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Introduction

Functional neuroimaging has been used to corroborate functional specialisation
as a principle of organization in the human brain. However, disparate regions of
the brain do not operate in isolation and more recently neuroimaging has been
used to characterise the network properties of the brain under specific cognitive
states [Buchel et al. 1997a, Buchel and Friston 2000]. These studies address a
complementary principle of organization, functional integration.

Functional MRI provides a unique opportunity to observe simultaneous record-
ings of activity throughout the brain evoked by cognitive and sensorimotor chal-
lenges. Each voxel within the brain is represented by a time series of neuro-
physiological activity that underlies the measured BOLD response. Given these
multivariate, voxel-based time series, can we infer large-scale network behaviour
among functionally specialised regions?

A number of methods have been proposed to answer this question including
regression models [McIntosh et al. 1994, Friston et al. 1997, Friston et al. 1993,
Friston et al. 1995], convolution models [Friston 2001, Friston and Buchel 2000]
and state-space models [Buchel et al. 1998]. Regression techniques, underlying
eg. the analysis of Psychophysiological Interactions (PPIs), are useful becasue
they are easy to fit and can test for the modulatory interactions of interest
[Friston et al. 1997]. However, this is at the expense of excluding temporal in-
formation, i.e. the history of an input or physiological variable. This is impor-
tant as interactions within the brain, whether over short or long distances, take
time and are not instantaneous. Structural Equation Modeling (SEM), as used
by the neuroimaging community [McIntosh et al. 1994, Buchel et al. 1997b] has
similar problems 1. Convolution models, such as the Volterra approach, model
temporal effects in terms of an idealized response characterized by the kernels of
the model [Friston 2000]. A criticism of the Volterra approach is that it treats
the system as a black box, meaning that it has no model of the internal mech-
anisms that may generate data. State-Space Models account for correlations
within the data by invoking state variables, whose dynamics generate data. Re-
cursive algorithms, such as the Kalman Filter, may be used to estimate these
states through time, given the data [Buchel et al. 1998].

This chapter describes an approach based on Multivariate Autoregressive
(MAR) models. These are linear multivariate time series models which have a

1There exist versions of SEM that do model dynamic information, see [Cudeck 2002] for
details of Dynamic Factor Analysis.
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long history of application in econometrics. The MAR model characterises inter-
regional dependencies within data, specifically in terms of the historical influence
one variable has on another. This is distinct from regression techniques that
quantify instantaneous correlations. We use MAR models to make inferences
about functional integration from fMRI data.

The chapter is divided into 3 sections. First we describe the theory of
MAR models, parameter estimation, model order selection and statistical in-
ference. We have used a Bayesian technique for model order selection and
parameter estimation which is introduced in Chapter 24 and is described fully
in [Penny and Roberts 2002]. Second, we model neurophysiological data taken
from an fMRI experiment addressing attentional modulation of cortical connec-
tivity during a visual motion task [Buchel et al. 1997b]. The modulatory effect
of one region upon the responses to other regions is a second order interaction
which is precluded in linear models. To circumvent this we have introduced
bilinear terms [Friston et al. 1997]. Thirdly, we discuss the advantages and dis-
advantages of MAR models, its use in spectral estimation and possible future
developments.

Theory

Multivariate Autoregressive Models

Given a univariate time series, its consecutive measurements contain informa-
tion about the process that generated it. An attempt at describing this under-
lying order can be achieved by modelling the current value of the variable as
a weighted linear sum of its previous values. This is an Autoregressive (AR)
process and is a very simple, yet effective, approach to time series character-
isation [Chatfield 1996]. The order of the model is the number of preceding
observations used, and the weights characterise the time series.

Multivariate Autoregressive models extend this approach to multiple time
series so that the vector of current values of all variables is modelled as a linear
sum of previous activities. Consider d time series generated from d variables
within a system such as a functional network in the brain and where m is the
order of the model. A MAR(m) model predicts the next value in a d-dimensional
time series, yn as a linear combination of the m previous vector values

yn =
m∑

i=1

yn−iA(i) + en (1)

where yn = [yn(1), yn(2), ..., yn(d)] is the nth sample of a d-dimensional time se-
ries, each A(i) is a d-by-d matrix of coefficients (weights) and en = [en(1), en(2), ..., en(d)]
is additive Gaussian noise with zero mean and covariance R. We have assumed
that the data mean has been subtracted from the time series.

