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Introduction

Imaging neuroscientists have at their disposal a variety of imaging techniques for
investigating human brain function [Frackowiak et al. 2003]. Among these, the
Electroencephalogram (EEG) records electrical voltages from electrodes placed
on the scalp, the Magnetoencephalogram (MEG) records the magnetic field from
sensors placed just above the head and functional Magnetic Resonance Imaging
(fMRI) records magnetisation changes due to variations in blood oxygenation.

However, as the goal of brain imaging is to obtain information about the
neuronal networks that support human brain function, one must first transform
measurements from imaging devices into estimates of intracerebral electrical ac-
tivity. Brain imaging methodologists are therefore faced with an inverse prob-
lem, ‘How can one make inferences about intracerebral neuronal processes given
extracerebral or vascular measurements ?’

We argue that this problem is best formulated as a model-based spatio-
temporal deconvolution problem. For EEG and MEG the required deconvolu-
tion is primarily spatial, and for fMRI it is primarily temporal. Although one
can make minimal assumptions about the source signals by applying ‘blind’ de-
convolution methods [Makeig et al. 2002, McKeown et al. 1998], knowledge of
the underlying physical processes can be used to great effect. This information
can be implemented in a forward model that is inverted during deconvolution.
In M/EEG, forward models make use of Maxwell’s equations governing prop-
agation of electromagnetic fields [Baillet et al. 2001], and, in fMRI hemody-
namic models that link neural activity to ‘Balloon’ models of vascular dynamics
[Friston et al. 2000].

To implement a fully spatio-temporal deconvolution, time-domain fMRI
models must be augmented with a spatial component and spatial-domain M/EEG
models with a temporal component. The previous Chapter showed how this
could be implemented for fMRI. This Chapter describes a model-based spatio-
temporal deconvolution method for M/EEG.

The underlying forward or ‘generative’ model incorporates two mappings.
The first specifies a time-domain General Linear Model (GLM) at each point
in source space. This relates effects of interest at each voxel to source activity
at that voxel. This is identical to the ‘mass-univariate’ approach that is widely
used in the analysis of fMRI [Frackowiak et al. 2003]. The second mapping
relates source activity to sensor activity at each time point using the usual
spatial-domain lead-field matrix (see Chapter 28).

Our model therefore differs from the standard generative model implicit in
source reconstruction by having an additional level that embodies temporal
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priors. There are two potential benefits of this approach. First, the use of tem-
poral priors can result in more sensitive source reconstructions. This may allow
signals to be detected that cannot be detected otherwise. Second, it provides
an analysis framework for M/EEG that is very similar to that used in fMRI.
The experimental design can be coded in a design matrix, the model fitted
to data, and various effects of interest can be characterised using ‘contrasts’
[Frackowiak et al. 2003]. These effects can then be tested for statistically using
Posterior Probability Maps (PPMs), as described in previous Chapters. Impor-
tantly, the model does not need to be refitted to test for multiple experimental
effects that are potentially present in any single data set. Sources are estimated
once only using a spatio-temporal deconvolution rather than separately for each
temporal component of interest.

The Chapter is organised as follows. In the Theory section we describe
the model and relate it to existing distributed solutions. The success of the
approach rests on our ability to characterise neuronal responses, and task-related
differences in them, using GLMs. We describe how this can be implemented for
the analysis of ERPs and show how the model can be inverted to produce source
estimates using Variational Bayes (VB). The framework is applied to simulated
data and data from an EEG study of face processing.

Theory

Notation

Lower case variable names denote vectors and scalars. Whether the variable is
a vector or scalar should be clear from the context. Upper case names denote
matrices or dimensions of matrices. In what follows N(x;µ, Σ) denotes a multi-
variate normal density over x, having mean µ and covariance Σ. The precision of
a Gaussian variate is the inverse (co)variance. A gamma density over the scalar
random variable x is written as Ga(x; a, b). Normal and Gamma densities are
defined in Chapter 26. We also use ||x||2 = xT x, denote the trace operator as
Tr(X), X+ for the pseudo-inverse, and use diag(x) to denote a diagonal matrix
with diagonal entries given by the vector x.

Generative Model

The aim of source reconstruction is to estimate Primary Current Density (PCD)
J from measured M/EEG measurements Y . If we have m = 1..M sensors,
g = 1..G sources and t = 1..T time points then J is of dimension G × T and
Y is of dimension M × T . The applications in this Chapter use a cortical
source space in which dipole orientations are constrained to be perpendicular
to the cortical surface. Each entry in J therefore corresponds to the scalar
current density at particular locations and time points. Sensor measurements
are related to current sources via Maxwell’s equations governing electromagnetic
fields [Baillet et al. 2001] (see Chapter 28).

Most established distributed source reconstruction or ‘imaging’ methods
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[Darvas et al. 2004] implicitly rely on the following two-level generative model

p(Y |J,Ω) =
T∏

t=1

N(yt;Kjt,Ω) (1)

p(J |α) =
T∏

t=1

N(jt; 0, α−1D−1)

where jt and yt are the source and sensor vectors at time t, K is the [M × G]
lead-field matrix and Ω is the sensor noise covariance. The matrix D reflects
the choice of spatial prior and α is a spatial precision variable. This generative
model is shown schematically in Figure 1 and can be written as a hierarchical
model

Y = KJ + E (2)
J = Z

(3)

in which random fluctuations E correspond to sensor noise and the source activ-
ity is generated by random innovations Z. Critically, these assumptions provide
empirical priors on the spatial deployment of source activity (see Chapter 29).

