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Introduction

In this chapter we are concerned with making statistical inferences involving
many subjects. One can envisage two main reasons for studying multiple sub-
jects. The first is that one may be interested in individual differences, as in
many areas of psychology. The second, which is the one that concerns us here,
is that one is interested in what is common to the subjects. In other words,
we are interested in the stereotypical effect in the population from which the
subjects are drawn.

As every experimentalist knows, a subject’s response will vary from trial
to trial. Further, this response will vary from subject to subject. These two
sources of variability, within-subject (also called between-scan) and between-
subject, must both be taken into account when making inferences about the
population.

In statistical terminology, if we wish to take the variability of an effect into
account we must treat it as a ‘random effect’. In a 12-subject fMRI study, for
example, we can view those 12 subjects as being randomly drawn from the pop-
ulation at large. The subject variable is then a random effect and, in this way,
we are able to take the sampling variability into account and make inferences
about the population from which the subjects were drawn. Conversely, if we
view the subject variable as a ‘fixed effect’ then our inferences will relate only
to those 12 subjects chosen.

The majority of early studies in neuroimaging combined data from multiple
subjects using a ‘Fixed-Effects’ (FFX) approach. This methodology only takes
into account the within-subject variability. It is used to report results as case
studies. It is not possible to make formal inferences about population effects
using FFX. Random-Effects (RFX) analysis, however, takes into account both
sources of variation and makes it possible to make formal inferences about the
population from which the subjects are drawn.

In this chapter we describe FFX and RFX analyses of multiple-subject data.
We first describe the mathematics behind RFX, for balanced designs, and show
how RFX can be implemented using the computationally efficient ‘summary-
statistic’ approach. We then describe the mathematics behind FFX and show
that it only takes into account within-subject variance. The next section shows
that RFX for unbalanced designs is optimally implemented using the PEB al-
gorithm described in the previous chapter. This section includes a numerical
example which shows that, although not optimal, the summary statistic ap-
proach performs well even for unbalanced designs.

1



Random effects analysis

Maximum likelihood

Underlying RFX analysis is a probability model defined as follows. We first
envisage that the mean effect in the population (ie. averaged across subjects)
is of size wpop and that the variability of this effect between subjects is σ2

b . The
mean effect for the ith subject (ie. averaged across scans), wi, is then assumed
to be drawn from a Gaussian with mean wpop and variance σ2

b . This process
reflects the fact that we are drawing subjects at random from a large population.
We then take into account the within-subject (ie. across scan) variability by
modelling the jth observed effect in subject i as being drawn from a Gaussian
with mean wi and variance σ2

w. Note that σ2
w is assumed to be the same for all

subjects. This is a requirement of a balanced design. This two-stage process is
shown graphically in Figure 1.

Given a data set of effects from N subjects with n replications of that effect
per subject, the population effect is modelled by a two level process

yij = wi + eij (1)
wi = wpop + zi

where wi is the true mean effect for subject i and yij is the jth observed effect for
subject i, and zi is the between subject error for the ith subject. These Gaussian
errors have the same variance, σ2

b . For the PET data considered below this is
a differential effect, the difference in activation between word generation and
word shadowing. The first equation captures the within-subject variability and
the second equation the between-subject variability.

The within-subject Gaussian error eij has zero mean and variance Var[eij ] =
σ2

w. This assumes that the errors are independent over subjects and over repli-
cations within subject. The between-subject Gaussian error zi has zero mean
and variance Var[zi] = σ2

b . Collapsing the two levels into one gives

yij = wpop + zi + eij (2)

The maximum-likelihood estimate of the population mean is

ŵpop =
1

Nn

N∑
i=1

n∑
j=1

yij (3)

We now make use of a number of statistical relations defined in the appendix
to show that this estimate has a mean E[ŵpop] = wpop and a variance given by

Var[ŵpop] = Var

 N∑
i=1

1
N

n∑
j=1

1
n

(wpop + zi + eij)

 (4)

= Var

[
N∑

i=1

1
N

zi

]
+ Var

 N∑
i=1

1
N

n∑
j=1

1
n

eij


=

σ2
b

N
+

σ2
w

Nn

The variance of the population mean estimate contains contributions from both
the within-subject and between-subject variance.
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Summary statistics

Implicit in the summary-statistic RFX approach is the two-level model

w̄i = wi + ei (5)
wi = wpop + zi

where wi is the true mean effect for subject i, w̄i is the sample mean effect for
subject i and wpop is the true effect for the population.

