
Chapter 25: Spatio-temporal models for fMRI

W. Penny, G. Flandin and N. Trujillo-Barreto

May 8, 2006

Introduction

Functional Magnetic Resonance Imaging (fMRI) using Blood Oxygen Level De-
pendent (BOLD) contrast is an established method for making inferences about
regionally specific activations in the human brain [Frackowiak et al. 2003]. From
measurements of changes in blood oxygenation one can use various statistical
models, such as the General Linear Model (GLM) [Friston et al. 1995], to make
inferences about task-specific changes in underlying neuronal activity.

This chapter reviews previous work [Penny et al. 2003, Penny and Flandin 2005,
Penny et al. 2005c, Penny et al. 2006] on the development of Spatially Regu-
larised General Linear Models (SRGLMs) for the analysis of fMRI data. These
models allow for the characterisation of subject and regionally specific effects
using spatially regularised Posterior Probability Maps (PPMs). This spatial
regularisation has been shown [Penny et al. 2005c] to increase the sensitivity of
inferences one can make.

The chapter is structured as follows. The theoretical section describes the
generative model for SRGLM. This is split into descriptions of the prior and
likelihood. We show how the Variational Bayes (VB) algorithm, described in the
previous chapter, can be used for approximate inference. We describe how these
inferences are implemented for uni- and multi-variate contrasts, and discuss
the rationale for thresholding the resulting PPMs. We also discuss the spatio-
temporal nature of the model and compare it with standard approaches. The
results section looks at null fMRI data, synthetic data and fMRI from functional
activation studies of auditory and face processing. The chapter finishes with a
discussion.

Notation

Lower case variable names denote vectors and scalars. Whether the variable is
a vector or scalar should be clear from the context. Upper case names denote
matrices or dimensions of matrices. In what follows N(x;µ, Σ) denotes a multi-
variate normal density over x, having mean µ and covariance Σ. The precision
of a Gaussian variate is the inverse (co)variance. A gamma density over the
scalar random variable x is written as Ga(x; a, b). Normal and Gamma densities
are defined in chapter 24. We also use ||x||2 = xT x, denote the trace operator as
Tr(X), X+ for the pseudo-inverse, and use diag(x) to denote a diagonal matrix
with diagonal entries given by the vector x.
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Theory

We denote an fMRI data set consisting of T time points at N voxels as the
T × N matrix Y . In mass-univariate models [Friston et al. 1995], these data
are explained in terms of a T × K design matrix X, containing the values of
K regressors at T time points, and a K × N matrix of regression coefficients
W , containing K regression coefficients at each of the N voxels. The model is
written

Y = XW + E (1)

where E is a T ×N error matrix.
It is well known that fMRI data is contaminated with artifacts. These

stem primarily from low-frequency drifts due to hardware instabilities, aliased
cardiac pulsation and respiratory sources, unmodelled neuronal activity and
residual motion artifacts not accounted for by rigid body registration methods
[Woolrich et al. 2001]. This results in the residuals of an fMRI analysis being
temporally autocorrelated.

In previous work we have shown that, after removal of low-frequency drifts
using Discrete Cosine Transform (DCT) basis sets, low-order voxel-wise autore-
gressive (AR) models are sufficient for modelling this autocorrelation [Penny et al. 2003].
It is important to model these noise processes because parameter estimation
then becomes less biased [Gautama and Van Hulle 2004] and more accurate
[Penny et al. 2003].

Model likelihood

We now describe the approach taken in our previous work. For a P th-order AR
model, the likelihood of the data is given by

p(Y |W,A, λ) =
T∏

t=P+1

N∏
n=1

N(ytn − xtwn; (dtn −Xtwn)T an, λ−1
n ) (2)

where n indexes the nth voxel, an is a P ×1 vector of autoregressive coefficients,
wn is a K × 1 vector of regression coefficients and λn is the observation noise
precision. The vector xt is the tth row of the design matrix and Xt is a P ×
K matrix containing the previous P rows of X prior to time point t. The
scalar ytn is the fMRI scan at the tth time point and nth voxel and dtn =
[yt−1,n, yt−2,n, ..., yt−P,n]T . Because dtn depends on data P time steps before,
the likelihood is evaluated starting at time point P + 1, thus ignoring the GLM
fit at the first P time points.