Because the number of putative sources is much greater than the number of
sensors, G >> M , the source reconstruction problem is ill-posed. Distributed
solutions therefore depend on the specification of a spatial prior for estimation to
proceed. A common choice is the Laplacian prior used, for example, in Low Res-
olution Electromagnetic Tomography (LORETA) [Pascual-Marqui et al. 1994].
This can be implemented in the above generative model by setting D to com-
pute local differences as measured by an L2-norm, which embodies a belief that
sources are diffuse and highly distributed. Other spatial priors, such as those
based on L1-norms [Fuchs et al. 1999], Lp-norms [Auranen et al. 2005], or Vari-
able Resolution Electromagnetic Tomography (VARETA) [Valdes-Sosa et al. 2000]
can provide more focal source estimates. These are all examples of schemes
that use a single spatial prior and are special cases of a more general model
[Mattout et al. 2006] that covers multiple priors. In this model the sensor noise
and spatial prior covariances are modelled as mixtures of components Ωi and
Qi respectively

p(Y |J,Ω) =
T∏

t=1

N(yt;Kjt, ρ1Ω1 + ρ2Ω2 + ...) (4)

p(J |α) =
T∏

t=1

N(jt; 0, γ1Q1 + γ2Q2 + ...)

The advantage of this model is that multiple priors can be specified and are
mixed adaptively by adjusting the covariance parameters ρi and γi, as described
in Chapter 29. One can also use Bayesian model selection to compare different
combinations of priors, as described in Chapter 35. For simplicity, we will deal
with a single spatial prior component because we want to focus on temporal
priors. However, it would be relatively simple to extend the approach to cover
multiple prior covariance (or precision) components.
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Also, in Chapter 35 we will describe a prior over a model class that, when
used with Bayesian Model Averaging (BMA), can automatically provide either
focal or distributed solutions depending on the reconstruction at hand. The
applications in this Chapter use Laplacian priors.

Whatever the choice of spatial prior, the majority of source reconstruc-
tion applications follow a single-pass serial processing strategy. Either (i) spa-
tial processing first proceeds to create source estimates at each time point
and then (ii) temporal models are applied at these ‘virtual depth electrodes’
[Darvas et al. 2004, Kiebel and Friston 2004, Brookes et al. 2004]. Or (ii) time
series methods are applied in sensor space to identify components of interest
using eg. time windowing [Rugg and Coles 1995] or time-frequency estimation
and then (ii) source reconstructions are then based on these components.

In this Chapter we review a multiple-pass strategy in which temporal and
spatial parameter estimates are improved iteratively to provide an optimised and
mutually constrained solution. It is based on the following three-level generative
model

p(Y |J,Ω) =
T∏

t=1

N(yt;Kjt,Ω) (5)

p(J |W,λ) =
T∏

t=1

N(jT
t ;xtW,λ−1IG) (6)

p(W |α) =
K∏

k=1

N(wk; 0, α−1D−1) (7)

The first level, equation 5, is identical to the standard model. In the second
level, however, source activity at each voxel is constrained using a [T×K] matrix
of temporal basis functions, X. The tth row of X is xt. The generative model
is shown schematically in Figure 2.

The precision of the source noise is given by λ. In this Chapter λ is a scalar.
In this Chapter we will apply the framework to analyse Event-Related Poten-
tials (ERPs) [Rugg and Coles 1995]. Event-related source activity is described
by the time domain GLM and remaining source activity will correspond to spon-
taneous activity. The quantity λ−1 can therefore be thought of as the variance
of spontaneous activity in source space.

The regression coefficients W determine the weighting of the temporal ba-
sis functions. The third level of the model is a spatial prior that reflects our
prior uncertainty about W . Each regression coefficient map, wk (row of W ),
is constrained by setting D to correspond to the usual L2-norm spatial prior.
The spatial prior that is usually on the sources now, therefore, appears at a
superordinate level.

Different choices of D result in different weights and different neighborhood
relations. The applications in this paper use D = LT L, where L is the surface
Laplacian defined as

Lij =


1, if i=j
− 1

Nij
, if i and j are geodesic neighbors

0, otherwise.
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where Nij is the geometric mean of the number of neighbors of i and j. This
prior has been used before in the context of fMRI with Euclidean neighbors
[Penny and Flandin 2005, Woolrich et al. 2001].

The first level of the model assumes that there is Gaussian sensor noise, et,
with zero mean and covariance Ω. This covariance can be estimated from pre-
stimulus or baseline periods when such data are available [Sahani and Nagarajan 2004].
Alternatively, we assume that Ω = diag(σ−1) where the mth element of σ−1 is
the noise variance on the mth sensor. We provide a scheme for estimating σm,
should this be necessary.

We also place Gamma priors on the precision variables σ, λ and α

p(σ) =
M∏

m=1

Ga(σm; bσprior
, cσprior

) (8)

p(λ) = Ga(λ; bλprior
, cλprior

)

p(α) =
K∏

k=1

Ga(αk; bαprior
, cαprior

)

This allows the inclusion of further prior information into the source localisa-
tion. For example, instead of using baseline periods to estimate a full covariance
matrix Ω we could use this data to estimate the noise variance at each sensor.
This information could then be used to set bσprior and cσprior , allowing noise es-
timates during periods of interest to be constrained softly by those from baseline
periods. Similarly, we may wish to enforce stronger or weaker spatial regular-
isation on wk by setting bαprior

and cαprior
appropriately. The applications in

this Chapter, however, use uninformative gamma priors. This means that σ, λ
and α will be estimated solely from the data Y .