The Summary-Statistic (SS) approach is of interest because it is compu-
tationally much simpler to implement than the full random effects model of
equation 1. This is because it is based on the sample mean value, w̄i, rather
than on all of the samples yij . This is important for neuroimaging as in a
typical functional imaging group study there can be thousands of images, each
containing tens of thousands of voxels.

In the first level we consider the variation of the sample mean for each
subject around the true mean for each subject. The corresponding variance is
Var[ei] = σ2

w/n, where σ2
w is the within-subject variance. At the second level

we consider the variation of the true subject means about the population mean
where Var[zi] = σ2

b , the between-subject variance. We also have E[ei] = E[zi] =
0. Consequently

w̄i = wpop + zi + ei (6)

The population mean is then estimated as

ŵpop =
1
N

N∑
i=1

w̄i (7)

This estimate has a mean E[ŵpop] = wpop and a variance given by

Var[ŵpop] = Var

[
N∑

i=1

1
N

w̄i

]
(8)

= Var

[
N∑

i=1

1
N

zi

]
+ Var

[
N∑

i=1

1
N

ei

]

=
σ2

b

N
+

σ2
w

Nn

Thus, the variance of the estimate of the population mean contains contributions
from both the within-subject and between-subject variances. Importantly, both
E[ŵpop] and Var[ŵpop] are identical to the maximum-likelihood estimates derived
earlier. This validates the summary-statistic approach. Informally, the validity
of the summary-statistic approach lies in the fact that what is brought forward
to the second-level is a sample mean. It contains an element of within-subject
variability which when operated on at the second level produces just the right
balance of within and between subject variance.

Fixed effects analysis

Implicit in FFX analysis is a single-level model

yij = wi + eij (9)
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The parameter estimates for each subject are

ŵi =
1
n

n∑
j=1

yij (10)

which have a variance given by

Var[ŵi] = Var

 n∑
j=1

1
n

yij

 (11)

=
σ2

w

n

The estimate of the group mean is then

ŵpop =
1
N

N∑
i=1

ŵi (12)

which has a variance

Var[ŵpop] = Var

[
N∑

i=1

1
N

ŵi

]
(13)

=
1
N

Var[d̂i]

=
σ2

w

Nn

The variance of the fixed-effects group mean estimate contains contributions
from within-subject terms only. It is not sensitive to between-subject variance.
We are not therefore able to make formal inferences about population effects
using FFX. We are restricted to informal inferences based on separate case
studies or summary images showing the average group effect. This will be
demonstrated empirically in a later section.

Parametric Empirical Bayes

We now return to RFX analysis. We have previously shown how the SS approach
can be used for the analysis of balanced designs ie. identical σ2

w for all subjects.
This section starts by showing how PEB can also be used for balanced designs.
It then shows how PEB can be used for unbalanced designs and provides a
numerical comparison between PEB and SS on unbalanced data.

Before proceeding we note that an algorithm from classical statistics, known
as Restricted Maximum Likelihood (ReML), can also be used for variance com-
ponent estimation. Indeed, many of the papers on random effects analysis use
ReML instead of PEB [Friston et al. 2002, Friston et al. 2005].

