reasons, because the rows of the resulting contrast matrices, which test for main
effects and interactions, are then readily interpretable. The correct contrasts, which normalise
row lengths, are given in the appendix. We also note that the minus sign is unnecessary. It
makes no difference to the results but we have included it so that the contrast weights have
the canonical form [1, -1, ...] etc. instead of [-1, 1, ...].
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For a 3-by-3 ANOVA

C1 = C2 = [1, 1, 1]T D1 = D2 =
[

1 −1 0
0 1 −1

]T

(27)

and the two main effects and interaction are respectively

D1 ⊗ C2 =
[

1 1 1 −1 −1 −1 0 0 0
0 0 0 1 1 1 −1 −1 −1

]T

(28)

C1 ⊗D2 =
[

1 −1 0 1 −1 0 1 −1 0
0 1 −1 0 1 −1 0 1 −1

]T

(29)

D1 ⊗D2 =


1 −1 0 −1 1 0 0 0 0
0 1 −1 0 −1 1 0 0 0
0 0 0 1 −1 0 −1 1 0
0 0 0 0 1 −1 0 −1 1


T

(30)

The four rows of this interaction contrast correspond to the four ‘simple interac-
tions’ τAB

11 , τAB
12 , τAB

21 , and τAB
22 depicted in Figure 8. This reflects the fact that

an interaction can arise from the presence of one or more simple interactions.

Two-stage procedure for partitioned errors

Repeated measures M-way ANOVAs with partitioned errors can be implemented
using the following Summary Statistic approach.

1. Set up first level design matrices where each cell is modelled separately as
indicated in equation 23.

2. Fit first level models.

3. For the effect you wish to test, use the Kronecker product rules outlined
in the previous section to see what F-contrast you’d need to use to test
the effect at the first level. For example, to test for an interaction in a
3× 3 ANOVA you’d use the F-contrast in equation 30 (application of this
contrast to subject n’s data tells you how significant that effect is in that
subject).

4. If the F-contrast in the previous step has Rc rows then, for each subject,
create the corresponding Rc contrast images. For N subjects this then
gives a total of NRc contrast images that will be modelled at the second-
level.

5. Set up a second-level design matrix, X2 = IRc ⊗ 1N . The number of
conditions is Rc. For example, in a 3x3 ANOVA, X2 = I4 ⊗ 1N as shown
in Figure 9.

6. Fit the second level model.

7. Test for the effect using the F-contrast C2 = IRc
.

For each effect we wish to test we must get the appropriate contrast images
from the first level (step 3) and implement a new 2nd level analysis (steps 4 to
7). Because we are taking differential effects to the second level we don’t need
to include subject effects at the second level.
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fMRI basis functions

There are situations where one uses an ‘ANOVA-type’ model, but does not
want to test a conventional main effect or interaction. One example is when
one factor represents the basis functions used in an event-related fMRI analysis.
So if one used three basis functions, such as a canonical HRF and two partial
derivatives (see chapter 14), to model a single event-type (versus baseline), one
might want to test the reliability of this response over subjects. In this case,
one would create for each subject the first-level contrasts: [1, 0, 0]T , [0, 1, 0]T

and [0, 0, 1]T , and enter these as the data for a second-level 1-by-3 ANOVA,
without a constant term.

In this model, we do not want to test for differences between the means
of each basis function. For example, it is not meaningful to ask whether the
parameter estimate for the canonical HRF differs from that for the temporal
derivative. In other words, we do not want to test the null hypothesis for a
conventional main effect, as described in equation 9. Rather, we want to test
whether the sum of squares of the mean of each basis function explains significant
variability relative to the total variability over subjects. This corresponds to the
F-contrast:

c2 =

 1 0 0
0 1 0
0 0 1

 (31)

This is quite different from the F-contrast:

c2 =

 1 −0.5 −0.5
−0.5 1 −0.5
−0.5 −0.5 1

 (32)

which is the default ”effects of interest” contrast given for a model that
includes a constant term (or subject effects) in SPM, and would be appropriate
instead for testing the main effect of such a 3-level factor.