In summary, the addition of the supraordinate level to our generative model
induces a partioning of source activity into signal and noise. We can see this
clearly by reformulating the probabilistic model as before

Y = KJ + E (9)
JT = XW + Z

W = P

Here we have random innovations Z which are ‘temporal errors’, ie. lack of
fit of the temporal model, and P which are ‘spatial errors’, ie. lack of fit of a
spatial model. Here the spatial model is simply a zero mean Gaussian with co-
variance α−1D−1. We can regard XW as an empirical prior on the expectation
of source activity. This empirical Bayes perspective means that the conditional
estimates of source activity J are subject to bottom-up constraints, provided
by the data, and top-down predictions from the third-level of our model. We
will use this heuristic later to understand the update equations used to estimate
source activity.

Temporal priors

The usefulness of the spatio-temporal approach rests on our ability to charac-
terise neuronal responses using GLMs. Fortunately, there is a large literature
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Figure 1: Generative model for source reconstruction. This is a graphical rep-
resentation of the probabilistic model implicit in many distributed source solu-
tions.
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Figure 2: Generative model for source reconstruction with temporal priors. This
is a hierarchical model with regression coefficients at the ‘top’ and M/EEG data
at the ‘bottom’.
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that suggests this is possible. The type of temporal model necessary will depend
on the M/EEG response one is interested in. These components could be (i) sin-
gle trials, (ii) evoked components (steady-state or ERPs [Rugg and Coles 1995])
or (iii) induced components [Tallon-Baudry et al. 1996].

In this Chapter we focus on ERPs. We briefly review three different ap-
proaches for selecting an appropriate ERP basis set. These basis functions will
form columns in the GLM design matrix, X (see equation 6 and figure 2).

Damped sinusoids

An ERP basis set can be derived from the fitting of Damped Sinusoidal (DS)
components [Demiralp et al. 1998]. These are given by

j =
K∑

k=1

wkxk (10)

xk = exp(iφk) exp(αk + i2πfk)δt

where i =
√
−1, δt is the sampling interval and wk, φk, αk and fk are the

amplitude, phase, damping and frequency of the kth component. The [T × 1]
vector xk will form the kth column in the design matrix. Figure 3 shows how
damped sinusoids can generate an ERP.

Fitting DS models to ERPs from different conditions allows one to make
inferences about task related changes in constituent rhythmic components. For
example, in [Demiralp et al. 1998], responses to rare auditory events elicited
higher amplitude, slower delta and slower damped theta components than did
responses to frequent events. Fitting damped sinusoids, however, requires a
nonlinear estimation procedure. But approximate solutions can also be found
using the Prony and related methods [Osborne and Smyth 1991] which require
two-stages of linear estimation.

Once a DS model has been fitted, for example to the principal component
of the sensor data, the components xk provide a minimal basis set. Including
extra regressors from a first-order Taylor expansion about phase, damping and
frequency ( ∂xk

∂φk
, ∂xk

∂αk
, ∂xk

∂fk
) provides additional flexibility. Use of this expanded

basis in our model would allow these attributes to vary with source location.
Such Taylor series expansions have been particularly useful in GLM character-
isations of hemodynamic responses in fMRI [Frackowiak et al. 2003].

Wavelets

ERPs can also be modelled using wavelets

j =
K∑

k=1

wkxk (11)

where xk are wavelet basis functions and wk are wavelet coefficients. Wavelets
provide a tiling of time-frequency space that gives a balance between time
and frequency resolution. The Q-factor of a filter or basis function is de-
fined as the central frequency to bandwidth ratio. Wavelet bases are cho-
sen to provide constant Q [Unser and Aldroubi 1996]. This makes them good
models of nonstationary signals, such as ERPs and induced EEG components
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[Tallon-Baudry et al. 1996]. Wavelet basis sets are derived by translating and
dilating a mother wavelet. Figure 4 shows wavelets from two different basis
sets, one based on Daubechies wavelets and one based on Battle-Lemarie (BL)
wavelets. These basis sets are orthogonal. Indeed the BL wavelets have been de-
signed from an orthogonalisation of cubic B-splines [Unser and Aldroubi 1996].

If K = T , then the mapping j → w is referred to as a wavelet transform,
and for K > T we have an overcomplete basis set. More typically, we have
K ≤ T . In the ERP literature the particular subset of basis functions used is
chosen according to the type of ERP component one wishes to model. Popular
choices are wavelets based on B-splines [Unser and Aldroubi 1996].

In statistics, however, it is well known that an appropriate subset of basis
functions can be automatically selected using a procedure known as ‘wavelet
shrinkage’ or ‘wavelet denoising’. This relies on the property that natural sig-
nals such as images, speech or neuronal activity can be represented using a
sparse code comprising just a few large wavelets coefficients. Gaussian noise
signals, however, produce Gaussian noise in wavelet space. This comprises
a full set of wavelet coefficients whose size depends on the noise variance.
By ‘shrinking’ these noise coefficients to zero using a thresholding procedure
[Donoho and Johnstone 1994, Clyde et al. 1998], and transforming back into
signal space, one can denoise data. This amounts to defining a temporal model.
We will use this approach for the empirical work reported later on.

PCA

A suitable basis can also be derived from Principal Components Analysis (PCA).
Trejo et al. [Trejo and Shensa 1999] for example, applied PCA and varimax
rotation to the classification of ERPs in a signal detection task. They found,
however, that better classification was more accurate with a Daubechies wavelet
basis.

PCA decompositions are also used in the Multiple Signal Classification (MU-
SIC) approach [Mosher and Leahy 1998]. The dimension of the basis set is cho-
sen to separate the signal and noise subspaces. Source reconstruction is then
based on the signal, with information about the noise used to derive statistical
maps based on pseudo-z scores. In [Friston et al. 2006], a temporal basis set
is defined using the principal eigenvectors of a full-rank prior temporal covari-
ance matrix. This approach makes the link between signal subspace and prior
assumptions transparent.