The model described in this section is identical to the separable model in
the previous chapter but with xi = 1n and βi = β. Given a data set of contrasts
from N subjects with n scans per subject, the population effect can be modelled
by the two level process

yij = wi + eij (14)
wi = wpop + zi
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where yij (a scalar) is the data from the ith subject and the jth scan at a
particular voxel. These data points are accompanied by errors eij with wi

being the size of the effect for subject i, wpop being the size of the effect in
the population and zi being the between subject error. This may be viewed as
a Bayesian model where the first equation acts as a likelihood and the second
equation acts as a prior. That is

p(yij |wi) = N(wi, σ
2
w) (15)

p(wi) = N(wpop, σ
2
b )

where σ2
b is the between subject variance and σ2

w is the within subject variance.
We can make contact with the hierarchical formalism of the previous chapter by
making the following identities. We place the yij in the column vector y in the
order - all from subject 1, all from subject 2 etc (this is described mathematically
by the vec operator and is implemented in MATLAB (Mathworks, Inc.) by the
colon operator). We also let X = IN⊗1n where ⊗ is the Kronecker product and
let w = [w1, w2, ..., wN ]T . With these values the first level in equation 2 of the
previous chapter is then the matrix equivalent of the first level in equation 14
(ie. it holds for all i, j). For y = Xw + e and eg. N = 3,n = 2 we then have

y11

y12

y21

y22

y31

y32

 =


1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1


 w1

w2

w3

+


e11

e12

e21

e22

e31

e32

 (16)

We then note that XT X = nIN , Σ̂ = diag(Var[w1],Var[w2], ...,Var[wN ]) and the
ith element of XT y is equal to

∑n
j=1 yij .

If we let M = 1N then the second level in equation 2 of the previous chapter
is then the matrix equivalent of the second-level in equation 14 (ie. it holds for
all i). Plugging in our values for M and X and letting β = 1/σ2

w and α = 1/σ2
b

gives

Var[ŵpop] =
1
N

α + βn

αβn
(17)

and

ŵpop =
1
N

α + βn

αβn

αβ

α + βn

∑
i,j

yij (18)

=
1

Nn

∑
i,j

yij

So the estimate of the population mean is simply the average value of yij . The
variance can be re-written as

Var[ŵpop] =
σ2

b

N
+

σ2
w

Nn
(19)

This result is identical to the maximum-likelihood and summary-statistic
results derived earlier. The equivalence between the Bayesian and ML results
derives from the fact that there is no prior at the population level. Hence,
p(Y |µ) = p(µ|Y ) as indicated in the previous chapter.
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Unbalanced designs

The model described in this section is identical to the separable model in the pre-
vious chapter but with xi = 1ni . If the error covariance matrix is non-isotropic
ie. C 6= σ2

wI, then the population estimates will change. This can occur, for
example, if the design matrices are different for different subjects (so-called
‘unbalanced-designs’), or if the data from some of the subjects is particularly
ill-fitting. In these cases, we consider the within subject variances σ2

w(i) and the
number of events ni to be subject-specific. This will be the case in experimental
paradigms where the number of events is not under experimental control eg. in
memory paradigms where ni may refer to the number of remembered items.

If we let M = 1N then the second level in equation 2 in the previous chapter
is then the matrix equivalent of the second-level in equation 14 (ie. it holds for
all i). Plugging in our values for M and X gives

Var[ŵpop] =

(
N∑

i=1

αβini

α + niβi

)−1

(20)

and

ŵpop =

(
N∑

i=1

αβini

α + βini

)−1 N∑
i=1

αβi

α + βini

ni∑
j=1

yij (21)

This reduces to the earlier result if βi = β and ni = n. Both of these results
are different to the summary statistic approach, which we note is therefore
mathematically inexact for unbalanced designs. But as we shall see in the
numerical example below, the summary statistic approach is remarkably robust
to departures from assumptions about balanced designs.

Estimation

To implement the PEB estimation scheme for the unequal variance case we
first compute the errors êij = yij −Xŵi, ẑi = ŵi −Mŵpop. We then substitute
xi = 1ni

into the update rules derived in the PEB section of the previous chapter
to obtain

σ2
b ≡

1
α

=
1
γ

N∑
i=1

ẑ2
i (22)

σ2
w(i) ≡ 1

βi
=

1
ni − γi

ni∑
j=1

ê2
ij (23)

where

γ =
N∑

i=1

γi (24)

and
γi =

niβi

α + niβi
(25)

For balanced designs βi = β and ni = n we get

σ2
b ≡

1
α

=
1
γ

N∑
i=1

ẑ2
i (26)
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σ2
w ≡ 1

β
=

1
Nn− γ

N∑
i=1

n∑
j=1

ê2
ij (27)

where
γ =

nβ

α + nβ
N (28)

Effectively, the degrees of freedom in the data set (Nn) are partitioned into
those that are used to estimate the between-subject variance, γ, and those that
are used to estimate the within-subject variance, Nn− γ.

