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Introduction

In Chapter 11 we described how Bayesian inference can be applied to hierarchical
models. In this chapter we show how the members of a model class, indexed by
m, can also be considered as part of a hierarchy. Model classes might be GLMs
where m indexes different choices for the design matrix, DCMs where m indexes
connectivity or input patterns, or source reconstruction models where m indexes
functional or anatomical constraints. Explicitly including model structure in
this way will allow us to make inferences about that structure.

Figure 1 shows the generative model we have in mind. First, a member of
the model class is chosen. Then model parameters θ and finally the data y
are generated. Bayesian inference for hierarchical models can be implemented
using the belief propagation algorithm. Figure 2 shows how this can be applied
for model selection and averaging. It comprises three stages that we will refer
to as (i) conditional parameter inference, (ii) model inference and (iii) model
averaging. These stages can be implemented using the equations shown in
Figure 2.

Conditional parameter inference is based on Bayes rule whereby, after ob-
serving data y, prior beliefs about model parameters are updated to posterior
beliefs. This update requires the likelihood p(y|θ, m). It allows one to compute
the density p(θ|y, m). The term conditional is used to highlight the fact that
these inferences are based on model m. Of course, being a posterior density, it
is also conditional on the data y.

Model inference is based on Bayes rule whereby, after observing data y, prior
beliefs about model structure are updated to posterior beliefs. This update
requires the evidence p(y|m). Model selection is then implemented by picking
the model that maximises the posterior probability p(m|y). If the model priors
p(m) are uniform then this is equivalent to picking the model with the highest
evidence. Pairwise model comparisons are based on Bayes factors, which are
ratios of evidences.

Model averaging, as depicted in Figure 2, also allows for inferences to be
made about parameters. But these inferences are based on the distribution
p(θ|y), rather than p(θ|y, m), and so are free from assumptions about model
structure.

This chapter comprises theoretical and empirical sections. In the theory
sections we describe (i) conditional parameter inference for linear and nonlinear
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models (ii) model inference, including a review of three different ways to approx-
imate model evidence and pairwise model comparisons based on Bayes factors
and (iii) model averaging, with a focus on how to search the model space us-
ing ‘Occam’s window’. The empirical sections show how these principles can be
applied to DCMs and source reconstruction models. We finish with a discussion.

Notation

We use upper-case letters to denote matrices and lower-case to denote vec-
tors. N(m,Σ) denotes a uni/multivariate Gaussian with mean m and vari-
ance/covariance Σ. IK denotes the K×K identity matrix, 1K is a 1×K vector
of ones, 0K is a 1 ×K vector of zeros. If X is a matrix, Xij denotes the i, jth
element, XT denotes the matrix transpose and vec(X) returns a column vector
comprising its columns, diag(x) returns a diagonal matrix with leading diago-
nal elements given by the vector x, ⊗ denotes the Kronecker product and log x
denotes the natural logarithm.

Conditional Parameter Inference

Readers requiring a more basic introduction to Bayesian modelling are referred
to [Gelman et al. 1995], and chapter 11.

Linear models

For linear models
y = Xθ + e (1)

with data y, parameters θ, Gaussian errors e and design matrix X, the likelihood
can be written

p(y|θ, m) = N(Xθ, Ce) (2)

where Ce is the error covariance matrix. If our prior beliefs can be specified
using the Gaussian distribution

p(θ|m) = N(µp, Cp) (3)

where µp is the prior mean and Cp is the prior covariance, then the posterior
distribution is [Lee 1997]

p(θ|y, m) = N(µ,C) (4)

where

C−1 = XT C−1
e X + C−1

p (5)

µ = C(XT C−1
e y + C−1

p µp)

As in Chapter 11, it is often useful to refer to precision matrices, C−1, rather
than covariance matrices, C. This is because the posterior precision, C−1, is
equal to the sum of the prior precision, C−1

p , plus the data precision, XT C−1
e X.

The posterior mean, µ, is given by the sum of the prior mean plus the data
mean, but where each is weighted according to their relative precision. This
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linear Gaussian framework is used for the source reconstruction methods de-
scribed later in the chapter. Here X is the lead-field matrix which transforms
measurements from source space to sensor space [Baillet et al. 2001].

Our model assumptions, m, are typically embodied in different choices for
the design or prior covariance matrices. These allow for the specification of
GLMs with different regressors or different covariance components.

Variance components

Bayesian estimation, as described in the previous section, assumed that we knew
the prior covariance, Cp, and error covariance, Ce. This information is, however,
rarely available. In [Friston et al. 2002] these covariances are expressed as

Cp =
∑

i

λiQi (6)

Ce =
∑

j

λjQj

where Qi and Qj are known as ‘covariance components’ and λi, λj are hyperpa-
rameters. Chapter 24 and [Friston et al. 2002] show how these hyperparameters
can be estimated using Parametric Empirical Bayes (PEB). It is also possible
to represent precision matrices, rather than covariance matrices, using a linear
expansion as shown in Chapter 47.

Nonlinear models

For nonlinear models, we have

y = h(θ) + e (7)

where h(θ) is a nonlinear function of parameter vector θ. We assume Gaussian
prior and likelihood distributions

p(θ|m) = N(µp, Cp) (8)
p(y|θ, m) = N(h(θ), Ce)

where m indexes model structure, θp is the prior mean, Cp the prior covariance
and Ce is the error covariance.