Equation 2 shows that higher model likelihoods are obtained when the pre-
diction error ytn − xtwn is closer to what is expected from the AR estimate of
prediction error.

The voxel-wise parameters wn and an are contained in the nth columns of
matrices W and A, and the voxel-wise precision λn is the nth entry in λ. The
next section describes the prior distributions over these parameters. Together,
the likelihood and prior define the generative model, which is shown in Figure 1.
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Priors

The graph in Figure 1 shows that the joint probability of parameters and data
can be written

p(Y, W, A, λ, α, β) = p(Y |W,A, λ)p(W |α) (3)
p(A|β)p(λ|u1, u2)
p(α|q1, q2)p(β|r1, r2)

where the first term is the likelihood and the other terms are the priors. The
likelihood is given in equation 2 and the priors are described below.

Regression coefficients

For the regressions coefficients we have

p(W |α) =
K∏

k=1

p(wT
k |αk) (4)

p(wT
k |αk) = N(wT

k ; 0, α−1
k D−1

w )

where Dw is a spatial precision matrix. This can be set to correspond to eg.
a Low Resolution Tomography (LORETA) prior, a Gaussian Markov Random
Field (GMRF) prior or a minimum norm prior (Dw = I) [Friston and Penny 2003]
as described in earlier work [Penny et al. 2005c]. These priors implement the
spatial regularisation and are specified separately for each slice of data. Spec-
ification of 3-dimensional spatial priors (ie. over multiple slices) is desirable
from a modelling perspective but is computationally too demanding for current
computer technology.

We can also write wv = vec(W ), wr = vec(WT ), wv = Hwwr where Hw is a
permutation matrix. This leads to

p(W |α) = p(wv|α) (5)
= N(wv; 0, B−1)

where B is an augmented spatial precision matrix given by

B = Hw(diag(α)⊗Dw)HT
w (6)

where ⊗ is the Kronecker product. This form of the prior is useful as our
specification of approximate posteriors is based on similar quantities. It can be
seen that α encodes the spatial precision of the regression coefficients.

The above Gaussian priors underly GMRFs and LORETA and have been
used previously in fMRI [Woolrich et al. 2004] and EEG [Pascal Marqui et al. 1994].
They are by no means, however, the optimal choice for imaging data. In
EEG, for example, much interest has focussed on the use of Lp-norm priors
[Auranen 2005] instead of the L2-norm implicit in the Gaussian assumption.
Additionally, we are currently investigating the use of wavelet priors. This is an
active area of research and will be the topic of future publications.
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AR coefficients

We also define a spatial prior for the AR coefficients so that they too can be
spatially regularised. We have

p(A|β) =
P∏

p=1

p(ap|βp) (7)

p(ap|βp) = N(ap; 0, β−1
p D−1

a )

Again, Da is a user-defined spatial precision matrix, av = vec(A), ar = vec(AT )
and av = Haar where Ha is a permutation matrix. This prior is used to imple-
ment the spatial regularisation of the AR coefficients. We can write

p(A|β) = p(av|β) (8)
= N(av; 0, J−1)

where J is an augmented spatial precision matrix

J = Ha (diag(β)⊗Da) HT
a (9)

This form of the prior is useful as our specification of approximate posteriors
is based on similar quantities. The parameter β plays a similar role as α and
controls the spatial regularisation of the temporal auto-regression coefficients.

We have also investigated ‘Tissue-type’ priors which constrain AR estimates
to be similar for voxels in the same tissue-type eg. gray matter, white matter
or cerebro-spinal fluid. Bayesian model selection [Penny et al. 2006], however,
favours the smoothly varying priors defined in equation 7.

Precisions

We use Gamma priors on the precisions α, β and λ

p(λ|u1, u2) =
N∏

n=1

Ga(λn;u1, u2) (10)

p(α|q1, q2) =
K∏

k=1

Ga(αk; q1, q2)

p(β|r1, r2) =
P∏

p=1

Ga(βp; r1, r2)

where the Gamma density is defined in Chapter 24. Gamma priors were chosen
as they are the conjugate priors for Gaussian error models. The parameters are
set to q1 = r1 = u1 = 10 and q2 = r2 = u2 = 0.1. These parameters produce
Gamma densities with a mean of 1 and a variance of 10. The robustness of,
for example, model selection to the choice of these parameters is discussed in
[Penny et al. 2003].