Discussion

The mainstay of many neuroimaging experiments is the factorial design and
data from these experiments can be analysed using an Analysis of Variance
(ANOVA). This chapter has described ANOVAs in terms of model comparison.
To test eg. for a main effect of a factor, one compares two models, a ‘full
model’ in which all levels of the factor are modelled separately, versus a ’reduced
model’, in which they are modelled together. If the full model explains the data
significantly better than the reduced model then there is a significant main
effect. We have shown how these model comparisons can be implemented using
F-tests and General Linear Models (GLMs).

This chapter has also revisited the notion of nonsphericity, within the context
of within-subject ANOVAs. Informally, if a subjects response to levels i and j of
a factorial manipulation is correlated then a plot of the bivariate responses will
appear non-spherical. This can be handled at the inferential stage by making
an adjustment to the degrees of freedom. In current implementations of SPM
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this is generally unnecessary, as global nonsphericty estimates are used which
have very high precision. This non-sphericity is then implicitly removed during
the formation of maximum-likelihood parameter estimates (see Chapter 10).

We have also described inference in multi-way within-subject ANOVAs and
made a distinction between models with pooled versus partitioned errors and
noted that partitioning is normally the preferred approach. One can implement
partitioning using the multistage summary statistic procedure until, at the last
level, there is only one contrast per subject. This is a simple way to implement
inference based on partitioned errors using the pooled-errors machinery of SPM.
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Appendices

A: The Kronecker Product

If A is an m1 × m2 matrix and B is an n1 × n2 matrix, then the Kronecker
product of A and B is the (m1n1)× (m2n2) matrix

A⊗B =

 a11B ... a1m2B
...
am11B am1m2B

 (33)

Circularity

A covariance matrix Σ is circular if

Σii + Σjj − 2Σij = 2λ (34)

for all i,j.

Compound Symmetry

If all the variances are equal to λ1 and all the covariances are equal to λ2 then
we have compound symmetry.

Nonsphericity

If Σ is a K×K covariance matrix and the first K−1 eigenvalues are identically
equal to

λ = 0.5(Σii + Σjj − 2Σij) (35)

then Σ is spherical. Every other matrix is non-spherical or has nonsphericity.
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Greenhouse-Geisser correction

For a 1-way ANOVA between subjects with N subjects and K levels the overall
F statistic is approximately distributed as

F [(K − 1)ε, (N − 1)(K − 1)ε] (36)

where

ε =
(
∑K−1

i=1 λi)2

(K − 1)
∑K−1

i=1 λ2
i

(37)

and λi are the eigenvalues of the normalised matrix Σz where

Σz = MT ΣyM (38)

and M is a K by K − 1 matrix with orthogonal columns (eg. the columns are
the first K − 1 eigenvectors of Σy).

B: Within-subject models

The model in equation 11 can also be written as

yn = 1Kπn + τ + en (39)

where yn is now the K × 1 vector of measurements from the nth subject, 1K

is a K × 1 vector of 1’s, and τ is a K × 1 vector with kth entry τk and en is a
K × 1 vector with kth entry enk where

p(en) = N(0,Σe) (40)

We have a choice as to whether to treat the subject effects πn as fixed-effects or
random-effects. If we choose random-effects then

p(πn) = N(µ, σ2
π) (41)

and overall we have a mixed-effects model as the typical response for subject n,
πn, is viewed as a random variable whereas the typical response to treatment
k, τk, is not a random variable. The reduced model is

yn = 1Kπn + en (42)

For the full model we can write

p(y) =
N∏

n=1

p(yn) (43)

p(yn) = N(my,Σy)

and

my = 1Kµ + τ (44)
Σy = 1Kσ2

π1T
K + Σe
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if the subject effects are random-effects, and Σy = Σe otherwise. If Σe = σ2
eIK

then Σy has compound symmetry. It is also spherical (see Appendix A). For
K = 4 for example

Σy =


σ2

π + σ2
e σ2

π σ2
π σ2

π

σ2
π σ2

π + σ2
e σ2

π σ2
π

σ2
π σ2

π σ2
π + σ2

e σ2
π

σ2
π σ2

π σ2
π σ2

π + σ2
e

 (45)