The model can be written in the standard form of a multivariate linear
regression model as follows

yn = xnW + en (2)

where xn = [yn−1, yn−2, ..., yn−m] are the m previous multivariate time series
samples and W is a (m× d)-by-d matrix of MAR coefficients (weights). There
are therefore a total of k = m× d× d MAR coefficients.
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If the nth rows of Y , X and E are yn, xn and en respectively and there are
n = 1..N samples then we can write

Y = XW + E (3)

where Y is an (N −m)-by-d matrix, X is an (N −m)-by-(m× d) matrix and E
is an (N −m)-by-d matrix. The number of rows N −m (rather than N) arises
as samples at time points before m do not have sufficient preceding samples to
allow prediction.

MAR models are fully connected in that each region is, by default, assumed
connected to all others. However, by fitting the model to data and testing to
see which connections are signficantly non-zero, one can infer a sub-network
that mediates the observed dynamics. This can be implemented using Bayesian
inference as described below.

These sub-networks are related to the concept of ‘Granger causality’ [Granger 1969],
which is defined operationally as follows. Activity in region X ‘Granger causes’
activity in region Y if any of the connections from X to Y, over all time lags, are
non-zero. These causality relationships can be summarised by directed graphs
as described in [Eichler 2005]. An example will be presented later on in the
chapter.

Nonlinear autoregressive models

Given a network model of the brain we can think of two fundamentally dif-
ferent types of coupling; linear and nonlinear. The model discussed so far is
linear. Linear systems are described by the principle of superposition, which is
that inputs have additive effects on the response that are independent of each
other. Nonlinear systems are characterised by inputs which interact to produce
a response.

In [Buchel et al. 1997b], nonlinear interactions were modelled using ‘bilinear
terms’. This is the approach adopted in this chapter. Specifically, to model a
hypothesized interaction between variables yn(j) and yn(k) one can form the
new variable

In(j, k) = yn(j)yn(k) (4)

This is a ‘bilinear variable’. This is orthogonalised with respect to the original
time series and placed in an augmented MAR model with connectivity matrices
Ã(i).

[yn, In(j, k)] =
m∑

i=1

[yn−i, In−i(j, k)]Ã(i) + en (5)

The relevant entries in Ã(i) then reflect modulatory influences eg. a change of
the connection strength between y(j) and other time series due to the influence
of y(k).

It should be noted that each bilinear variable introduces only one of many
possible sources of nonlinear behaviour into the model. The example above
specifically models nonlinear interactions between yn(j) and yn(k), however
other bilinear terms could involve, for instance, the time series yn(j) and inputs
u(t). The inclusion of these terms are guided by the hypothesis of interest eg.
does ‘time’ change the connectivity between earlier and later stages of processing
in the dorsal visual pathway? Here u(t) would model time.
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Maximum Likelihood Estimation

Reformulating MAR models as standard multivariate linear regression models
allows us to retain contact with the large body of statistical literature devoted
to this subject; see eg. p. 423 of [ Tiao 1992]. The Maximum Likelihood (ML)
solution (see eg. [Weisberg 1980]) for the MAR coefficients is

Ŵ = (XT X)−1XT Y (6)

The maximum likelihood noise covariance, SML, can be estimated as

SML =
1

N − k
(Y −XŴ )T (Y −XŴ ) (7)

where k = m × d × d. We define ŵ = vec(Ŵ ) where vec denotes the columns
of Ŵ being stacked on top of each other (for more on the vec notation, see
[Muirhead 1982]). To recover the matrix Ŵ we simply ‘un-stack’ the columns
from the vector ŵ.

The ML parameter covariance matrix for ŵ is given by [Magnus and Neudecker 1997]
(page 321)

Σ̂ = SML ⊗ (XT X)−1 (8)

where ⊗ denotes the Kronecker product (see, eg page 477 in [ Tiao 1992]) The
optimal value of m can be chosen using a model order selection criterion such as
the Minimum Description Length (MDL). See eg. [Neumaier and Schneider 2000].

Bayesian Estimation

It is also possible to estimate the MAR parameters and select the optimal model
within a Bayesian framework [Penny and Roberts 2002]. This has been shown
to give better model order selection and is the approach used in this chapter.
The maximum-likelihood solution is used to initialise the Bayesian scheme.