The posterior distribution of the first-level coefficients is

p(wi|yij) ≡ p(ŵi) = N(w̄i,Var[ŵi]) (29)

where
Var[ŵi] =

1
α + niβi

(30)

ŵi =
βi

α + niβi

ni∑
j=1

yij +
α

α + niβi
ŵpop (31)

Overall, the PEB estimation scheme is implemented by first initialising ŵi, ŵpop

and α, βi (for example to values given from the equal error-variance scheme).
We then compute the errors êij , ẑi and re-estimate the α and βi’s using the
above equations. The coefficients ŵi and ŵpop are then re-estimated and the
last two steps are iterated until convergence. This algorithm is identical to
the PEB algorithm for the separable model in the previous chapter but with
xi = 1ni

.

Numerical example

We now give an example of random effects analysis on simulated data. The
purpose is to compare the PEB and SS algorithms. We generated data from
a three-subject, two-level model with population mean µ = 2, subject effect
sizes w = [2.2, 1.8, 0.0]T and within subject variances σ2

w(1) = 1, σ2
w(2) = 1.

For the third subject σ2
w(3) was varied from 1 to 10. The second level design

matrix was M = [1, 1, 1]T and the first-level design matrix was given by X =
blkdiag(x1, x2, x3) with xi being a boxcar.

Figure 2 shows a realisation of the three time series for σ2
w(3) = 2. The first

two time series contain stimulus-related activity but the third does not. We
then applied the PEB algorithm, described in the previous section, to obtain
estimates of the population mean µ̂ and estimated variances, σ2

µ. For compar-
ison, we also obtained equivalent estimates using the SS approach. We then
computed the accuracy with which the population mean was estimated using
the criterion (µ̂− µ)2. This was repeated for 1000 different data sets generated
using the above parameter values, and for 10 different values of σ2

w(3). The
results are shown in figures 3 and 4.

Firstly we note that, as predicted by theory, both PEB and SS give identical
results when the first level error variances are equal. When the variance on the
‘rogue’ time series approaches double that of the others we see different estimates
of both µ̂ and σ2

µ. With increasing rogue error variance the SS estimates get
worse but the PEB estimates get better. There is an improvement with respect
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to the true values, as shown in Figure 3, and with respect to the variability
of the estimate, as shown in Figure 4. This is because the third time series is
more readily recognised by PEB as containing less reliable information about
the population mean and is increasingly ignored. This gives better estimates µ̂
and a reduced uncertainty, σ2

µ.
We created the above example to reiterate a key point of this chapter, that

SS gives identical results to PEB for equal within subject error variances (ho-
moscedasticity) and unbalanced designs, but not otherwise. In the numerical
example, divergent behaviour is observed when the error variances differ by a
factor of two. For studies with more subjects (12 being a typical number), how-
ever, this divergence requires a much greater disparity in error variances. In
fact we initially found it difficult to generate data sets where PEB showed a
consistent improvement over SS ! It is therefore our experience that the vanilla
SS approach is particularly robust to departures from homoscedasticity. This
conclusion is supported by what is known of the robustness of the t-test that
is central to the SS approach. Lack of homoscedasticity only causes problems
when the sample size (ie. number of subjects) is small. As sample size increases
so does the robustness (see eg. [Yandell 1997]).