Dimensionality

Whatever the choice of basis, it is crucial that the dimension of the signal
subspace is less than the dimension of the original time series. That is, K < T .
This is necessary for the temporal priors to be effective, both from a statistical
and computational perspective.

Theoretically, one might expect the dimensionality of ERP generators to
be quite small. This is because of the low-dimensional synchronisation mani-
folds that arise when nonlinear dynamical systems are coupled into an ensemble
[Breakspear and Terry 2002].

In practice, the optimal reduced dimensionality can be found automatically
using a number of methods. For wavelets this can be achieved using shrinkage
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Figure 3: The figure shows how damped sinusoids can model ERPs. In this
example damped delta, theta and alpha sinusoids, of particular phase, amplitude
and damping, add together to form an ERP with an early negative component
and a late positive component.

methods [Donoho and Johnstone 1994, Clyde et al. 1998], for PCA using vari-
ous model order selection criteria [Minka 2000] and for damped sinusoids, Prony-
based methods can use AR model order criteria [Roberts and Penny 2002].
Moreover, it is also possible to compute the model evidence of the source recon-
struction model we have proposed, as shown in the following section. This can
then be used to optimise the basis set.

Bayesian Inference

To make inferences about the sources underling M/EEG we need to invert our
probabilistic model to produce the posterior density p(J |Y ). This is straight-
forward in principle and can be achieved using standard Bayesian methods
[Gelman et al. 1995]. For example, one could use Markov Chain Monte Carlo
(MCMC) to produce samples from the posterior. This has been implemented
efficiently for dipole-like inverse solutions [Schmidt et al. 1999] in which sources
are parameterised as spheres of unknown number, extent and location. It is,
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Figure 4: The graphs show wavelets from a Daubechies set of order 4 (left)
and a Battle-Lemarie basis set of order 3 (right). The wavelets in the lower
panels are higher frequency translations of the wavelets in the top panel. Each
full basis set comprises multiple frequencies and translations covering the entire
time domain.
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however, computationally demanding for distributed source solutions, taking
several hours for source spaces comprising G > 1000 voxels [Auranen et al. 2005].
In this work we adopt the computationaly efficient approximate inference frame-
work called Variational Bayes (VB), that was reviewed in Chapter 26.

Approximate posteriors

For our source reconstruction model we assume the following factorisation of
the approximate posterior

q(J,W,α, σ, λ) = q(J)q(W )q(α)q(σ)q(λ) (12)

We also assume that the approximate posterior for the regression coefficients
factorises over voxels

q(W ) =
G∏

g=1

q(wg) (13)

This approximation was used in the spatio-temporal model for fMRI described
in the previous Chapter.

Because of the spatial prior (equation 7), the regression coefficients in the
true posterior p(W |Y ) will clearly be correlated. Our perspective, however, is
that this is too computationally burdensome for current personal computers
to take account of. Moreover, as we shall see in section , updates for our
approximate factorised densities q(wg) do encourage the approximate posterior
means to be similar at nearby voxels, thereby achieving the desired effect of the
prior.

Now that we have defined the probabilistic model and our factorisation of
the approximate posterior, we can use the procedure described in Chapter 26
to derive expressions for each component of the approximate posterior. We do
not present details of these derivations in this Chapter. Similar derivations have
been published elsewhere [Penny et al. 2005]. The following sections describe
each distribution and the updates of its sufficient statistics required to maximise
the lower bound on the model evidence, F .

Sources

Updates for the sources are given by

q(J) =
T∏

t=1

q(jt) (14)

q(jt) = N(jt; ĵt, Σ̂jt
) (15)

Σ̂jt =
(
KT Ω̂K + λ̂IG

)−1

(16)

ĵt = Σ̂jt

(
KT Ω̂yt + λ̂ŴT xT

t

)
(17)

where ĵt is the tth column of Ĵ and Ω̂, λ̂ and Ŵ are estimated parameters
defined in the following sections. Equation 17 shows that our source estimates
are the result of a spatio-temporal deconvolution. The spatial contribution
to the estimate is KT yt and the temporal contribution is ŴT xT

t . From the
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perspective of the hierarchical model, shown in Figure 5, these are the ‘bottom-
up’ and ‘top-down’ predictions. Importantly, each prediction is weighted by its
relative precision. Moreover, the parameters controlling the relative precisions,
λ̂ and Ω̂ are estimated from the data. This means that our source estimates
derive from an automatically regularised spatio-temporal deconvolution. This
property is shared by the spatio-temporal model for fMRI, described in the
previous Chapter.

An alternative perspective on this computation is given by ignoring the
regularisation term in 17. We then see that Σ̂jtK

T Ω̂ = (KT Ω̂K)+KT Ω̂ =
BT

w , which is equivalent to a beamformer [Darvas et al. 2004]. Equation 17
then shows that our source estimates use beamformer predictions BT

wyt that
are modified using a temporal model. Beamformers cannot localise temporally
correlated sources. But, as we shall see later, the spatio-temporal model can.

We end this section by noting that statistical inferences about current sources
are more robust than point predictions. This property has been used to great ef-
fect with Pseudo-z beamformer statistics [Robinson and Vrba 1999], sLORETA
[Pascual-Marqui 2002] and VARETA [Valdes-Sosa et al. 2000] source reconstruc-
tions, which divide current source estimates by their standard deviations. This
approach can be adopted in the current framework as the standard deviations
are readily computed from the diagonal elements of Σ̂jt

using equation 24. More-
over, we can threshold these statistic images to create Posterior Probability
Maps (PPMs), as introduced in Chapter 25.