Approximate Posteriors

Inference for SRGLMs has been implemented using the Variational Bayes (VB)
approach described in the previous chapter. In this section we describe the
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algorithm developed in previous work [Penny et al. 2005c] where we assumed
that the approximate posterior factorises over voxels and subsets of parameters.

Because of the spatial priors, the regression coefficients in the true posterior
p(W |Y ) will clearly be correlated. Our perspective, however, is that this is too
computationally burdensome for current personal computers to take account of.
Moreover, as we shall see later, updates for the approximate factorised densities
q(wn) do encourage the approximate posterior means to be similar at nearby
voxels, thereby achieving the desired effect of the prior.

Our approximate posterior is given by

q(W,A, λ, α, β) =
∏
n

q(wn)q(an)q(λn) (11)∏
k

q(αk)
∏
p

q(βp)

and each component of the approximate posterior is described below. These
update equations are self-contained except for a number of quantities that are
marked out using the ‘tilde’ notation. These are Ãn, b̃n, C̃n, d̃n and G̃n which
are all defined in the Appendix of this Chapter.

Regression coefficients

We have

q(wn) = N(wn; ŵn, Σ̂n) (12)

Σ̂n =
(
λ̄nÃn + B̄nn

)−1

ŵn = Σ̂n

(
λ̄nb̃T

n + rn

)
rn = −

N∑
i=1,i 6=n

B̄niŵi

where ŵn is the estimated posterior mean and Σ̂n is the estimated posterior
covariance. The quantity B̄ is defined as in equation 6 but uses ᾱ instead of α.
The quantities Ãn and b̃n are expectations related to autoregressive processes
and are defined in the Appendix. In the absence of temporal autocorrelation
we have Ãn = XT X and b̃T

n = XT yn.

AR coefficients

We have

q(an) = N(an;mn, Vn)

where

Vn =
(
λ̄nC̃n + J̄nn

)−1

(13)

mn = Vn(λ̄nd̃n + jn)

jn = −
N∑

i=1,i 6=n

J̄nimi
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and mn is the estimated posterior mean and Vn is the estimated posterior co-
variance. The quantity J̄ is defined as in equation 9 but β̄ is used instead of β.
The subscripts in J̄ni denote that part of J̄ relevant to the nth and ith voxels.
The quantities C̃n and d̃n are expectations that are defined in the Appendix.

Precisions

The approximate posteriors over the precision variables are Gamma densities.
For the precisions on the observation noise we have

q(λn) = Ga(λn; bn, cn) (14)

1
bn

=
G̃n

2
+

1
u1

cn =
T

2
+ u2

λ̄n = bc

where G̃n is the expected prediction error defined in the Appendix. For the
precisions of the regression coefficients we have

q(αk) = Ga(αk; gk, hk) (15)
1
gk

=
1
2

(
Tr(Σ̂kDw) + ŵT

k Dwŵk

)
+

1
q1

hk =
N

2
+ q2

ᾱk = gkhk

For the precisions of the AR coefficients we have

q(βp) = Ga(βp; r1p, r2p) (16)
1

r1p
=

1
2

(
Tr(VpDa) + mT

p Damp

)
+

1
r1

r2p =
N

2
+ r2

β̄p = r1pr2p

Practicalities

Our empirical applications use spatial precision matrices Da and Dw, defined
in section 2.2, which produce GMRF priors. Also, we use AR models of order
P = 3. Model selection using VB showed that this model order was sufficient
for all voxels in a previous analysis of fMRI [Penny et al. 2003].

The VB algorithm is initialised using Ordinary Least Square (OLS) estimates
for regression and autoregressive parameters as described in [Penny et al. 2003].
Quantities are then updated using equations 12,13,14,15,16.

As described in the previous chapter, the aim of VB is to match an ap-
proximate posterior to the true posterior density in the sense of minimising
Kullback-Liebler (KL) divergence. This is implemented implicitly by maximis-
ing the quantity F , known in statistical physics as the negative free energy.
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In the implemention of VB for SRGLMs, F is monitored during optimisation.
Convergence is then defined as less than a 1% increase in F .

Expressions for computing F are given in [Penny et al. 2006]. This is an im-
portant quantity as it can also be used for model comparison. This is described
at length in [Penny et al. 2006] and reviewed in Chapters 24 and 35.