PET data example

We now illustrate the difference between FFX and RFX analysis using data
from a PET study of verbal fluency. These data come from 5 subjects and
were recorded under two alternating conditions. Subjects were asked to either
repeat a heard letter or to respond with a word that began with that letter.
These tasks are referred to as word shadowing and word generation and were
performed in alternation over 12 scans and the order randomized over subjects.
Both conditions were identically paced with one word being generated every two
seconds. PET images were re-aligned, normalised and smoothed with a 16mm
isotropic Gaussian kernel. 1

Fixed-Effects Analysis

Analysis of multiple-subject data takes place within the machinery of the Gen-
eral Linear Model (GLM) as described in earlier chapters. However, instead of
having data from a single-subject at each voxel we now have data from multiple
subjects. This is entered into a GLM by concatenating data from all subjects
into the single column vector Y . Commensurate with this augmented data
vector is an augmented multi-subject design matrix 2, X, which is shown in
Figure 5. Columns 1 and 2 indicate scans taken during the word shadowing
and word generation conditions respectively, for the first subject. Columns 3
to 10 indicate these conditions for the other subjects. The time variables in
columns 11 to 15 are used to probe habituation effects. These variables are not
of interest to us in this chapter but we include them to improve the fit of the

1This data set and full details of the pre-processing are available from
http : //www.fil.ion.ucl.ac.uk/spm/data.

2This design was created using the ‘Multi-subject: condition by subject interaction and
covariates’ option in SPM-99.
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model. The GLM can be written as

Y = Xβ + E (32)

where β are regression coefficients and E is a vector of errors. The effects
of interest can then be examined using an augmented contrast vector, c. For
example, for the verbal fluency data the contrast vector

c = [−1, 1,−1, 1,−1, 1,−1, 1,−1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]T (33)

would be used to examine the differential effect of word generation versus word
shadowing, averaged over the group of subjects. The corresponding t-statistic,

t =
cT β̂√

Var[cT β̂]
(34)

where Var[] denotes variance, highlights voxels with significantly non-zero dif-
ferential activity. This shows the ‘average effect in the group’ and is a type
of fixed-effects analysis. The resulting Statistical Parametric Map is shown in
Figure 6(b).

It is also possible to look for differential effects in each subject separately
using subject-specific contrasts. For example, to look at the activation from
subject 2 one would use the contrast vector

c2 = [0, 0,−1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]T (35)

The corresponding subject-specific SPMs are shown in Figure 6(a).
We note that we have been able to look at subject-specific effects because

the design matrix specified a ‘subject-separable model’. In these models the
parameter estimates for each subject are unaffected by data from other subjects.
This arises from the block-diagonal structure in the design matrix.

Random-Effects Analysis via Summary-Statistics

An RFX analysis can be implemented using the ‘Summary-Statistic (SS)’ ap-
proach as follows [Frison and Pocock 1992, Holmes and Friston 1998].

1. Fit the model for each subject using different GLMs for each subject or by
using a multiple-subject subject-separable GLM, as described above. The
latter approach may be procedurally more convenient whilst the former is
less computationally demanding. The two approaches are equivalent for
the purposes of RFX analysis.

2. Define the effect of interest for each subject with a contrast vector. Each
produces a contrast image containing the contrast of the parameter esti-
mates at each voxel.

3. Feed the contrast images into a GLM that implements a one-sample t-test.

Modelling in step 1 is referred to as the ‘first-level’ of analysis whereas modelling
in step 3 is referred to as the ‘second-level’. A balanced design is one in which all
subjects have identical design matrices and error variances. Strictly, balanced
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designs are a requirement for the SS approach to be valid. But as we have seen
with the numerical example, the SS approach is remarkably robust to violations
of this assumption.

If there are, say, two populations of interest and one is interested in making
inferences about differences between populations then a two-sample t-test is
used at the second level. It is not necessary that the numbers of subjects in
each population be the same, but it is necessary to have the same design matrices
for subjects in the same population ie. balanced designs at the first-level.

In Step 3, we have specified that only one contrast per subject be taken to
the second level. This constraint may be relaxed if one takes into account the
possibility that the contrasts may be correlated or be of unequal variance. This
can be implemented using within-subject ANOVAs at the second level, a topic
which is is covered in chapter 13.