Regression coefficients

Updates for the regression coefficients are given by

q(wg) = N(wg; ŵg, Σ̂wg ) (18)

Σ̂wg
=

(
λ̂XT X + dggdiag(α̂)

)−1

ŵg = Σ̂wg

(
λ̂XT ĵT

g + diag(α̂)rg

)
where α̂ is defined in 22, dij is the i, jth element of D and rg is given by

rg =
G∑

g′=1,g′ 6=g

dgg′ŵg′ (19)

As shown in the previous Chapter, rg is the weighted sum of neighboring re-
gression coefficient estimators.

The update for ŵg in equation 18 therefore indicates that the regression
coefficient estimates at a given voxel regress towards those at nearby voxels.
This is the desired effect of the spatial prior and it is preserved despite the
factorisation in the approximate posterior. This equation can again be thought
of in terms of the hierarchical model where the regression coefficient estimate
is a combination of a bottom up prediction from the level below, XT ĵT

g , and a
top down prediction from the prior, rg. Again, each contribution is weighted by
its relative precision.

The update for the covariance in equation 18 shows that the only off-diagonal
contributions are due to the design matrix. If the temporal basis functions
are therefore chosen to be orthogonal then this posterior covariance will be
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diagonal, thus making a potentially large saving of computer memory. One
benefit of the proposed framework, however, is that non-orthogonal bases can
be accomodated. This may allow for a more natural and compact description
of the data.

Precision of temporal models

Updates for the precision of the temporal model are given by

q(λ) = Ga(λ; bλpost , cλpost) (20)

1
bλpost

=
1

bλprior

+
1
2

∑
t

(
||ĵt − ŴT xT

t ||2 + Tr(Σ̂jt
) +

G∑
g=1

xtΣ̂wg
xT

t

)

cλpost
= cλprior

+
GT

2
λ̂ = bλpostcλpost

In the context of ERP analysis, these expressions amount to an estimate of the
variance of spontaneous activity in source space, λ̂−1, given by the squared error
between the ERP estimate, ŴT xT

t , and source estimate, ĵt, averaged over time
and space and the other approximate posteriors.

Precision of forward model

Updates for the precision of the sensor noise are given by

q(σ) = =
M∏

m=1

q(σm) (21)

q(σm) = Ga(σm; bσpost
, cσpost

)
1

bm
=

1
bσprior

+
1
2

∑
t

(
ymt − kT

mĵt

)2

+
1
2
kT

mΣ̂jtkm

cm = cσprior +
T

2
σ̂m = bmcm

Ω̂−1 = diag(σ̂)

These expressions amount to an estimate of observation noise at the mth sensor,
σ̂m

−1, given by the squared error between the forward model and sensor data,
averaged over time and the other approximate posteriors.
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Precision of spatial prior

Updates for the precision of the spatial prior are given by

q(α) =
K∏

k=1

q(αk) (22)

q(αk) = Ga(αk; bαpost , cαpost)

1
bαpost

=
1

bαprior

+ ||DŵT
k ||2 +

G∑
g=1

dgsgk

cαpost
= cαprior

+
G

2
α̂k = bαpostcαpost

where sgk is the kth diagonal element of Σ̂wg . These expressions amount to an
estimate of the ‘spatial noise variance’, α̂−1

k , given by the discrepancy between
neighboring regression coefficients, averaged over space and the other approxi-
mate posteriors.

Implementation details

A practical difficulty with the update equations for the sources is that the co-
variance matrix Σ̂jt

is of dimension G × G where G is the number of sources.
Even low resolution source grids typically contain G > 1000 elements. This
therefore presents a problem. A solution is found, however, with use of a Sin-
gular Value Decomposition (SVD). First, we define a modified lead field matrix
K̄ = Ω̂1/2K and compute its SVD

K̄ = USV T (23)
= UV̄

where V̄ is an M × G matrix, the same dimension as the lead field, K. It can
then be shown using the matrix inversion lemma [Golub and Van Loan 1996]
that

Σ̂jt
= λ̂−1 (IG −RG) (24)

RG = V̄ T (λ̂IM + SST )−1V̄

which is simple to implement computationally, as it only requires inversion of
an M ×M matrix.

Source estimates can be computed as shown in equation 17. In principle,
this means the estimated sources over all time points and source locations are
given by

Ĵ = Σ̂jt
KT Ω̂Y + λ̂Σ̂jt

ŴT XT

In practice, however, it is inefficient to work with such a large matrix during
estimation. We therefore do not implement equations 16 and 17 but, instead,
work in the reduced space ĴX = ĴX which are the sources projected onto the
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design matrix. These projected source estimates are given by

ĴX = ĴX (25)

= Σ̂jt
KT Ω̂Y X + λ̂Σ̂jt

ŴT XT X

= AKΩY X + λ̂AW XT X

where Y X and XT X can be pre-computed and the intermediate quantities are
given by

AKΩ = Σ̂jtK
T Ω̂ (26)

= λ̂−1
(
KT −RGKT

)
AW = Σ̂jtŴ

T

= λ̂−1
(
ŴT −RGŴT

)
Because these matrices are only of dimension G ×M and G ×K respectively,
ĴX can be efficiently computed. The term XT ĵT

g in equation 18 is then given
by the gth row of ĴX .