The linear framework described in the previous section can be applied by
locally linearizing the nonlinearity, about a ‘current’ estimate µi, using a first
order Taylor series expansion

h(θ) = h(µi) +
∂h(µi)

∂θ
(θ − µi) (9)

Substituting this into 7 and defining r ≡ y− h(µi), J ≡ ∂h(µi)
∂θ and ∆θ ≡ θ−µi

gives
r = J∆θ + e (10)
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which now conforms to a GLM (cf. equation 1). The ‘prior’ (based on starting
estimate µi), likelihood and posterior are now given by

p(∆θ|m) = N(µp − µi, Cp) (11)
p(r|∆θ, m) = N(J∆θ, Ce)
p(∆θ|r, m) = N(∆µ,Ci+1)

The quantities ∆µ and Ci+1 can be found using the result for the linear case
(substitute r for y and J for X in equation 5). If we define our ‘new’ parameter
estimate as µi+1 = µi + ∆µ then

C−1
i+1 = JT C−1

e J + C−1
p (12)

µi+1 = µi + Ci+1(JT C−1
e r + C−1

p (µp − µi))

This update is applied iteratively, in that the estimate µi+1 becomes the starting
point for a new Taylor series expansion. It can also be combined with hyper-
parameter estimates, to characterise Cp and Ce, as described in [Friston 2002].
This then corresponds to the PEB algorithm described in Chapter 22. This algo-
rithm is used, for example, to estimate parameters of Dynamic Causal Models.
For DCM, the nonlinearity h(θ) corresponds to the integration of a dynamic
system.

As described, in chapter 24 this PEB algorithm is a special case of Variational
Bayes with a fixed-form full-covariance Gaussian ensemble. When the algorithm
has converged it provides an estimate of the posterior density

p(θ|y, m) = N(µPEB , CPEB) (13)

which can then be used for parameter inference and model selection.
The above algorithm can also be viewed as the E-step of an EM algorithm,

described in section 3.1 of [Friston 2002] and Chapter 46 in the appendices.
The M-step of this algorithm, which we have not described, updates the hy-
perparameters. This E-step can also be viewed as a Gauss-Newton optimisa-
tion whereby parameter estimates are updated in the direction of the gradi-
ent of the log-posterior by an amount proportional to its curvature (see e.g.
[Press et al. 1992]).

Model Inference

Given a particular model class, we let the variable m index members of that
class. Model classes might be GLMs where m indexes design matrices, DCMs
where m indexes connectivity or input patterns, or source reconstruction mod-
els where m indexes functional or anatomical constraints. Explicitly including
model structure in this way will allow us to make inferences about model struc-
ture.

We may, for example, have prior beliefs p(m). In the abscence of any genuine
prior information here, a uniform distribution will suffice. We can then use
Bayes rule which, in light of observed data y, will update these model priors
into model posteriors

p(m|y) =
p(y|m)p(m)

p(y)
(14)
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Model inference can then proceed based on this distribution. This will allow for
Bayesian Model Comparisons (BMCs). In Bayesian Model Selection (BMS), a
model is selected which maximises this probability

mMP = argmax
m

[p(m|y)]

If the prior is uniform, p(m) = 1/M then this is equivalent to picking the model
with the highest evidence

mME = argmax
m

[p(y|m)]

If we have uniform priors then BMC can be implemented with Bayes factors.
Before covering this in more detail we emphasise that all of these model infer-
ences require computation of the model evidence. This is given by

p(y|m) =
∫

p(y|θ, m)p(θ|m)dθ

The model evidence is simply the normalisation term from parameter inference,
as shown in Figure 2. This is the ‘message’ that is passed up the hierachy
during belief propagation, as shown in Figure 2. For linear Gaussian models,
the evidence can be expressed analytically. For non-linear models there are
various approximations which are discussed in later subsections.

Bayes factors

Given models m = i and m = j the Bayes factor comparing model i to model j
is defined as [Kass and Raftery 1993, Kass and Raftery 1995]

Bij =
p(y|m = i)
p(y|m = j)

(15)

where p(y|m = j) is the evidence for model j. When Bij > 1, the data favour
model i over model j, and when Bij < 1 the data favour model j. If there are
more than two models to compare then we choose one of them as a reference
model and calculate Bayes factors relative to that reference. When model i is
an alternate model and model j a null model, Bij is the likelihood ratio upon
which classical statistics are based (see Chapter 44).

A classic example here is the analysis of variance for factorially designed
experiments, described in chapter 13. To see if there is a main effect of a factor,
one compares two models. One in which the levels of the factor are described
by (i) a single variable or (ii) separate variables. Evidence in favour of model
(ii) allows one to infer that there is a main effect.

In this chapter we will use Bayes factors to compare Dynamic Causal Models.
In these applications, often the most important inference is on model space.
For example, whether or not experimental effects are mediated by changes in
feedforward or feedback pathways. This particular topic is dealt with in greater
detail in Chapter 43.

The Bayes factor is a summary of the evidence provided by the data in
favour of one scientific theory, represented by a statistical model, as opposed
to another. Raftery [Raftery 1995] presents an interpretation of Bayes factors
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shown in Table 1. Jefferys [Jefferys 1935] presents a similar grading for the
comparison of scientific theories. These partitionings are somewhat arbitrary
but do provide descriptive statements.

Table 1 also shows the equivalent posterior probability of hypothesis i

p(m = i|y) =
p(y|m = i)p(m = i)

p(y|m = i)p(m = i) + p(y|m = j)p(m = j)
(16)

assuming equal model priors p(m = i) = p(m = j) = 0.5.
If we define the ‘prior odds ratio’ as p(m = i)/p(m = j) and the ‘posterior

odds ratio’ as

Oij =
p(m = i|y)
p(m = j|y)

(17)

then the posterior odds is given by the prior odds multiplied by the Bayes factor.
For prior odds of unity the posterior odds is therefore equal to the Bayes factor.
Here, a Bayes factor of Bij = 100, for example, corresponds to odds of 100-to-1.
In betting shop parlance this is 100-to-1 ‘on’. A value of Bij = 0.01 is 100-to-1
’against’.