An SPM of the RFX analysis is shown in Figure 6(c). We note that, as
compared to the SPM from the average effect in the group, there are far fewer
voxels deemed significantly active. This is because RFX analysis takes into
account the between-subject variability. If, for example, we were to ask the
question ‘Would a new subject drawn from this population show any significant
posterior activity ?’, the answer would be uncertain. This is because three of
the subjects in our sample show such activity but two subjects do not. Thus,
based on such a small sample, we would say that our data do not show suffi-
cient evidence against the null hypothesis that there is no population effect in
posterior cortex. In contrast, the average effect in the group (in Figure 6(b)) is
significant over posterior cortex. But this inference is with respect to the group
of five subjects, not the population.

We end this section with a disclaimer, which is that the results presented
in this section, have been presented for tutorial purposes only. This is because
between-scan variance is so high in PET that results on single subjects are
unreliable. For this reason, we have used uncorrected thresholds for the SPMs
and, given that we have no prior anatomical hypothesis, this is not the correct
thing to do [Frackowiak et al. 1997] (see Chapter 14). But as our concern is
merely to present a tutorial on the difference between RFX and FFX we have
neglected these otherwise important points.

fMRI data example

This section compares RFX analysis as implemented using SS versus PEB. The
dataset we chose to analyse comprised 1,200 images that were acquired in 10
contiguous sessions of 120 scans. These data have been described elsewhere
[Friston et al. 1998].

The reason we chose these data was that each of the 10 sessions was slightly
different in terms of design. The experimental design involved 30-second epochs
of single word streams and a passive listening task. The words were concrete,
monosyllabic nouns presented at a number of different rates. The word rate was
varied pseudo-randomly over epochs within each session.

We modelled responses using an event-related model where the occurrence
of each word was modelled with a delta function. The ensuing stimulus function
was convolved with a canonical hemodynamic response function and its tempo-
ral derivative to give two regressors of interest for each of the 10 sessions. These

10



effects were supplemented with confounding and nuisance effects comprising a
mean and the first few components of a discrete cosine transform, removing
drifts lower than 1/128 Hz. Further details of the paradigm and analysis details
are given in [Friston et al. 2005].

The results of the SS and PEB analyses are presented in Figure 7 and have
been thresholded at p < 0.05, corrected for the entire search volume. These
results are taken from [Friston et al. 2005] where PEB was implemented using
the ReML formulation. It is evident that the inferences from these two proce-
dures are almost identical, with PEB being slightly more sensitive. The results
remain relatively unchanged despite the fact that the first level designs were
not balanced. This contributes to non-sphericity at the second level which is
illustrated in Figure 8 for the SS and PEB approaches. This figure shows that
heteroscedasticity can vary by up to a factor of 4.

Discussion

We have shown how neuroimaging data from multiple subjects can be analysed
using fixed-effects (FFX) or random-effects (RFX) analysis. FFX analysis is
used for reporting case studies and RFX is used to make inferences about the
population from which subjects are drawn. For a comparison of these and other
methods for combining data from multiple subjects see [Lazar et al. 2002].

In neuroimaging, RFX is implemented using the computationally efficient
summary-statistic approach. We have shown that this is mathematically equiv-
alent to the more computationally demanding maximum likelihood procedure.
For unbalanced designs, however, the summary-statistic approach is no longer
equivalent. But we have shown using a simulation study and fMRI data, that
this lack of formal equivalence is not practically relevant.

For more advanced treatments of random effects analysis 3 see eg. [Yandell 1997].
These allow, for example, for subject-specific within-subject variances, unbal-
anced designs and for Bayesian inference [Carlin and Louis 2000]. For a recent
application of these ideas to neuroimaging, readers are referred to Chapter 17 in
which hierarhical models are applied to single and multiple subject fMRI stud-
ies. As groundwork for this more advanced material readers are encouraged to
first read the tutorial in Chapter 11.

A general point to note, especially for fMRI, is that because the between-
subject variance is typically larger than the within-subject variance your scan-
ning time is best used to scan more subjects rather than to scan individual
subjects for longer. In practice, this must be traded off against the time re-
quired to recruit and train subjects [Worsley et al. 2002].

Further points

We have so far described how to make inferences about univariate effects in a
single population. This is achieved in the summary statistic approach by taking
forward a single contrast image per subject to the second level and then using
a one sample t-test.