The intermediate quantities can also be used to compute model predictions
as

Ŷ = KĴ (27)

= KAKΩY + λ̂KAW XT

The m, tth entry in Ŷ then corresponds to the kT
mĵt term in equation 21. Other

computational savings are as follows. For equation 21 we use the result

kT
mΣ̂jt

km =
1

σ̂m

M∑
m′=1

s2
m′m′u2

mm′

s2
m′m′ + λ̂

(28)

where sij and uij are the i, jth entries in S and U respectively. For equation 20
we use the result

Tr(Σ̂jt
) =

M∑
i=1

1

s2
ii + λ̂

+
G−M

λ̂
(29)

To summarise, our source reconstruction model is fitted to data by iteratively
applying the update equations until the change in the negative free energy (see
Chapter 26), F , is less than some user-specified tolerance. This procedure is
summarised in the pseudo-code in Figure 6. This amounts to a process in which
sensor data is spatially deconvolved, time series models are fitted in source
space, and then the precisions (accuracy) of the temporal and spatial models
are estimated. This process is then iterated and results in a spatio-temporal
deconvolution in which all aspects of the model are optimised to maximise a
lower bound on the model evidence.

Results

This section presents some preliminary qualitative results. In what follows we
refer to the spatio-temporal approach as ‘VB-GLM’.
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Figure 5: Probabilistic inversion of the generative model leads to a source re-
construction based on a spatio-temporal deconvolution in which bottom-up and
top-down predictions, from sensor data and temporal priors, are optimally com-
bined using Bayesian inference.
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Figure 6: Pseudo code for spatio-temporal deconvolution of M/EEG. The pa-
rameters of the model θ = {J,W,Ω, λ, α} are estimated by updating the approx-
imate posteriors until the negative free energy is maximised to within a certain
tolerance (left panel). At this point, because the log evidence L = log p(Y ) is
fixed, the approximate posteriors will best approximate the true posteriors in
the sense of KL-divergence (right panel), as described in Chapter 26. The equa-
tions for updating the approximate posteriors are given in the theory section.
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Comparison with LORETA

We generated data from our model as follows. Firstly, we created two regressors
consisting of a 10 Hz and 20Hz sinewave with amplitudes of 10 and 8 respectively.
These formed the two columns of a design matrix shown in Figure 7. We
generated 600ms of activity with a sample period of 5ms, giving 120 time points.

The sensor space was defined using M = 32 electrodes from the Brain Elec-
trical Source Activity (BESA) system [Scherg and von Cramon 1986] shown in
Figure 8. We used the three concentric sphere model to calculate the electric
lead field [Rush and Driscoll 1969]. The center and radius of the spheres were
fitted to the scalp, skull and cerebral tissue of a ‘typical’ brain from the Mon-
treal Neurological Institute (MNI) data base [Evans et al. 1993]. The source
space consisted of a mesh of points corresponding to the vertices of the triangles
obtained by tessellation of the cortical surface of the same brain. A medium
resolution spatial grid was used containing G = 10, 242 points.

We define the Signal to Noise Ratio (SNR) as the ratio of the signal standard
deviation to noise standard deviation and used sensor and source SNRs of 10
and 40 respectively. The spatial distribution of the two regression coefficients
were identical, each of them consisting of two Gaussian blobs with a maximum
amplitude of 10, and a Full Width at Half Maximum (FWHM) of 20mm.

Figure 9 shows the true and estimated sources at time point t = 20ms.
The LORETA solution was found from an instantaneous reconstruction of the
sensor data at that time point, using an L2-norm and a spatial regularisation
parameter α̂ (see equation 1) estimated using generalised cross-validation. The
VB-GLM solution was found by applying the VB update equations described in
the Theory section. As expected, VB provides a better solution both in terms
of localisation accuracy and scaling.

ERP simulation

We then used our generative model to simulate ERP-like activity by using the
regressors shown in Figure 10. The first regressor mimics an early component
and the second a later component. These regressors were derived from a neu-
ral mass model describing activity in a distributed network of cortical areas
[David and Friston 2003], which lends these simulations a degree of biological
plausibility. These neural mass models are described at length in Chapter 32.

We then specified two source activations with the same amplitude and FWHM
as in the previous example. The source space, sensor space and forward model
were also identical to the previous example. Ten trials of sensor data were then
generated using the same SNR as in the previous set of simulations. Signal
epochs of 512ms were produced with a sampling period of 4ms giving a total of
5120ms of EEG. The data were then averaged over trials to calculate the sample
ERP shown in Figure 11.

We then estimated the sources underlying the sample ERP with (i) a cor-
rectly specified model using the same two regressors used for generating the data
and (ii) an over-specified model that also incorporated two additional spurious
regressors shown in Figure 12. The design matrices for each of these models are
shown in Figure 13. In the over-specified model, regressors 2 and 3 are highly
correlated (r = 0.86). This can be seen most clearly in Figure 13.

The models were then fitted to the data using the VB update rules. As
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Figure 7: Simulations that compare VB-GLM with LORETA used the above
design matrix, X. The columns in this matrix comprise a 10Hz and a 20Hz
sinewave.
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Figure 8: Electrode positions for the 32-sensor BESA system (left) and 128-
sensor BioSemi system (right).
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Figure 9: True and estimated source distributions at time t = 20ms. Note the
scaling in the figures. The VB-GLM approach is better both in terms of spatial
localisation and the scaling of source estimates.
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Figure 10: Two ERP components, derived from a biophysical model, used to
generate simulated ERP data. These mimic an early component and a late
component.
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Figure 11: A butterfly plot of simulated ERPs at 32 sensors.
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Figure 12: Four components, derived from a biophysical model, used in an
over-specified ERP model.
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Figure 13: Design matrices, X, used for localisation of biophysical components.
Model 1 (left) contains the regressors used to generate the data and Model 2
(right) contains two additional spurious regressors. These regressors have been
plotted as time series in Figures 10 and 12.
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Figure 14: Regression coefficients, wg, from ERP simulation. ’Coeff 1’ and
’Coeff 2’ denote the first and second entries in the regression coefficient vector
wg. True model (left) and estimates from correctly specified model (right).
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Figure 15: Estimated regression coefficients, ŵg, from over-specified model. The
true coefficients are shown in Figure 14. Note the scaling of coefficients 3 and
4 (the true values are zero). Despite the high temporal correlation between
regressors 2 and 3, the coefficients for regressor 3 have been correctly shrunk
towards zero. This is a consequence of the spatial prior and the iterative nature
of the spatio-temporal deconvolution (see Figure 6).
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Figure 16: True regression coefficients for ERP simulation with correlated
sources. This simulation used a design matrix comprising the regressors shown
in Figure 12, with the first and fourth coefficients set to zero and the second
and third set as shown in this figure.
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Figure 17: Estimated regression coefficents, ŵg, for ERP simulation with corre-
lated sources. Coefficients 2 and 3 resemble the true values shown in Figure 16
whereas regressors 1 and 4 have been correctly shrunk towards zero by the
spatio-temporal deconvolution algorithm.
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shown in Figures 14 and 15, the true effects (regression coefficients) are ac-
curately recovered even for the over-specified model. The spurious regression
coefficients are shrunk towards zero. This is a consequence of the spatial prior
and the iterative spatio-temporal deconvolution. This also shows that source
reconstruction with temporal priors is robust to model mis-specification.