Bayes factors in Bayesian statistics play a similar role to p-values in clas-
sical statistics. In [Raftery 1995], however, Raftery argues that p-values can
give misleading results, especially in large samples. The background to this
assertion is that Fisher originally suggested the use of significance levels (the
p-values beyond which a result is deemed significant) α = 0.05 or 0.01 based on
his experience with small agricultural experiments having between 30 and 200
data points. Subsequent advice, notably from Neyman and Pearson, was that
power and significance should be balanced when choosing α. This essentially
corresponds to reducing α for large samples (but they did’nt say how α should
be reduced). Bayes factors provide a principled way to do this.

The relation between p-values and Bayes factors is well illustrated by the
following example [Raftery 1995]. For linear regression models one can use
Bayes factors or p-values to decide whether to include an extra regressor. For a
sample size of Ns = 50, positive evidence in favour of inclusion (say, B12 = 3)
corresponds to a p-value of 0.019. For Ns = 100 and 1000 the corresponding
p-values reduce to 0.01 and 0.003. If one wishes to decide whether to include
multiple extra regressors the corresponding p-values drop more quickly.

Importantly, unlike p-values, Bayes factors can be used to compare models
that cannot be nested 1. This provides an optimal inference framework that
can, for example, be applied to determine which hemodynamic basis functions
are appropriate for fMRI [Penny et al. 2006]. They also allow one to quantify
evidence in favour of a null hypothesis.

Computing the model evidence

This section shows how the model evidence can be computed for nonlinear
models. The evidence for linear models is then given as a special case. The

1Model selection using classical inference requires nested models. Inference is made using
step-down procedures and the ‘extra sum of squares’ principle, as described in Chapter 8.
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Table 1. Interpretation of Bayes factors. Bayes factors can be interpreted as follows. Given
candidate hypotheses i and j a Bayes factor of 20 corresponds to a belief of 95% in the statement
‘hypothesis i is true’. This corresponds to strong evidence in favour of i.

Bij p(m = i|y)(%) Evidence in favour of model i
1 to 3 50-75 Weak
3 to 20 75-95 Positive
20 to 150 95-99 Strong
≥ 150 ≥ 99 Very Strong

prior and likelihood of the nonlinear model can be expanded as

p(θ|m) = (2π)−p/2|Cp|−1/2 exp(−1
2
e(θ)T C−1

p e(θ)) (18)

p(y|θ, m) = (2π)−Ns/2|Ce|−1/2 exp(−1
2
r(θ)T C−1

e r(θ))

where

e(θ) = θ − θp (19)
r(θ) = y − h(θ)

are the ‘parameter errors’ and ‘prediction errors’.
Substituting these expressions into equation 15 and re-arranging allows the

evidence to be expressed as

p(y|m) = (2π)−p/2|Cp|−1/2(2π)−Ns/2|Ce|−1/2I(θ) (20)

where

I(θ) =
∫

exp(−1
2
r(θ)T C−1

e r(θ)− 1
2
e(θ)T C−1

p e(θ))dθ (21)

For linear models this integral can be expressed analytically. For nonlinear
models it can be estimated using a Laplace approximation.

Laplace approximation

The Laplace approximation was introduced in Chapter 24. It makes use of the
first order Taylor series approximation referred to in equation 9, but this time
placed around the solution, θL, found by an optimisation algorithm.

Usually, the term ‘Laplace approximation’ refers to an expansion around the
Maximum a Posterior (MAP) solution

θMAP = argmax
θ

[p(y|θ, m)p(θ|m)] (22)

Thus θL = θMAP .
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But more generally one can make an expansion around any solution, for ex-
ample the one provided by PEB. In this case θL = µPEB . As we have described
in Chapter 24, PEB is a special case of VB with a fixed-form Gaussian ensemble,
and so does not deliver the MAP solution. Rather, PEB maximises the nega-
tive free energy and so implicitly minimises the KL-divergence between the true
posterior and a full-covariance Gaussian approximation to it. This difference is
discussed in Chapter 24.

Whatever the expansion point, the model nonlinearity is approximated using

h(θ) = h(θL) + J(θ − θL) (23)

where J = ∂h(θL)
∂θ . We also make use of the knowledge that the posterior

covariance is given by
C−1

L = JT C−1
e J + C−1

p (24)

For CL = CPEB this follows directly from equation 12.
By using the substitutions e(θ) = (θ − θL) + (θL − θp) and r(θ) = (y −

h(θL))+(h(θL)−h(θ)), making use of the above two expressions, and removing
terms not dependent on θ, we can write

I(θ) =
[∫

exp(−1
2
(θ − θL)T C−1

L (θ − θL))dθ

]
(25)

×
[
exp(−1

2
r(θL)T C−1

e r(θL)− 1
2
e(θL)T C−1

p e(θL))
]

(26)

where the first factor is the normalising term of the multivariate Gaussian den-
sity. The algebraic steps involved in the above substitutions are detailed in
[Stephan et al. 2005]. Hence

I(θ) = (2π)p/2|CL|1/2 exp(−1
2
r(θL)T C−1

e r(θL) (27)

− 1
2
e(θL)T C−1

p e(θL))

Substituting this expression into 20 and taking logs gives the Laplace approxi-
mation to the log-evidence

log p(y|m)L = −Ns

2
log 2π − 1

2
log |Ce| −

1
2

log |Cp|+
1
2

log |CL| (28)

− 1
2
r(θL)T C−1

e r(θL)− 1
2
e(θL)T C−1

p e(θL)

When comparing the evidence for different models we can ignore the first term
as it will be the same for all models. Dropping the first term and rearranging
gives

log p(y|m)L = Accuracy(m)− Complexity(m) (29)

where

Accuracy(m) = −1
2

log |Ce| −
1
2
r(θL)T C−1

e r(θL) (30)
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Complexity(m) =
1
2

log |Cp| −
1
2

log |CL|+
1
2
e(θL)T C−1

p e(θL)

Use of base-e or base-2 logarithms leads to the log-evidence being measured in
‘nats’ or ‘bits’ respectively. Models with high evidence optimally trade-off two
conflicting requirements of a good model, that it fits the data and be as simple
as possible.