In what follows N(m,Q−1) is a multivariate Gaussian with mean m and
precision (inverse covariance) Q. Also, Ga(b, c) is the Gamma distribution with
parameters b and c defined in chapter 24. The gamma density has mean bc
and variance b2c. Finally, Wi(s,B) denotes a Wishart density [ Tiao 1992]. The
Bayesian model uses the following prior distributions

p(W |m) = N(0, α−1I) (9)
p(α|m) = Ga(b, c)
p(Λ|m) = |Λ|−(d+1)/2

where m is the order of the model, α is the precision of the Gaussian prior
distribution from which weights are drawn and Λ is the noise precision matrix
(inverse of R). In [Penny and Roberts 2002] it is shown that the corresponding
posterior distributions are given by

p(W |Y, m) = N(ŴB , Σ̂B) (10)

p(α|Y, m) = Ga(b̂, ĉ)
p(Λ|Y, m) = Wi(s,B)

The parameters of the posteriors are updated in an iterative optimisation scheme
described in the Appendix. Iteration stops when the ‘Bayesian evidence’ for
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model order m, p(Y |m), is maximised. A formula for computing this is also
provided in the appendix. Importantly, the evidence is also used as a model
order selection criterion, that is, to select the optimal value of m. This is
discussed at length in Chapters 24 and 35.

Bayesian Inference

The Bayesian estimation procedures outlined above results in a posterior dis-
tribution for the MAR coefficients P (W |Y,m). Bayesian inference can then
take place using confidence intervals based on this posterior. See, for example,
page 84 of [ Tiao 1992]. The posterior allows us to make inferences about the
strength of a connection between two regions. Because this connectivity can be
expressed over a number of time lags our inference is concerned with the vector
of connection strengths, a, over all time lags. To make contact with classical
(non-Bayesian) inference, we say that a connection is ‘significantly non-zero’ or
simply ‘significant’ at level α if the zero vector lies outside the 1−α confidence
region for a. This is shown schematically in Figure 1.

Application

The responsiveness of dorsal visual brain regions in neuroimaging studies sug-
gests attention is associated with changes in connectivity [Assad et al. 1995]
[Craven and Savoy 1995]. In this chapter we use data from an fMRI study
investigating attentional modulation of connectivity within the dorsal visual
pathways [Buchel et al. 1997b]. This provides a testbed for assessing how MAR
models estimate changes in connectivity.

In brief, the experiment was performed on a 2T MRI scanner. The visual
stimulus involved random dots moving radially outwards at a fixed rate. Sub-
jects were trained beforehand to detect changes in velocity of radial motion.
Attentional set was manipulated by asking the subject to attend to changes in
velocity or to just observe the motion. Both of these states were separated by
periods of “fixation” where the screen was dark and only a fixation dot was
visible. Each block ended with a “stationary” condition in which a static image
of the previously moving dots was shown. Unknown to the subjects, the ra-
dial velocity remained constant throughout the experiment such that the only
experimental manipulation was attentional set.

Categorical comparisons using General Linear Model (GLM) analyses (see
eg. Chapter 8) were used to identify changes in brain activity dependent on
attentional set. This revealed activations throughout right and left hemispheres
in the primary visual cortex V1/2 complex, visual motion region V5 and regions
involved in the attentional network including posterior parietal cortex (PPC)
and in the right prefrontal cortex (PFC). Regions of interest (ROI) were de-
fined with a diameter of 8mm centred around the most significant voxel and
a representative time series was defined by the first eigenvariate of the region.
For details of the experimental design and acquisition see [Buchel et al. 1997b].
We analyse data from three subjects. Time series from subject 1 are shown in
Figure 2.

Inspecting the four time series reveals a number of characteristics. The
time series from the V1/2 complex shows a dependence on the presentation of
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the moving image with a small difference between attention and non-attention.
However, in the higher brain areas of PPC and PFC attentional set is the dom-
inant influence, with a marked increase in activity during periods of attention.
The relative influence each region has on others is not obvious from visual in-
spection but, as we shall see, can be revealed from a MAR analysis.

Three models were tested using the regions and interaction terms shown
below.

• Model 1: V1/V2, V5, PPC and PFC

• Model 2: V1/V2, V5 and Iv1,ppc

• Model 3: V5, PPC and Iv5,pfc

where Iv1,ppc denotes an interaction between V1/V2 and PPC and Iv5,pfc an
interaction between V5 and PFC. These variables were created as described in
the earlier section on nonlinear autoregressive models. The interaction terms
can be thought as ‘virtual’ nodes in a network.

For each type of model, we computed the model evidence as a function of
model order m. The results in Figure 3 show that the optimal order for all three
models was m = 4 (subject 1). A model order of m = 4 was then used in the
results reported below.

Model 1 was applied, to right hemisphere data only, to identify the functional
network connecting key regions in the visual and attentional systems. Figure 4
shows connections in this model which, across all time lags, are significantly
non-zero for subject 1. Over the three subjects, all V1/V2 to V5 connections
(α < 0.0004) and all PFC to PPC (α < 0.02) connections were significant.
We can therefore infer that activity in V1/V2 Granger causes activity in V5,
and PFC Granger causes PPC. Also, the V5 to PPC connection was significant
(α < 0.0009) in two out of three subjects.