We then performed a second simulation with the set of regressors shown in
Figure 12, and identical specifications of source space, sensor space, forward
model and SNR. But in this example we generated data from the regression
coefficients shown in Figure 16, regression coefficients one and four being set
to zero. This data therefore comprises three distributed sources (i) a right-
lateralised source having time series given by a scaled, noise-corrupted regressor
2, (ii) a frontal source given by a scaled, noise-corrupted regressor 3 and (iii) a
left-lateralised source comprising a noisy, scaled mixture of regressors 2 and 3.
These sources are therefore highly correlated.

The VB-GLM model, using a full design matrix comprising all four regres-
sors, was then fitted to this data. The estimated regression coefficients are
shown in Figure 17. Regressors 1 and 4 have been correctly estimated to be
close to zero whereas regressors 2 and 3 bear a close resemblance to the true
values. This shows that VB-GLM, in contrast to eg. beamforming approaches,
is capable of localising temporally correlated sources.

Face ERPs

This section presents an analysis of a face processing EEG data set from Henson
et al. [Henson et al. 2003]. The experiment involved presentation of images of
faces and scrambled faces, as described in Figure 18.

The EEG data were acquired on a 128-channel BioSemi ActiveTwo system,
sampled at 1024 Hz. The data were referenced to the average of left and right
earlobe electrodes and epoched from -200ms to +600ms. These epochs were
then examined for artifacts, defined as timepoints that exceeded an absolute
threshold of 120 microvolts. A total of 29 of the 172 trials were rejected. The
epochs were then averaged to produce condition specific ERPs at each electrode.

The first clear difference between faces and scrambled faces is maximal
around 160ms, appearing as an enhancement of a negative component (peak
’N160’) at occipito-temporal channels (eg. channel ‘B8’), or enhancement of a
positive peak at Cz (eg channel ‘A1’). These effects are shown as a differential
topography in Figure 19 and as time series in Figure 20.

A temporal model was then fitted using wavelet shrinkage [Donoho and Johnstone 1994].
Before applying the model, the data were first downsampled and the 128 sam-
ples following stimulus onset were extracted. These steps were taken as we used
WaveLab 1 to generate the wavelet bases. This uses a pyramid algorithm to
compute coefficients, so requiring the number of samples to be a power of two.

We then extracted the first eigenvector of the sensor data using a Singular
Value Decomposition (SVD) and fitted wavelet models to this time series. A
number of wavelet bases were examined, two samples of which are shown in
Figure 4 . These are the Daubechies-4 and Battle-Lemarie-3 wavelets. Figure 21
shows the corresponding time series estimates. These employed K = 28 and
K = 23 basis functions respectively, as determined by application of the wavelet

1WaveLab is available from http://www-stat.stanford.edu/wavelab.
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shrinkage algorithm [Donoho and Johnstone 1994]. We used the smaller Battle-
Lemarie basis set in the source reconstruction that follows.

ERPs for faces and scrambled faces were then concatenated to form a vector
of 256 elements at each electrode. The overall sensor matrix Y was then of
dimension 256 × 128. The design matrix, of dimension 256 × 46, was created
by having identical block diagonal elements each comprising the Battle-Lemarie
basis. This is shown in Figure 22. The source space was then defined using a
medium resolution cortical grid defined using the typical MNI brain, as in the
previous sections. Current source orientations were assumed perpendicular to
the cortical surface. Constraining current sources based on a different individ-
uals anatomy is clearly sub-optimal, but nevertheless allows us to report some
qualitative results.

We then applied the source reconstruction algorithm and obtained a solution
after twenty minutes of processing. Figure 23 shows differences in the source
estimates for faces minus scrambled faces at time t = 160ms. The images show
differences in absolute current at each voxel. They have been thresholded at
50% of the maximum difference at this time point. The maximum difference is
plotted in red and 50% of the maximum difference in blue. At this threshold
four main clusters of activation appear at (i) right fusiform, (ii) right anterior
temporal, (iii) frontal and (iv) superior centro-parietal.

These activations are consistent with previous fMRI [Henson et al. 2003]
and MEG analyses of faces minus scrambled faces in that face processing is
lateralised to the right hemisphere and in particular to fusiform cortex. Addi-
tionally, the activations in temporal and frontal regions, although not signifi-
cant in group random effects analyses, are nonetheless compatible with observed
between- subject variability on this task.