The complexity term depends on the prior covariance, Cp, which determines
the ‘cost’ of parameters. This dependence is worrisome if the prior covariances
are fixed a-priori, as the parameter cost will also be fixed a-priori. This will
lead to biases in the resulting model comparisons. For example, if the prior
(co)variances are set to large values, model comparison will consistently favour
models that are less complex than the true model.

In DCM for fMRI [Friston et al. 2003], prior variances are set to fixed values
so as to enforce dynamic stability, with high probability. Use of the Laplace ap-
proximation in this context could therefore lead to biases in model comparison.
A second issue in this context is that, to enforce dynamic stability, models with
different numbers of connections will employ different prior variances. There-
fore the priors change from model to model. This means that model comparison
entails a comparison of the priors.

To overcome these potential problems with DCM for fMRI, alternative ap-
proximations to the model evidence are used instead. These are the BIC and
AIC introduced below. They also use fixed parameter costs, but they are
fixed between models and are different for BIC than AIC. It is suggested in
[Penny et al. 2004], that if the two measures provide consistent evidence, a
model selection can be made.

Finally, we note that if prior covariances are estimated from data then the
parameter cost will also have been estimated from data, and this source of bias
in model comparison is removed. In this case, the model evidence also includes
terms which account for uncertainty in the variance component estimation, as
described in Chapter 10 of [Bishop 1995].

Bayesian Information Criterion

An alternative approximation to the model evidence is given by the Bayesian
Information Criterion [Schwarz 1978]. This is a special case of the Laplace
approximation which drops all terms that don’t scale with the number of data
points, and can be derived as follows.

Substituting Eq. 27 into Eq. 20 gives

p(y|m)L = p(y|θL,m)p(θL|m)(2π)p/2|CL|1/2 (31)

Taking logs gives

log p(y|m)L = log p(y|θL,m) + log p(θL|m) +
p

2
log 2π +

1
2

log |CL| (32)

The dependence of the first three terms on the number of data points is O(Ns),
O(1) and O(1). For the 4th term, entries in the posterior covariance scale
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linearly with N−1
s

lim
Ns→∞

1
2

log |CL| =
1
2

log |CL(0)
Ns

| (33)

= −p

2
log Ns +

1
2

log |CL(0)|

where CL(0) is the posterior covariance based on Ns = 0 data points (ie. the
prior covariance). This last term therefore scales as O(1). Schwarz [Schwarz 1978]
notes that in the limit of large Ns equation 32 therefore reduces to

BIC = lim
Ns→∞

log p(y|m)L (34)

= log p(y|θL,m)− p

2
log Ns

This can be re-written as

BIC = Accuracy(m)− p

2
log Ns (35)

where p is the number of parameters in the model. In BIC, the cost of a
parameter, −0.5 log Ns bits, therefore reduces with an increasing number of
data points.

Akaike’s Information Criterion

The second criterion we use is Akaike’s Information Criterion (AIC)2 [Akaike 1973].
AIC is maximised when the approximating likelihood of a novel data point is
closest to the true likelihood, as measured by the Kullback-Liebler divergence
(this is shown in [Ripley 1995]). The AIC is given by

AIC = Accuracy(m)− p (36)

Though not originally motivated from a Bayesian perspective, model compar-
isons based on AIC are asymptotically equivalent (ie. as Ns → ∞) to those
based on Bayes factors [Akaike 1983], ie. AIC approximates the model evidence.

Empirically, BIC is biased towards simple models and AIC to complex mod-
els [Kass and Raftery 1993]. Indeed, inspection of Equations 35 and 36 shows
that for values appropriate for eg. DCM for fMRI, where p ≈ 10 and Ns ≈ 200,
BIC pays a heavier parameter penalty than AIC.

Model averaging

The parameter inferences referred to in previous sections are based on the dis-
tribution p(θ|y, m). That m appears as a dependent variable, makes it explicit
that these inferences are contingent on assumptions about model structure.
More generally, however, if inferences about model parameters are paramount
one would use a BMA approach. Here, inferences are based on the distribution

p(θ|y) =
∑
m

p(θ|y, m)p(m|y) (37)

2Strictly, AIC should be referred to as An Information Criterion.
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where p(m|y) is the posterior probability of model m.

p(m|y) =
p(y|m)p(m)

p(y)
(38)

As shown in Figure 2, only when these ‘messages’, p(m|y), have been passed
back down the hierarchy is belief propagation complete. Only then do we have
the true marginal density p(θ|y). Thus, BMA allows for correct Bayesian infer-
ences, whereas what we have previously described as ‘parameter inferences’ are
conditional on model structure. Of course, if our model space comprises just
one model there is no distribution.

BMA accounts for uncertainty in the model selection process, something
which classical statistical analysis neglects. By averaging over competing mod-
els, BMA incorporates model uncertainty into conclusions about parameters.
BMA has been successfully applied to many statistical model classes including
linear regression, generalised linear models, and discrete graphical models, in
all cases improving predictive performance. See [Hoeting et al. 1999] for a re-
view 3. In this Chapter we describe the application of BMA to EEG source
reconstruction.

There are, however, several practical difficulties with expression 37 when
the number of models and numbers of variables in each model are large. In
neuroimaging, models can have tens of thousands of parameters. This issue has
been widely treated in the literature [Draper 1995], and the general consensus
has been to construct search strategies to find a set of models that are ‘worth
taking into account’. One of these strategies is to generate a Markov chain
to explore the model space and then approximate equation 37 using samples
from the posterior p(m|y) [Madigan 1992]. But this is computationally very
expensive.