The algorithm we have described is implemented in SPM version 5 and
can be downloaded from [SPM Software 2006]. Computation of a number of
quantites (eg. C̃n, d̃n and G̃n) is now much more efficient than in previous
versions [Penny et al. 2005c]. These improvements are described in a separate
document [Penny and Flandin 2005b]. To analyse a single session of data (eg.
the face fMRI data) takes about 30 minutes on a typical personal computer.

Spatio-temporal deconvolution

The central quantity of interest in fMRI analysis is our estimate of effect sizes,
embodied in contrasts of regression coefficients. A key update equation in our
VB scheme is, therefore, the approximate posterior for the regression coeffi-
cients. This is given by equation 12. For the special case of temporally uncor-
related data we have

Σ̂n =
(
λ̄nXT X + B̄nn

)−1
(17)

ŵn = Σ̂n

(
λ̄nXT yn + rn

)
where B̄ is a spatial precision matrix and rn is the weighted sum of neighboring
regression coefficient estimates.

This update indicates that the estimate at a given voxel regresses towards
those at nearby voxels. This is the desired effect of the spatial prior and is
preserved despite the factoristion over voxels in the approximate posterior (see
equation 11). Equation 17 can be thought of as the combination of a tem-
poral prediction XT yn and a spatial prediction from rn. Each prediction is
weighted by its relative precision to produce the optimal estimate ŵn. In this
sense, VB provides a spatio-temporal deconvolution of fMRI data. Moreover,
the parameters controlling the relative precisions, λ̄n and ᾱ are estimated from
the data. The effect size estimates therefore derive from an automatically reg-
ularised spatio-temporal deconvolution.

Contrasts

After having estimated a model, we will be interested in characterising a partic-
ular effect, c, which can usually be expressed as a linear function or ‘contrast’
of parameters, w. This is described at length in chapter 9. That is,

cn = CT wn (18)

where C is a contrast vector or matrix. For example, the contrast vector CT =
[1,−1] computes the difference between two experimental conditions.

Our statistical inferences are based on the approximate distribution q(W ),
which implies a distribution on c, q(c). Because q(W ) factorises over voxels we
can write

q(c) =
N∏

n=1

q(cn) (19)
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where cn is the effect size at voxel n. Given a contrast matrix C we have

q(cn) = N(cn;µn, Sn) (20)

with mean and covariance

µn = CT ŵn (21)
Sn = CT Σ̂nC

Bayesian inference based on this posterior can then take place using confidence
intervals [Box and Tiao 1992]. For univariate contrasts we have suggested the
use of Posterior Probability Maps (PPMs), as described in chapter 23.

If cn is a vector then we have a multivariate contrast. Inference can then
proceed as follows. The probability α that the zero vector lies on the 1 − α
confidence region of the posterior distribution at each voxel must then be com-
puted. We first note that this probability is the same as the probability that
the vector µn lies on the edge of the 1 − α confidence region for the distribu-
tion N(µn; 0, Sn). This latter probability can be computed by forming the test
statistic

dn = µT
nS−1

n µn (22)

which will be the sum of rn = rank(Sn) independent, squared Gaussian vari-
ables. As such, it has a χ2 distribution

p(dn) = χ2(rn) (23)

This procedure is identical to that used for making inferences in Bayesian Mul-
tivariate Autoregressive Models [Harrison et al. 2003]. We can also use this
procedure to test for two-sided effects, that is, activations or deactivations.
Though, strictly, these contrasts are univariate we will use the term ‘multivari-
ate contrasts’ to cover these two-sided effects.

Thresholding

In previous work [Friston and Penny 2003] we have suggested deriving Posterior
Probability Maps (PPMs) by applying two thresholds to the posterior distribu-
tions (i) an effect size threshold, γ, and (ii) a probability threshold pT . Voxel n
is then included in the PPM if q(cn > γ) > pT . This approach was described in
Chapter 23.

If voxel n is to be included, then the posterior exceedance probability q(cn >
γ) is plotted. It is also possible to plot the effect size itself, cn. The following
exploratory procedure can be used for exploring the posterior distribution of
effect sizes. Firstly, plot a map of effect sizes using the thresholds γ = 0 and
pT = 1 − 1/N where N is the number of voxels. We refer to these values as
the ‘default thresholds’. Then, after visual inspection of the resulting map use
a non-zero γ, the value of which reflects effect sizes in areas of interest. It will
then be possible to reduce pT to a value such as 0.95. Of course, if previous
imaging analyses have indicated what effect sizes are physiologically relevant
then this exploratory procedure is unnecessary.