The second model was applied both to left and right hemisphere data. Fig-
ure 5 shows significantly non-zero connections for left hemisphere data from
subject 1. This shows that activity in PPC changes the connectivity between
V1/V2 and V5. The same was true for the other two subjects. For the right
hemisphere data, however, only subject 1 showed an effect (α < 0.03).

The third model was applied to right hemisphere data. Figure 6 shows
significantly non-zero connections for data from subject 1. This shows that
activity in PFC changes how PPC responds to V5. Subject 2 also showed this
effect (α < 0.03) but subject 3 did not.

Discussion

We have proposed the use of MAR models for making inferences about func-
tional integration using fMRI time series. One motivation for this is that
the previously dominant model used for making such inferences in the exist-
ing fMRI/PET literature, namely Structural Equation Modelling, as used in
[McIntosh et al. 1994, Buchel et al. 1997b], is not a time series model. Indeed,
inferences are based solely on the instantaneous correlations between regions - if
the series were randomly permuted over time, SEM would give the same results.
Thus SEM throws away temporal information.
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Further, MAR models may contain loops and self-connections yet parame-
ter estimation can proceed in a purely linear framework ie. there is an analytic
solution that can be found via linear algebra. In contradistinction, SEM models
with loops require non-linear optimisation. The reason for this is that MAR
models do not contain instantaneous connections. The between-region connec-
tivity arises from connections between regions at different time-lags. Due to
temporal persistence in the activity of each region this captures much the same
effect, but in a computationally simpler manner.

In this chapter we applied Bayesian MAR models to fMRI data. Bayesian
inferences about connections were then made on the basis of the estimated
posterior distribution. This allows for the identification of a sub-network of
connections that mediate the observed dynamics. These connections describe
causal relations, in the sense of Granger [Granger 1969].

This is in the spirit of how General Linear Models are used for characteris-
ing functional specialisation; all conceivable factors are placed in one large model
and then different hypotheses are tested using t or F-contrasts [Frackowiak et al. 1997].
We note that this approach is fundamentally different to the philosophy under-
lying SEM. In SEM, only a few connections are modelled. These are chosen
on the basis of prior anatomical or functional knowledge and are interpreted
as embodying causal relations. Thus, with SEM, causality is ascribed a priori
[Pearl 1998]. But with MAR, causality can be inferred from data.

MAR models can also be used for spectral estimation. In particular they
enable parsimonious estimation of coherences (correlation at particular frequen-
cies), partial coherences (the coherence between two time series after the ef-
fects of others have been taken into account), phase relationships [Marple 1987]
[Cassidy and Brown 2000] and directed transfer functions [Kaminski et al. 1997].
MAR models have been used in this way to investigate functional integration
from EEG and ECOG recordings [Bressler et al. 1999]. This provides a link
with a recent analysis of fMRI data [Muller et al. 2001] which looks for sets
of voxels that are highly coherent. MAR models provide a parametric way of
estimating this coherence, although in this chapter we have reported the results
in the time domain.

A further aspect of MAR models is that they capture only linear relations
between regions. Following [Buchel et al. 1997b], we have extended their capa-
bilities by introducing bilinear terms. This allows one to infer that activity in
one region modulates connectivity between two other regions. Such inferences
are beyond the current capabilities of Dynamic Causal Models for fMRI (see
chapter 41).

It is also possible to include further higher order terms, for instance, second-
order interactions across different lags. Frequency domain characterisation of
the resulting models would then allow us to report bi-spectra [Priestley 1988].
These describe the correlations between different frequencies which may be im-
portant for the study of functional integration [Friston 2000] (see also Chapter
39).

A key aspect of our approach has been the use of a mature Bayesian es-
timation framework [Penny and Roberts 2002]. This has allowed us to select
the optimal MAR model order. One promising direction for extending the
model is to replace Gaussian priors with sparse priors. This would effectively
remove most connections allowing the model to be applied to a very large
number of regions. This approach has been investigated in a non-Bayesian
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framework using penalised regression and pruning based on false discovery rates
[Valdes-Sosa et al. 2005].

Appendix

Bayesian estimation

Following the algorithm developed in [Penny and Roberts 2002], the parameters
of the posterior distributions are updated iteratively as follows.