In this Chapter we will instead use the Occam’s Window procedure for nested
models described in [Madigan 1994]. First, a model that is N0 times less likely
a posteriori than the maximum posterior model is removed (in this Chapter
we use N0 = 20). Second, complex models with posterior probabilities smaller
than their simpler counterparts are also excluded. The remaining models fall
in Occam’s window. This leads to the following approximation to the posterior
density

p(θ|y) =
∑
mεC

p(θ|y, m)p(m|y) (39)

where the set C identifies ‘Occam’s Window’. Models falling in this window can
be identified using the search strategy defined in [Madigan 1994].

Dynamic Causal Models

The term ‘causal’ in DCM arises because the brain is treated as a deterministic
dynamical system (see eg. section 1.1 in [Friston et al. 2003]) in which exter-
nal inputs cause changes in neuronal activity which in turn cause changes in
the resulting fMRI, MEG or EEG signal. DCMs for fMRI comprise a bilinear
model for the neurodynamics and an extended Balloon model [Friston 2002,

3Software is also available from http : //www.research.att.com/ volinsky/bma.html.
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Buxton 1998] for the hemodynamics. These are described in detail in Chapter
41.

The effective connectivity in DCM is characterised by a set of ‘intrinsic
connections’, that specify which regions are connected and whether these con-
nections are unidirectional or bidirectional. We also define a set of input con-
nections that specify which inputs are connected to which regions, and a set of
modulatory connections that specify which intrinsic connections can be changed
by which inputs. The overall specification of input, intrinsic and modulatory
connectivity comprise our assumptions about model structure. This in turn
represents a scientific hypothesis about the structure of the large-scale neuronal
network mediating the underlying cognitive function. Examples of DCMs are
shown in Figure 5.

Attention to Visual Motion

In previous work we have established that attention modulates connectivity in
a distributed system of cortical regions that subtend visual motion processing
[Buchel and Friston 1997, Friston and Buchel 2000]. These findings were based
on data acquired using the following experimental paradigm. Subjects viewed a
computer screen which displayed either a fixation point, stationary dots or dots
moving radially outward at a fixed velocity. For the purpose of our analysis
we can consider three experimental variables. The ‘photic stimulation’ variable
indicates when dots were on the screen, the ‘motion’ variable indicates that the
dots were moving and the ‘attention’ variable indicates that the subject was
attending to possible velocity changes. These are the three input variables that
we use in our DCM analyses and are shown in Figure 3.

In this paper we model the activity in three regions V1, V5 and superior
parietal cortex (SPC). The original 360-scan time series were extracted from
the data set of a single subject using a local eigendecomposition and are shown
in Figure 4.

We initially set up three DCMs, each embodying different assumptions about
how attention modulates connections to V5. Model 1 assumes that attention
modulates the forward connection from V1 to V5, model 2 assumes that atten-
tion modulates the backward connection from SPC to V5 and model 3 assumes
attention modulates both connections. These models are shown in Figure 5.
Each model assumes that the effect of motion is to modulate the connection
from V1 to V5 and uses the same reciprocal hierarchical intrinsic connectivity.

We fitted the models and computed Bayes factors shown in Table 2. We did
not use the Laplace approximation to the model evidence, as DCM for fMRI
uses fixed prior variances which compound model comparison, as described in
section 3.2.1. Instead, we computed both AIC and BIC and made an inference
only if the two resulting Bayes factors were consistent [Penny et al. 2004].

Table 2 shows that the data provide consistent evidence in favour of the
hypothesis embodied in model 1, that attention modulates solely the forward
connection from V1 to V5.

We now look more closely at the comparison of model 1 to model 2. The
estimated connection strengths of the attentional modulation were 0.23 for the
forward connection in model 1 and 0.55 for the backward connection in model 2.
This shows that attentional modulation of the backwards connection is stronger
than the forwards connection. However, a breakdown of the Bayes factor B12
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Table 2. Attention Data - comparing modulatory connectivities Bayes factors provide
consistent evidence in favour of the hypothesis embodied in model 1, that attention modulates
(solely) the bottom-up connection from V1 to V5. Model 1 is preferred to models 2 and 3. Models
1 and 2 have the same number of connections so AIC and BIC give identical values.

B12 B13 B32

AIC 3.56 2.81 1.27
BIC 3.56 19.62 0.18

in table 3 shows that the reason model 1 is favoured over model 2 is because it
is more accurate. In particular, it predicts SPC activity much more accurately.
Thus, although model 2 does show a significant modulation of the SPC-V5
connection, the required change in its prediction of SPC activity is sufficient to
compromise the overall fit of the model. If we assume models 1 and 2 are equally
likely apriori then our posterior belief in model 1 is 0.78 (from 3.56/(3.56+1)).
Thus, model 1 is the favoured model even though the effect of attentional mod-
ulation is weaker.

This example makes an important point. Two models can only be compared
by computing the evidence for each model. It is not sufficient to compare values
of single connections. This is because changing a single connection changes
overall network dynamics and each hypothesis is assessed (in part) by how well
it predicts the data, and the relevant data are the activities in a distributed
network.

We now focus on model 3 that has both modulation of forward and backward
connections. Firstly, we make a statistical inference to see if, within model 3,
modulation of the forward connection is larger than modulation of the backward
connection. For these data the posterior distribution of estimated parameters
tells us that this is the case with probability 0.75. This is a different sort
of inference to that made above. Instead of inferring which is more likely,
modulation of a forward or backward connection, we are making an inference
about which effect is stronger when both are assumed present.