8



False positive rates

If we partition effect-size values into two hypothesis spaces H0 : c ≤ γ and H1 :
c > γ then we can characterise the sensitivity and specificity of our algorithm.
This is different to classical inference which uses H0 : c = 0. A False Positive
(FP) occurs if we accept H1 when H0 is true.

If we use the default threshold, and the approximate posterior were exact
then the distribution of FPs is binomial with rate 1/N . The expected number
of false positives in each PPM is therefore N × 1/N = 1. The variance is
N × 1/N × (1− 1/N) which is approximately 1. We would therefore expect 0,
1 or 2 false positives per PPM.

Of course, the above result only holds if the approximate posterior is equal
to the true posterior. But given that all of our computational effort is aimed
at this goal it would not be surprising if the above analysis were indicative of
actual FP rates. This issue will be investigated using null fMRI data in the next
section.

Results

Null data

This section describes the analysis of a Null data set to find out how many false
positives are obtained using PPMs with default thresholds.

Images were acquired from a 1.5T Sonata (Siemens, Erlangen Germany)
which produced T2*-weighted transverse Echo-Planar Images (EPIs) with BOLD
contrast, whilst a subject was lying in the scanner, asked to rest and was not
provided with any experimental stimulus. These data are thus collected under
the null hypothesis, H0, that experimental effects are zero. This should hold
whatever the design matrix and contrast we conceive. Any observed activations
will be false positives.

Whole brain EPIs consisting of 48 transverse slices were acquired every
TR=4.32s resulting in a total of T = 98 scans. The voxel size is 3× 3× 3mm.
All images were realigned to the first image using a six-parameter rigid-body
transformation to account for subject movement. These data were not spatially
smoothed. Whilst spatial smoothing is necessary for the standard application of
classical inference (see eg. chapter 2), it is not necessary for the spatio-temporal
models described in this chapter. Indeed, the whole point of SRGLM is that
the optimal smoothness can be inferred from the data.

We then implemented a standard whole volume analysis on images compris-
ing N = 59, 945 voxels. We used the design matrix shown in the left panel of
Figure 2. Use of the default thresholds resulted in no spurious activations in
the PPM.

We then repeated the above analysis but with a number of different design
matrices. Firstly, we created a number of epoch designs. These were based on
the design in Figure 2 but epoch onsets were jittered by a number between plus
or minus 9 scans. This number was drawn from a uniform distribution, and
the epoch durations were drawn from a uniform distribution between 4 and 10
scans. Five such design matrices were created and VB models fitted with each
to the null data. For every analysis, the number of false positives was 0.
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Secondly, we created a number of event-related designs by sampling event
onsets with inter-stimulus intervals drawn from a poisson distribution with
rate 5 scans. These event streams were then convolved with a canonical HRF
[Henson 2003]. Again, five such design matrices were created and VB models
fitted with each to the null data. Over the 5 analyses, the average number of
false positives was 9.4. The higher false positive rate for event-related designs is
thought to occur because event-related regressors are more similar than epoch
regressors to fMRI noise.

Synthetic data

We then added three synthetic activations to a slice of null data (z = −13mm).
These were created using the design matrix and regression coefficient image
shown in Figure 2 (the two regression coefficient images, ie. for the activation
and the mean, were identical). These images were formed by placing delta
functions at three locations and then smoothing with Gaussian kernels having
FWHMs of 2, 3 and 4 pixels (going clockwise from the top-left blob). Images
were then rescaled to make the peaks unity.

In principle, smoothing with a Gaussian kernel renders the true effect size
greater than zero everywhere because a Gaussian has infinite spatial support. In
practice, however, when implemented on a digital computer with finite numer-
ical precision most voxels will be numerically zero. Indeed, our simulated data
contained 299 ‘activated’ voxels ie. voxels with effect sizes numerically greater
than zero.

This slice of data was then analysed using VB. The contrast CT = [1, 0] was
then used to look at the estimated activation effect which is shown in the left
panel of Figure 3. For comparison, we also show the effect as estimated using
OLS. Clearly, OLS estimates are much noisier than VB estimates.