Discussion

This Chapter has described a model-based spatio-temporal deconvolution ap-
proach to source reconstruction. Sources are reconstructed by inverting a for-
ward model comprising a temporal process as well as a spatial process. This
approach relies on the fact that EEG and MEG signals are extended in time as
well as in space.

It rests on the notion that MEG and EEG reflect the neuronal activity
of a spatially distributed dynamical system. Depending on the nature of the
experimental task, this activity can be highly localised or highly distributed
and the dynamics can be more, or less, complex. At one extreme, listening for
example to simple auditory stimuli produces brain activations that are highly
localised in time and space. This activity is well described by a single dipole
located in brainstem and reflecting a single burst of neuronal activity at eg.
t=20ms post-stimulus. More complicated tasks, such as oddball paradigms,
elicit spatially distributed responses and more complicated dynamics that can
appear in the ERP as damped sinusoidal responses. In this Chapter we have
taken the view that by explictly modelling these dynamics one can obtain better
source reconstructions.

This view is not unique within the source reconstruction community. In-
deed, there have been a number of approaches that also make use of temporal
priors. Baillet and Garnero [Baillet and Garnero 1997], in addition to consid-
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ering edge-preserving spatial priors, have proposed temporal priors that pe-
nalise quadratic differences between neighboring time points. Schmidt et al.
[Schmidt et al. 2000] have extended their dipole-like modelling approach using
a temporal correlation prior which encourages activity at neighboring latencies
to be correlated. Galka et al. [Galka et al. 2004] have proposed a spatiotempo-
ral Kalman filtering approach which is implemented using linear autoregressive
models with neighborhood relations. This work has been extended by Yamashita
et al. [Yamashita et al. 2004] who have developed a ‘Dynamic LORETA’ algo-
rithm in which the Kalman filtering step is approximated using a recursive
penalised least squares solution. The algorithm is, however, computationally
costly, taking several hours to estimate sources in even low-resolution source
spaces.

Compared to these approaches, our algorithm perhaps embodies stronger
dynamic constraints. But the computational simplicity of fitting GLMs, allied
to the efficiency of variational inference, results in a relatively fast algorithm.
Also, the GLM can accomodate damped sinusoidal and wavelet approaches that
are ideal for modelling transient and nonstationary responses.

The dynamic constraints implicit in our model help to regularize the solution.
Indeed, with M sensors, G sources, T time points and K temporal regressors
used to model an ERP, if K < MT/G the inverse problem is no longer under-
determined. In practice, however, spatial regularisation will still be required to
improve estimation accuracy.

This paper has described a spatio-temporal source reconstruction method
embodying well known phenomenological descriptions of ERPs. A similar method
has recently been proposed in [Friston et al. 2006] (see also Chapter 30), but the
approaches are different in a number of respects. First, in [Friston et al. 2006]
scalp data Y are (effectively) projected onto a temporal basis set X and source
reconstructions are made in this reduced space. This results in a computation-
ally efficient procedure based on Restricted Maximum Likelihood (ReML), but
one in which the fit of the temporal model is not taken into account. This will
result in inferences about W and J which are over-confident. If one is simply
interested in population inferences based on summary statistics (ie. Ŵ ) from a
group of subjects, then this does not matter. If, however, one wishes to make
within-subject inferences then the procedure described in this chapter is the pre-
ferred approach. Second, in [Friston et al. 2006] the model has been augmented
to account for trial-specific responses. This treats each trial as a ‘random effect’
and provides a method for making inferences about induced responses. The
algorithm described in this chapter, however, is restricted to treating trials as
fixed effects. This mirrors standard first-level analyses of fMRI in which multiple
trials are treated by forming concatenated data and design matrices.

A further exciting recent development in source reconstruction is the applica-
tion of Dynamic Causal Models (DCMs) to M/EEG. DCMs can also be viewed
as providing spatio-temporal reconstructions, but ones where the temporal pri-
ors are imposed by biologically informed neural mass models. This offers the
possibility of making inferences about task-specific changes in the synaptic ef-
ficacy of long range connections in cortical hierarchies, directly from imaging
data. These developments are described in Chapter 43.
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Figure 18: Face paradigm. The experiment involved randomised presentation
of images of 86 faces and 86 scrambled faces. Half of the faces belong to fa-
mous people, half are novel, creating 3 conditions in total. In this Chapter
we consider just two conditions (i) faces (famous or not) and (ii) scrambled
faces. The scrambled faces were created by 2D Fourier transformation, random
phase permutation, inverse transformation and outline-masking. Thus faces
and scrambled faces are closely matched for low-level visual properties such as
spatial frequency. The subject judged the left-right symmetry of each image
around an imaginary vertical line through the centre of the image. Faces were
presented for 600ms, every 3600ms.
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Figure 19: The figure shows differential EEG topography for faces minus scram-
bled faces at t = 160ms poststimulus.
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Figure 20: Sensor time courses for face data at occipito-temporal electrode B8
(left) and vertex A1 (right) for faces (blue) and scrambled faces (red).
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Figure 21: First eigen-timeseries of downsampled ERP for unfamiliar faces (blue
lines in both plots) with wavelet shrinkage approximations using Daubechies
basis (left) and Battle-Lemarie basis (right).
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Figure 22: Design matrix for source reconstruction of ERPs from Face data.
Each block contains a 23-element Batte-Lemarie basis set. The first components,
forming diagonals in the picture, are low frequency wavelets. The high frequency
wavelets are concentrated around the N160, where the signal is changing most
quickly.
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Figure 23: These images are derived from the source reconstruction of ERPs
in response to faces and scrambled faces. The plots show absolute differences
between faces and scrambled faces at t=160ms post-stimulus. The maps have
been thresholded such that the largest difference appears in red and 50% of the
largest difference appears in blue.
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