However, this inference is contingent on the assumption that model 3 is a
good model. It is based on the density p(θ|y, m = 3). The Bayes factors in
Table 2, however, show that the data provide consistent evidence in favour of
the hypothesis embodied in model 1, that attention modulates only the forward
connection. Table 4 shows a breakdown of B13. Here the largest contribution to
the Bayes factor (somewhere between 2.72 and 18.97) is the increased parameter
cost for model 3.

The combined use of Bayes factors and DCM provides us with a formal
method for evaluating competing scientific theories about the forms of large-
scale neural networks and the changes in them that mediate perception and
cognition. These issues are pursued in Chapter 43 in which DCMs are compared
so as to make inferences about inter-hemispheric integration from fMRI data.

Source reconstruction

A comprehensive introduction to source reconstruction is provided in [Baillet et al. 2001].
For more recent developments see [Michel et al. 2004] and Chapters 28 to 30.
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Table 3. Attention Data: Breakdown of contributions to the Bayes factor for model 1 versus
model 2. The largest single contribution to the Bayes factor is the increased model accuracy in
region SPC, where 8.38 fewer bits are required to code the prediction errors. The overall Bayes
factor B12 of 3.56 provides consistent evidence in favour of model 1.

Source Model 1 vs. Model 2 Bayes Factor
Relative Cost (bits) B12

V1 accuracy 7.32 0.01
V5 accuracy -0.77 1.70
SPC accuracy -8.38 333.36
Complexity (AIC) 0.00 1.00
Complexity (BIC) 0.00 1.00
Overall (AIC) -1.83 3.56
Overall (BIC) -1.83 3.56

Table 4. Attention Data: Breakdown of contributions to the Bayes factor for model 1 versus
model 3. The largest single contribution to the Bayes factor is the cost of coding the parameters.
The table indicates that both models are similarly accurate but model 1 is more parsimonious. The
overall Bayes factor B13 provides consistent evidence in favour of the (solely) bottom-up model.

Source Model 1 vs. Model 3 Bayes Factor
Relative Cost (bits) B13

V1 accuracy -0.01 1.01
V5 accuracy 0.02 0.99
SPC accuracy -0.05 1.04
Complexity (AIC) -1.44 2.72
Complexity (BIC) -4.25 18.97
Overall (AIC) -1.49 2.81
Overall (BIC) -4.29 19.62

The aim of source reconstruction is to estimate sources, θ, from sensors, y, where

y = Xθ + e (40)

e is an error vector and X defines a lead-field matrix. Distributed source solu-
tions usually assume a Gaussian prior for

p(θ) = N(µp, Cp) (41)

Parameter inference for source reconstruction can then be implemented as de-
scribed in the section above on linear models. Model inference can be im-
plemented using the expression in equation 29. For the numerical results in
this paper we augmented this expression to account for uncertainty in the es-
timation of the hyperparameters. The full expression for the log-evidence of
hyperparameterised models under the Laplace approximation is described in
[Trujillo-Barreto et al. 2004] and Chapter 47.
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Multiple constraints

This section considers source reconstruction with multiple constraints. This
topic is covered in greater detail and from a different perspective in Chapters
29 and 30. The constaints are implemented using a decomposition of the prior
covariance into distinct components

Cp =
∑

i

λiQi (42)

The first type of constraint is a smoothness constraint, Qsc, based on the
usual L2-norm. The second is an intrinsic functional constraint, Qint, based
on Multivariate Source Prelocalisation (MSP) [Mattout et al. 2005]. This pro-
vides an estimate, based on a multivariate characterisation of the M/EEG data
itself. Thirdly, we used extrinsic functional constraints which were considered
as ‘valid’, Qv

ext, or ‘invalid’, Qi
ext. These extrinsic constraints are derived from

other imaging modalities such as fMRI. We used invalid constraints to test the
robustness of the source reconstructions.

To test the approach, we generated simulated sources from the locations
shown in Figure 6a. Temporal activity followed a half-period sine function with
a period of 30ms. This activity was projected onto 130 virtual MEG sensors and
Gaussian noise was then added. Further details on the simulations are given in
[Mattout et al. 2006].

We then reconstructed the sources using all combinations of the various con-
straints. Figure 7 shows a sample of source reconstructions. Table 5 shows the
evidence for each model which we computed using the Laplace approximation
(which is exact for these linear Gaussian models). As expected, the model with
the single valid location prior had the highest evidence.

Further, any model which contains the valid location prior has high evidence.
The table also shows that any model which contains both valid and invalid
location priors does not show a dramatic decrease in evidence, compared to the
same model without the invalid location prior. These trends can be assessed
more formally by computing the relevant Bayes factors, as shown in table 6.
This shows significantly enhanced evidence in favor of models including valid
location priors. It also suggests that the smoothness and intrinsic location priors
can ameliorate the misleading effect of invalid priors.

Model averaging

In this section we consider source localisations with anatomical constraints. A
class of source reconstruction models is defined where, for each model, activity is
assumed to derive from a particular anatomical ‘compartment’ or combination
of compartments. Anatomical compartments are defined by taking 71 brain re-
gions, obtained from a 3D segmentation of the Probabilistic MRI Atlas (PMA)
[Evans et al. 1993] shown in Figure 8. These compartments preserve the hemi-
spheric symmetry of the brain, and include deep areas like thalamus, basal
ganglia and brain stem. Simple activations may be localised to single compart-
ments and more complex activations to combinations of compartments. These
combinations define a nested family of source reconstruction models which can
be searched using the Occam’s window approach described in section 4.
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The source space consists of a 3D-grid of points that represent the possible
generators of the EEG/MEG inside the brain, while the measurement space
is defined by the array of sensors where the EEG/MEG is recorded. We used
a 4.25 mm grid spacing and different arrays of electrodes/coils are placed in
registration with the PMA. The 3D-grid is further clipped by the gray matter,
which consists of all brain regions segmented and shown in figure 8.