Figure 4 shows plots of the exceedance probabilities for two different effect-
size thresholds, γ = 0 and γ = 0.3. Figure 5 shows thresholded versions of these
images. These are PPMs. Neither of these PPMs contain any false positives.
That is, the true effect size is greater than zero wherever a white voxel occurs.
This shows, informally, that use of the default thresholds provides good speci-
ficity whilst retaining reasonable sensitivity. Also, a combination of non-zero
effect-size thresholds and more liberal probability thresholds can do the same.

Auditory data

This section describes the use of multivariate contrasts for an auditory fMRI
data set comprising whole brain BOLD/EPI images acquired on a modified
2T Siemens Vision system. Each acquisition consisted of 64 contiguous slices
(64× 64× 64, 3mm × 3mm × 3mm voxels) and a time series of 84 images was
acquired with TR=7s from a single subject.

This was an epoch fMRI experiment in which the condition for successive
epochs alternated between rest and auditory stimulation, starting with rest.
Auditory stimulation was bi-syllabic words presented binaurally at a rate of 60
per minute.

These data were analysed using VB with the design matrix shown in Figure 6.
To look for voxels that increase activity in response to auditory stimulation we

10



used the univariate contrast CT = [1, 0]. Figure 7 shows a PPM that maps
effect-sizes of above threshold voxels.

To look for either increases or decreases in activity we use the multivariate
contrast CT = [1, 0]. This inference uses the χ2 approach described earlier.
Figures 8 shows the PPM obtained using default thresholds.

Face data

This is an event-related fMRI data set acquired by Henson et al. [Henson et al. 2002]
during an experiment concerned with the processing of faces. Greyscale images
of faces were presented for 500ms, replacing a baseline of an oval chequerboard
which was present throughout the interstimulus interval. Some faces were of
famous people, and were therefore familiar to the subject, and others were not.
Each face in the database was presented twice. This paradigm is a two-by-two
factorial design where the factors are familiarity and repetition. The four ex-
perimental conditions are ‘U1’, ‘U2’, ‘F1’ and ‘F2’ which are the first or second
(1/2) presentations of images of familiar ‘F’ or unfamiliar ‘U’ faces.

Images were acquired from a 2T VISION system (Siemens, Erlangen, Ger-
many) which produced T2*-weighted transverse Echo-Planar Images (EPIs)
with BOLD contrast. Whole brain EPIs consisting of 24 transverse slices were
acquired every two seconds resulting in a total of T=351 scans. All functional
images were realigned to the first functional image using a six-parameter rigid-
body transformation. To correct for the fact that different slices were acquired
at different times, time series were interpolated to the acquisition time of a ref-
erence slice. Images were then spatially normalized to a standard EPI template
using a nonlinear warping method [Ashburner and Friston 2003]. Each time se-
ries was then high-pass filtered using a set of discrete cosine basis functions with
a filter cut-off of 128 seconds.

The data were then analysed using the design matrix shown in Figure 9.
The first 8 columns contain stimulus related regressors. These correspond to
the four experimental conditions, where each stimulus train has been convolved
with two different hemodynamic bases (i) the canonical Hemodynamic Response
Function (HRF) and (ii) the time derivative of the canonical [Henson 2003]. The
next 6 regressors in the design matrix describe movement of the subject in the
scanner and the final column models the mean response.

Figure 10 plots a map of the first autoregressive component as estimated
using VB. This shows a good deal of heterogeneity and justifies our assumption
that that AR coefficients are spatially varying. The estimated spatial variation
is smooth, however, due to the spatial prior. Figure 11 shows a PPM for ‘Any
effect of faces’ which was obtained using the multivariate contrast matrix shown
in Figure 9.

Discussion

We have reviewed a framework for the analysis of fMRI data based on spatially
regularised GLMs. This model embodies prior knowledge that evoked responses
are spatially homogeneous and locally contiguous.

As compared to standard approaches based on spatially smoothing the imag-
ing data itself, the spatial regularisation procedure has been shown to result in
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inferences with higher sensitivity [Penny et al. 2005c]. The approach may be
viewed as an automatically regularized spatio-temporal deconvolution scheme.