If we let Σy = (σ2
π + σ2

e)Ry then

Ry =


1 ρ ρ ρ
ρ 1 ρ ρ
ρ ρ 1 ρ
ρ ρ ρ 1

 (46)

where

ρ =
σ2

π

σ2
π + σ2

e

(47)

For a more general Σe, however, Σy will be non-spherical. In this case,
we can attempt to correct for the nonsphericity. One approach is to reduce
the degrees of freedom by a factor 1

K−1 ≤ ε ≤ 1, which is an estimate of the
degree of nonsphericity of Σy (the Greenhouse-Geisser correction; see Appendix
A). Various improvements of this correction (eg. Huhn-Feldt) have also been
suggested [Howell 1992]. Another approach is to explicitly parameterise the
error covariance matrix Σe using a linear expansion and estimate the parameters
using ReML, as described in chapter 22.

Contrasts for M-way ANOVAs

The contrasts presented in the section ‘Generalisation to M-way ANOVAs’ are
actually incorrect. They were presented in a format that allowed the rows of
the resulting contrast matrices, which test for main effects and interactions, to
be readily interpretable. We now give the correct contrasts, which derive from
speciying the initial differential component contrast as

Dm = −orth(diff(IKm
)T ) (48)

where orth(A) is the orthonormal basis of A (as in the Matlab function orth).
This is identical to the expression in the main text but with the addition of an
orth function which is necessary to ensure that the length of the contrast vector
is unity.

This results in the following contrasts for the 2-by-2 ANOVA

C1 = C2 = [1, 1]T D1 = D2 = [0.71,−0.71]T (49)

D1 ⊗ C2 = [0.71 0.71 −0.71 −0.71]T

C1 ⊗D2 = [0.71 −0.71 0.71 −0.71]T

D1 ⊗D2 = [0.71 −0.71 −0.71 0.71]T
(50)
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For the 3-by-3 ANOVA

C1 = C2 = [1, 1, 1]T D1 = D2 =
[

0.41 −0.82 0.41
0.71 0.00 −0.71

]T

(51)

and the two main effects and interaction are respectively

D1 ⊗ C2 =
[

0.41 0.41 0.41 −0.82 −0.82 −0.82 0.41 0.41 0.41
0.71 0.71 0.71 0 0 0 −0.71 −0.71 −0.71

]T

(52)

C1 ⊗D2 =
[

0.41 −0.82 0.41 0.41 −0.82 0.41 0.41 −0.82 0.41
0.71 0 −0.71 0.71 0 −0.71 0.71 0 −0.71

]T

(53)

D1 ⊗D2 =


0.17 −0.33 0.17 −0.33 0.67 −0.33 0.17 −0.33 0.17
0.29 0 −0.29 −0.58 0 0.58 0.29 0 −0.29
0.29 −0.58 0.29 0 0 0 −0.29 0.58 −0.29
0.5 0 −0.5 0 0 0 −0.5 0 0.5


T

(54)

Factors Levels Simple Repeated Measures
1 2 Two-sample t-test Paired t-test
1 K One-way ANOVA One-way ANOVA within-subject
M K1, K2, .., KM M-way ANOVA M-way ANOVA within-subject

Table 1: Types of ANOVA

Main effect of treatment F=3.62 DF=[3,44] p=.02

Table 2: Results of one-way (1x4) between-subjects ANOVA.
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Main effect of treatment F=6.89 DF=[3,33] p=.001

Table 3: Results of one-way (1x4) within-subjects ANOVA.

Main effect of A [ 1 1 -1 -1 ]
Main effect of B [ 1 -1 1 -1 ]
Interaction, AxB [ 1 -1 -1 1 ]

Table 4: Contrasts for experimental effects in a two-way ANOVA.

Main effect of A F=9.83 DF=[1,33] p=.004
Main effect of B F=5.21 DF=[1,33] p=.029
Interaction, AxB F=5.64 DF=[1,33] p=.024

Table 5: Results of 2 × 2 within-subjects ANOVA with pooled error assuming
sphericity.