Three arrays of sensors were used and are depicted in figure 9. For EEG
simulations a first set of 19 electrodes (EEG-19) from the 10/20 system is cho-
sen. A second configuration of 120 electrodes (EEG-120) is also used in order
to investigate the dependence of the results on the number of sensors. Here,
electrode positions were determined by extending and refining the 10/20 sys-
tem. For MEG simulations, a dense array of 151 sensors were used (MEG-
151). The physical models constructed in this way, allow us to compute the
electric/magnetic lead field matrices that relate the Primary Current Density
(PCD) inside the head, to the voltage/magnetic field measured at the sensors.

We now present the results of two simulation studies. In the first study
two distributed sources were simulated. One source was located in the right
occipital pole, and the other in the thalamus. This simulation is referred to
as ‘OPR+TH’. The spatial distribution of PCD (ie. the true θ vector) was
generated using two narrow Gaussian functions of the same amplitude shown in
figure 10A.

The temporal dynamics were specified using a linear combination of sine
functions with frequency components evenly spaced in the alpha band (8-12Hz).
The amplitude of the oscillation as a function of frequencies is a narrow Gaussian
peaked at 10Hz. That is, activity is given by

j(t) =
N∑

i=1

exp(−8(fi − 10)2) sin(2πfit) (43)

where 8 ≤ fi ≤ 12Hz. Here, fi is the frequency and t denotes time. These
same settings are then used for the second simulation study, in which only
the thalamic (TH) source was used (see figure 10B). This second simulation
is referred to as ‘TH’. In both cases the measurements were generated with a
Signal to Noise Ratio (SNR) of 10.

The simulated data were then analysed using Bayesian Model Averaging
(BMA) in order to reconstruct the sources. We searched through model space
using the Occam’s window approach described in section 4. For comparison,
we also applied the constrained Low Resolution Tomography (cLORETA) algo-
rithm. This method constrains the solution to gray matter and again uses the
usual L2-norm. The cLORETA model is included in the model class used for
BMA, and corresponds to a model comprising all 71 anatomical compartments.

The absolute values of the BMA and cLORETA solutions for the OPR+TH
example, and for the three arrays of sensors used, are depicted in figure 11. In
all cases, cLORETA is unable to recover the TH source and the OPR source
estimate is overly dispersed. For BMA, the spatial localizations of both corti-
cal and subcortical sources are recovered with reasonable accuracy in all cases.
These results suggest that the EEG/MEG contains enough information for es-
timating deep sources, even in cases where such generators might be hidden by
cortical activations.
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The reconstructed sources shown in figure 12 for the TH case show that
cLORETA suffers from a ‘depth biasing’ problem. That is, deep sources are
misattributed to superficial sources. This biasing is not due to masking effects,
since no cortical source is present in this set of simulations. Again, BMA gives
significantly better estimates of the PCD.

Figures 11 and 12 also show that the reconstructed sources become more
concentrated and clearer, as the number of sensors increases. Tables 7 and 8
show the number of models in Occam’s window for each simulation study. The
number of models reduces with increasing number of sensors. This is natural
since more precise measurements imply more information available about the
underlying phenomena, and then narrower and sharper model distributions are
obtained. Consequently, as shown in the table, the probability and hence, the
rank of the true model in the Occam’s Window increases for dense arrays of
sensors.

Tables 7 and 8 also show that the model with the highest probability is not
always the true one. This fact supports the use of BMA instead of using the
maximum posterior or maximum evidence model. In the present simulations,
this is not critical, since the examples analyzed are quite simple. But it becomes
a determining factor when analyzing more complex data, as is the case with some
real experimental conditions [Trujillo-Barreto et al. 2004].

An obvious question then arises. Why is cLORETA unable to fully exploit
the information contained in the M/EEG? The answer given by Bayesian in-
ference is simply that cLORETA, which assumes activity is distributed over
all of gray matter, is not a good model. In the model averaging framework,
the cLORETA model was always rejected due to its low posterior probability,
placing it outside Occam’s window.

Discussion

Chapter 11 showed how Bayesian inference in hierarchical models can be imple-
mented using the belief propagation algorithm. This involves passing messages
up and down the hierarchy, the upward messages being likelihoods and evidences
and the downward messages being posterior probabilities.

In this Chapter we have shown how belief propagation can be used to make
inferences about members of a model class. Three stages were identified in this
process: (i) conditional parameter inference, (ii) model inference and (iii) model
averaging. Only at the model averaging stage is belief propagation complete.
Only then will parameter inferences be based on the correct marginal density.

We have described how this process can be implemented for linear and non-
linear models and applied to domains such as Dynamic Causal Modelling and
M/EEG source reconstruction. In DCM, often the most important inference to
be made is a model inference. This can be implemented using Bayes factors and
allows one to make inferences about the structure of large scale neural networks
that mediate cognitive and perceptual processing. This issue is taken further in
Chapter 43 which considers inter-hemispheric integration.

The application of model averaging to M/EEG source reconstruction results
in the solution of an outstanding problem in the field. That is, how to detect
deep sources. Simulations show that a standard method (cLORETA) is simply
not a good model and that model averaging can combine the estimates of better
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models to make veridical source estimates.
The use of Bayes factors for model comparison is somewhat analagous to

the use of F-tests in the General Linear Model. Whereas t-tests are used to
assess individual effects, F-tests allow one to assess the significance of a set
of effects. This is achieved by comparing models with and without the set of
effects of interest. The smaller model is ‘nested’ within the larger one. Bayes
factors play a similar role but additionally allow inferences to be constrained by
prior knowledge. Moreover, it is possible to simultaneously entertain a number
of hypotheses and compare them using the model evidence. Importantly, these
hypotheses are not constrained to be nested.
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Log-evidence

1 constraint

Qsc 205.2
Qint 208.4
Qv

ext 215.6
Qi

ext 131.5

2 constraints

Qsc, Qint 207.4
Qsc, Q

v
ext 214.1

Qsc, Q
i
ext 204.9

Qint, Q
v
ext 214.9

Qint, Q
i
ext 207.4

Qv
ext, Q

i
ext 213.2

3 constraints

Qsc, Qint, Q
v
ext 211.5

Qsc, Qint, Q
i
ext 207.2

Qsc, Q
v
ext, Q

i
ext 214.7

Qint, Q
v
ext, Q

i
ext 212.7

4 constraints Qsc, Qint, Q
v
ext, Q

i
ext 211.3

Table 5. Log-evidence of models with different combinations of smoothness constraints, Qsc,
intrinsic constraints, Qint, valid, Qv

ext and invalid, Qi
ext, extrinsic constraints.