ΛD = Λ̂⊗ (XT X) (11)
Σ̂B = (ΛD + α̂I)−1

ŴB = Σ̂BΛDŴ
1

b̂
=

1
2
ŴT

B ŴB +
1
2
Tr(Σ̂B) +

1
b

ĉ =
k

2
+ c

α̂ = b̂ĉ

s = N

B =
1
2
(Y −XŴB)T (Y −XŴB)

+
∑

n

(I ⊗ xn)Σ̂B(I ⊗ xn)T

Λ̂ = sB−1

The updates are initialised using the Maximum-Likelihood solution. Iteration
terminates when the Bayesian log-evidence increase by less than 0.01%. The
log-evidence is computed as follows

log p(Y |m) =
N

2
log |B| −KLN (p(W |m), p(W |Y,m)) (12)

− KLGa(p(α|m), p(α|Y,m)) + log Γd(N/2)

where KLN and KLGa denote the Kullback-Liebler (KL) divergences for Nor-
mal and Gamma densities defined in chapter 24. Essentially, the first term in
the above equation is an accuray term and the KL terms act as a penalty for
model complexity. See chapters 24 and 35 for more on model comparison.

Testing the significance of connections

The connectivity between two regions can be expressed over a number of time
lags. Therefore, to see if the connectivity is significantly non-zero we make an
inference about the vector of coefficients a, where each element of that vector is
the value of a MAR coefficient at a different time lag. First we specify (k × k)
(k = m× d× d) sparse matrix C such that

a = CT w (13)

returns the estimated weights for connections between the two regions of inter-
est. For an MAR(m) model, this vector has m entries, one for each time-lag.
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The probability distribution is given by p(a) = N(µ, V ) and is shown schemati-
cally in Figure 1. The mean and covariance are given by

µ = CT ŵ (14)
V = CT Σ̂BC

where ŵ = vec(ŴB) and Σ̂B are the Bayesian estimates of the parameters of
the posterior distribution of regression coefficients from the previous section. In
fact, p(a) is just that part of p(w) that we are interested in.

The probability α that the zero vector lies on the 1−α confidence region for
this distribution is then computed as follows. We first note that this probability
is the same as the probability that the vector m lies on the edge of the 1 − α
region for the distribution N(0, V ). This latter probabilitiy can be computed by
forming the test statistic

d = µT V −1µ (15)

which will be the sum of r = rank(V ) independent, squared Gaussian variables.
As such it has a χ2 distribution

p(d) = χ2(r) (16)

This results in the same test for multivariate effects in General Linear mod-
els described in Chapter 25. In the present context, if a are the autoregressive
coefficients from region X to region Y, and the above test finds them to be signif-
icantly non-zero, then we can conclude that X Granger causes Y [Eichler 2005].
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Figure 1: For a MAR(2) model the vector of connection strengths, a, between
two regions consists of two values, a(1) and a(2). The probability distribution
over a can be computed from the posterior distribution of MAR coefficients as
shown in the appendix and is given by p(a) = N(µ, V ). Connectivity between
two regions is then deemed significant at level α if the zero-vector lies on the
1 − α confidence region. The figure shows an example 1 − α confidence region
for a MAR(2) model.
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Figure 2: These are the time series of regions V1/2 complex, V5, PPC and PFC
from subject 1, in the right hemisphere. All plots have the same axes of activity
(adjusted to zero mean and unit variance) vs scan number (360 in total). The
experiment consisted of four conditions in four blocks of 90 scans. Periods of
“attention” and “non-attention” were separated by a “fixation” interval where
the screen was dark and the subject fixated on a central cross. Each block ended
with a “stationary” condition were the screen contained a freeze frame of the
previously moving dots. Epochs of each task are indicated by the background
grayscale (see key) of each series. Visually evoked activity is dominant in the
lower regions of the V1/2 complex whereas attentional set becomes the prevalent
influence in higher regions PPC and PFC.
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Figure 3: Plots of log-evidence, computed using the expression in the appendix,
for each of the three MAR models for subject 1. The optimal order is m = 4 in
each case.

Figure 4: Inferred connectivity for model 1. Arrows indicate Granger causal
relations. Thin arrows indicate 0.001 ≤ α ≤ 0.05 and thick α ≤ 0.001.
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Figure 5: Inferred connectivity for model 2. Arrows show Granger causal rela-
tions (0.001 ≤ α ≤ 0.05).The model supports the notion that PPC modulates
the V1/V2 to V5 connection.

Figure 6: Inferred connectivity for model 3. Arrows show Granger causal rela-
tions (0.001 ≤ α ≤ 0.05). The model supports the notion that PFC modulates
the V5 to PPC connection.
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