Use of PPMs with default thresholds resulted in low false positive rates
for null fMRI data, and physiologically plausible activations for auditory and
face fMRI data sets. We have recently developed a similar approach for source
localisation of EEG/MEG, which is described in the following chapter.
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Appendix

This appendix provides a number of formulae required for updating the ap-
proximate posteriors. These have been derived in [Penny et al. 2003]. Firstly,
auxiliary quantities for updating q(wn) are

Ãn =
∑

t

xT
t xt + XT

t (mT
nmn + Vn)Xt − xT

t mnXt −XT
t mT

nxt (24)

b̃n =
∑

t

ytnxt −mndtnxt − ytnmnXt + dT
tn(mT

nmn + Vn)Xt (25)

For the special case in which the errors are uncorrelated, ie. P = 0, we have
Ãn = XT X and b̃n = XT yn. If we also have no spatial prior on the regression
coefficients, ie. α = 0, we then recover the least squares update

ŵn = (XT X)−1XT yn (26)
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Secondly, auxiliary quantities for updating q(an) are

C̃n =
∑

t

dtndT
tn + Xt(ŵnŵT

n + Σ̂n)XT
t (27)

− dtnŵT
n XT

t −XtŵndT
tn

d̃n =
∑

t

ytndT
tn − xtŵndT

tn − ytnŵT
n X̃T + xt(ŵnŵT

n + Σ̂n)XT
t

Thirdly, the auxiliary quantity for updating q(λn) is

G̃n = G̃n1 + G̃n2 + G̃n3 (28)

where

G̃n1 =
∑

t

y2
tn + dT

tn(mT
nmn + Vn)dtn − 2ytndT

tnmn (29)

G̃n2 =
∑

t

xt(ŵnŵT
n + Σ̂)xT

t + Tr(XT
t (mT

nmn + Vn)XtΣ̂n)

+ ŵT
n XT

t (mT
nmn + Vn)Xtŵn − 2xt(ŵnŵT

n + Σ̂n)Xtm
T
n

G̃n3 =
∑

t

−2ytnxtŵn + 2mndtnxtŵn

+ 2ytnmnXtŵn − 2dT
tn(mT

nmn + Vn)Xtŵn

Many terms in the above equations do not depend on model parameters and so
can be pre-computed for efficient implementation. See [Penny and Flandin 2005b]
for more details.
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Figure 1: The figure shows the probabilistic dependencies underlying the SRGLM
generative model for fMRI data. The quantities in squares are constants and
those in circles are random variables. The spatial regularisation coefficients
α constrain the regression coefficients W . The parameters λ and A define the
autoregressive error processes which contribute to the measurements. The spatial
regularisation coefficients β constrain the AR coefficients A.
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Figure 2: Left: Design matrix for null fMRI data. The first column models a
boxcar activation and the second column models the mean. There are n = 1..98
rows corresponding to the 98 scans. Right: Image of regression coefficients
corresponding to a synthetic activation. This image is added to the null data.
In this image, and others that follow, black is 0 and white is 1.

Figure 3: Left: Estimated effect using VB (the true effect is shown in the right
plot in Figure 2). Right: Estimated effect using OLS.

Figure 4: Plots of exceedance probabilities for two γ thresholds. Left: A plot of
p(cn > 0). Right: A plot of p(cn > 0.3).
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Figure 5: PPMs for two thresholds. Left: The default thresholds (γ = 0, pT =
1− 1/N) Right: The thresholds γ = 0.3, pT = 0.95.

Figure 6: Design matrix for analysis of the auditory data. The first column
models epochs of auditory stimulation and the second models the mean response.
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Figure 7: PPM for positive auditory activation. Overlay of effect-size, in units
of percentage of global mean, on subjects MRI for above threshold voxels. The
default thresholds were used, that is, we plot cn for voxels which satisfy p(cn >
0) > 1− 1/N .

Figure 8: PPM for positive or negative auditory activation. Overlay of χ2

statistic on subjects MRI for above threshold voxels. The default thresholds were
used, that is, we plot χ2

n for voxels which satisfy p(cn > 0) > 1− 1/N .
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Figure 9: Lower part: Design matrix for analysis of face data, Upper part:
Multivariate contrast used to test for any effect of faces.
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Figure 10: Image of the first autoregressive coefficient estimated from the face
fMRI data (in all, there were P = 3 AR coefficients per voxel). Black denotes
0 and white 1. Large values can be seen around the circle of Willis and middle
cerebral artery. This makes sense as cardiac-induced pulsatile motion is likely
to be stronger in these regions.

Figure 11: PPM showing above threshold χ2 statistics for any effect of faces
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