Bayes factor
Model 1 Model 2 Model 3 B21 B31

Qsc Qsc, Q
v
ext Qsc, Q

i
ext 7047 0.8

Qint Qint, Q
v
ext Qint, Q

i
ext 655 0.4

Qsc, Qint Qsc, Qint, Q
v
ext Qsc, Qint, Q

i
ext 60 0.8

Table 6. Bayes factors for models with and without valid location priors, B21, and with and
without invalid location priors, B31. Valid location priors make the models significantly better,
wheras invalid location priors do not make them significantly worse.
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Sensors Number of models Min Max Prob True model
EEG-19 15 0.02 0.30 0.11 (3)
EEG-120 2 0.49 0.51 0.49 (2)
MEG-151 1 1 1 1

Table 7. BMA results for the ‘Opr +Th’ simulation study. The second, third and fourth columns
show the number of models, and minimum and maximum probabilities, in Occam’s window. In the
last column, the number in parenthesis indicates the position of the true model when all models
in Occam’s window are ranked by probability.

Sensors Number of models Min Max Prob True model
EEG-19 3 0.30 0.37 0.30 (3)
EEG-120 1 1 1 1
MEG-151 1 1 1 1

Table 8. BMA results for the ‘Th’ simulation study. The second, third and fourth columns show
the number of models, and minimum and maximum probabilities, in Occam’s window. In the last
column, the number in parenthesis indicates the position of the true model when all models in
Occam’s window are ranked by probability.

Figure 1. Hierarchical generative model in which members of a model class, indexed by m, are
considered as part of the hierarchy. Typically, m indexes the structure of the model. This might be
the connectivity pattern in a dynamic causal model or set of anatomical or functional constraints
in a source reconstruction model. Once a model has been chosen from the distribution p(m), its
parameters are generated from the parameter prior p(θ|m) and finally data is generated from the
likelihood p(y|θ, m).
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Figure 2. Figure 5 in chaper 11 describes the belief propagation alorithm for implementing Bayesian
inference in hierarchical models. This figure shows a special case of belief propagation for Bayesian
Model Selection (BMS) and Bayesian Model Averaging (BMA). In BMS, the posterior model
probability p(m|y), is used to select a single ‘best’ model. In BMA, inferences are based on all
models and p(m|y) is used as a weighting factor. Only in BMA, are parameter inferences based
on the correct marginal density p(θ|y).
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Figure 3. The ‘Photic’, ‘Motion’ and ‘Attention’ variables used in the DCM analysis of the
Attention to Visual Motion data (see Figures 4 and 5).

Figure 4. Attention data. fMRI time series (rough solid lines) from regions V1, V5 and SPC
and the corresponding estimates from DCM model 1 (smooth solid lines).
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Figure 5. Attention models. In all models photic stimulation enters V1 and the motion variable
modulates the connection from V1 to V5. Models 1, 2 and 3 have reciprocal and hierarchically
organised intrinsic connectitivty. They differ in how attention modulates the connectivity to V5,
with model 1 assuming modulation of the forward connection, model 2 assuming modulation of
the backward connection and model 3 assuming both. Solid arrows indicate input and intrinsic
connections and dotted lines indicate modulatory connections.
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Figure 6. Inflated cortical representation of (a) two simulated source locations (‘valid’ prior) and
(b) ‘invalid’ prior location.

Figure 7. Inflated cortical representation of representative source reconstructions using (a) smooth-
ness prior, (b) smoothness and valid priors and (c) smoothness, valid and invalid priors. The
reconstructed values have been normalised between -1 and 1.
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Figure 8. 3D segmentation of 71 structures of the Probabilistic MRI Atlas developed at the
Montreal Neurological Institute. As shown in the color scale, brain areas belonging to different
hemispheres were segmented separately.
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Figure 9. Different arrays of sensors used in the simulations. EEG-19 represents the 10/20
electrode system; EEG-120 is obtained by extending and refining the 10/20 system; and MEG-151
corresponds to the spatial configuration of MEG sensors in the helmet of the CTF System Inc.

Figure 10. Spatial distributions of the simulated primary current densities. A) Simultaneous
activation of two sources at different depths: one in the right Occipital Pole and the other in the
Thalamus (OPR+TH). B) Simulation of a single source in the Thalamus (TH).
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Figure 11. 3D reconstructions of the absolute values of BMA and cLORETA solutions for the
OPR+TH source case. The first column indicates the array of sensors used in each simulated data
set. The maximum of the scale is different for each case. For cLORETA (from top to bottom):
Max = 0.21, 0.15 and 0.05; for BMA (from top to bottom): Max = 0.41, 0.42 and 0.27.
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Figure 12. 3D reconstructions of the absolute values of BMA and cLORETA solutions for the TH
source case. The first column indicates the array of sensors used in each simulated data set. The
maximum of the scale is different for each case. For cLORETA (from top to bottom): Max =
0.06, 0.01 and 0.003 ; for BMA (from top to bottom): Max = 0.36, 0.37 and 0.33.
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