Main effect of A F=9.83 DF=[0.7,23.0] p=.009
Main effect of B F=5.21 DF=[0.7,23.0] p=.043
Interaction, AxB F=5.64 DF=[0.7,23.0] p=.036

Table 6: Results of 2 × 2 within-subjects ANOVA with pooled error using
Greenhouse-Geisser correction.

Main effect of A F=12.17 DF=[1,11] p=.005
Main effect of B F=11.35 DF=[1,11] p=.006
Interaction, AxB F=3.25 DF=[1,11] p=.099

Table 7: Results of ANOVA using partitioned errors.
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Figure 1: Design matrix for one-way (1x4) between-subjects ANOVA. White
and gray represent 1 and 0. There are 48 rows, one for each subject ordered by
condition, and 5 columns, the first 4 for group effects and the 5th for the grand
mean.
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Figure 2: One-way between-subject ANOVA. 48 subjects are assigned to
one of four groups. The plot shows the data points for each of the four conditions
(crosses), the predictions from the ‘one-way between-subjects model’ or the ‘full
model’ (solid lines) and the predicitons from the ‘reduced model’ (dotted lines).
In the reduced model (equation 2) we view the data as random variation about
a grand mean. In the full model (equation 1) we view the data as random
variation about condition means. Is the full model significantly better than the
reduced model ? That responses are much higher in condition 4 suggests that
this is indeed the case and this is confirmed by the results in Table 2.
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Figure 3: Portion of example data for one-way within-subject ANOVA.
The plot shows the data points for 3 subjects in each of 4 conditions (in the whole
data set there are 12 subjects). Notice how subject 6’s responses are always high,
and subject 2’s are always low. This motivates modelling subject effects as in
equations 11 and 12.
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(a)

(b)

Figure 4: One-way within-subjects ANOVA. The plot shows the data points
for each of the four conditions for subjects (a) 4 and (b) 6, the predictions from
the one-way within-subjects model (solid lines) and the reduced model (dotted
lines).

Figure 5: Design matrix for one-way (1x4) within-subjects ANOVA. The first 4
columns are treatment effects and the last 12 are subject effects.
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Figure 6: One-way within-subjects ANOVA: Nonsphericity. Each sub-
graph plots each subjects response to condition i versus condition j as a cross.
There are twelve crosses, one from each subject. We also plot probability con-
tours from the correponding Gaussian densities. Subject responses, for example,
to conditions 1 and 3 seem correlated - the sample correlation coefficient is -0.75.
Overall, the more non-spherical the contours the greater the nonsphericity.
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Figure 7: Design matrix for 2x2 within-subjects ANOVA. This design is the
same as in Figure 5 except that the first four columns are rotated. The rows
are ordered all subjects for cell A1B1, all for A1B2 etc. White, gray and black
represent 1, 0 and -1. The first four columns model the main effect of A, the
main effect of B, the interaction between A and B and a constant term. The
last 12 columns model subject effects. This model is a GLM instantiation of
equation 15.
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Figure 8: In a 3 × 3 ANOVA there are 9 cells or conditions. The numbers
in the cells correspond to the ordering of the measurements when re-arranged
as a column vector y for a single-subject General Linear Model. For a repeated
measures ANOVA there are 9 measurements per subject. The variable ynkl is the
measurement at the kth level of factor A, the lth level of factor B and for the
nth subject. To implement the partitioned error models we use these original
measurements to create differential effects for each subject. The differential
effect τA

1 is given by row 1 minus row 2 (or cells 1, 2, 3 minus cells 4,5,6
- this is reflected in the first row of the contrast matrix in equation 52). The
differential effect τA

2 is given by row 2 minus row 3. These are used to assess the
main effect of A. Similarly, to assess the main effect of B we use the differential
effects τB

1 (column 1 minus column 2) and τB
2 (column 2 minus column 3). To

assess the interaction between A and B we compute the four ‘simple interaction’
effects τAB

11 (cells (1-4)-(2-5)), τAB
12 (cells (2-5)-(3-6)), τAB

21 (cells (4-7)-(5-8))
and τAB

22 (cells (5-8)-(6-9)). These correspond to the rows of the interaction
contrast matrix in equation 30. 24



Figure 9: Second-stage design matrix for interaction in 3x3 ANOVA (partitioned
errors).
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