3Strictly, what in neuroimaging is known as random effects analysis is known in statistics
as mixed effects analysis as the statistical models contain both fixed and random effects.
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This methodology carries over naturally to more complex scenarios where
we may have multiple populations or multivariate effects. For two populations,
for example, we perform two-sample t-tests at the second level. An extreme
example of this approach is the comparison of a single case study with a control
group. Whilst this may sound unfeasible, as one population has only a single
member, a viable test can in fact be implemented by assuming that the two
populations have the same variance.

For multivariate effects we take forward multiple contrast images per subject
to the second level and perform an analysis of variance. This can be implemented
in the usual way with a GLM but, importantly, we must take into account the
fact that we have repeated measures for each subject and that each characteristic
of interest may have a different variability. This topic is covered in the next
chapter.

As well as testing for whether univariate population effects are significantly
different from hypothesized values (typically zero) it is also possible to test
whether they are correlated with other variables of interest. For example, one
can test whether task-related activation in the motor system correlates with
age [Ward and Frackowiak 2003]. It is also possible to look for conjunctions at
the second level eg. to test for areas that are conjointly active for pleasant,
unpleasant and neutral odour valences [Gottfried et al. 2002]. For a statistical
test involving conjunctions of contrasts it is necessary that the contrast effects
be uncorrelated. This can be ensured by taking into account the covariance
structure at the second level. This is also described in the next chapter on
analysis of variance.

The validity of all of the above approaches relies on the same criteria that
underpin the univariate single population summary statistic approach. Namely,
that the variance components and estimated parameter values are, on average,
identical to those that would be obtained by the equivalent two-level maximum
likelihood model.
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Expectations and transformations

We use E[] to denote the expectation operator and Var[] to denote variance and
make use of the following results. Under a linear transform y = ax + b, the
variance of x changes according to

Var[ax + b] = a2Var[x] (36)

Secondly, if Var[xi] = Var[x] for all i then

Var

[
1
N

N∑
i=1

xi

]
=

1
N

Var[x] (37)

For background reading on expectations, variance transformations and intro-
ductory mathematical statistics see [Wackerley et al. 1996].
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Figure 1: Synthetic data illustrating the probability model underlying random
effects analysis. The dotted line is the Gaussian distribution underlying the
second level model with mean wpop, the population effect, and variance σ2

b , the
between-subject variance. The mean subject effects, wi, are drawn from this
distribution. The solid lines are the Gaussians underlying the first level models
with means wi and variances σ2

w. The crosses are the observed effects yij which
are drawn from the solid Gaussians.
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Figure 2: Simulated data for random effects analysis. Three representative time
series produced from the two-level hierarchical model. The first two time-series
contain stimulus-related activity but the third does not.
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Figure 3: A plot of the error in estimating the population mean E =< (µ̂ −
µ)2 > versus the observation noise level for the third subject, σ2

w(3), for the
Parametric Empirical Bayes approach (solid line) and the Summary-Statistic
approach (dotted line).
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Figure 4: A plot of the estimated variance of the population mean, σ2
µ, versus the

observation noise level for the third subject, σ2
w(3), for the Parametric Empirical

Bayes approach (solid line) and the Summary-Statistic approach (dotted line).
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Figure 5: Design matrix for the five-subject FFX analysis of PET data. There
are 60 rows, 12 for each subject. The first ten columns contain indicator vari-
ables showing which condition (word shadowing or word generation) relates to
which scan. Columns 11 to 15 contain time variables, columns 16 to 20 subject-
specific offsets and the last 5 columns the global effect at each scan.
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Figure 6: Analysis of PET data showing active voxels (p < 0.001 uncor-
rected).The maps in (a) show the significance of subject-specific effects whereas
map (b) shows the significance of the average effect over the group. Map (c)
shows the significance of the population effect from an RFX analysis.
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Figure 7: SPMs showing the effect of words in the population using (a) SS and
(b) PEB approaches.
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Figure 8: Within-session variance as (a) assumed by SS and (b) estimated using
PEB. This shows that within-session variance can vary by up to a factor of four,
although this makes little difference to the final inference (see Figure 7).
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