
Statistical Mechanics

Will Penny

Wellcome Trust Centre for Neuroimaging,
University College, London WC1N 3BG, UK.

December 30, 2015

1 Introduction

These notes are taken from Leonard Susskind’s first five lectures on Statistical
Mechanics from Stanford University, and available on YouTube.

2 Entropy

Given a probability distribution over the discrete variable x which make taken
on values i = 1..K, the entropy is

S = −
K∑
i=1

pi log pi (1)

where pi ≡ p(x = i). If only M of the K states have non-zero probability and
that probability is 1/M then S = logM . In this special case the entropy is the
log of the number of occupied states.

An analog of this special case in the continuous domain occurs in Liouville’s
Theorem. This states that if the volume of phase space (i.e. of the x variable,
but now multivariate and continuous) is some fixed value e.g. logM then after
the system evolves the distribution over x will change but the volume will be
preserved. The density within the volume is assumed uniform.

Entropy can depend both on the state of a system itself and your knowledge
of it (depending, presumably, on what distribution one is considering).

3 Temperature

The most general definition of temperature, T , is ’the amount of energy required
to increase the entropy by 1 unit of information’. That is

T =
dE

dS
(2)

where E is energy. To show that this is a sensible definition, consider two
volumes of material A and B that are connected to each other and so may
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exchange energy. Before this exchange occurs assume that each system is at
steady state with temperatures tA and tB and that tB ≥ tA.

From the first law of thermodynamics (L1) we know that the total energy is
conserved. Hence

dEA + dEB = 0 (3)

From the second law of thermodynamics we know entropy increases (L2)

dSA + dSB ≥ 0 (4)

Substituting our definintion of temperature into equation 3 gives

dSB =
−TA
TB

dSA (5)

Pluggin this into equation 4, and assuming temperatures are positive, gives

(TB − TA)dSA ≥ 0 (6)

Because we have defined B to be at higher temperature than A we have

dSA ≥ 0 (7)

Multiplying by TA gives
dEA ≥ 0 (8)

Thus the energy of system A increases. From L1, the energy of system B must
therefore decrease. Hence energy flows from the higher temperature system to
the lower until the temperatures are equal.

4 Equilibrium Distribution

Here we consider our system of interest as being in contact with a heat bath
which is so large we can consider our system as being just one of N replicas of
our system where N is a large number. We denote the number of replicas in
state k as nk. We have

K∑
k=1

nk = N (9)

For example if n1 = N all replicas are in state 1. Given that N is large we have
pk = nk/N .

What is the distribution of states at thermal equilibrium ? i.e. what is pk
? Well, the pk are defined by the corresponding set of occupation numbers nk.
The more ways there are of supporting {n1, ..., nk, ..., nK} the more probable is
that set. This number of combinations is given by

C =
N !

n1!n2!...nK !
(10)

We now approximate

logN ! =

N∑
a=1

log a (11)
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by the continuous integral

logN ! ≈
∫ N

1

log ada (12)

≈ N logN −N

Hence N ! = NNe−N which is Stirling’s approximation. Plugging this into
equation 10 gives

logC = N logN −
∑
i

ni log ni (13)

= −
K∑
i=1

pi log pi

= S

Thus the most probable distribution of states is the one with the highest entropy.
So, we can now finesse our question to be - what is the distribution of states

with maximal entropy ? Given that the constraints on this distribution are

K∑
k=1

pk = 1 (14)

K∑
k=1

pkek = E

where E is the energy, the solution can be found by minimising

V (p) =
∑
k

pk log pk + α

(∑
k

pk − 1

)
+ β

(∑
k

pkek − E

)
(15)

where α and β are Lagrange multipliers. Differentiating with respect to pk and
setting to zero gives

log pk = −(1 + α)− βek (16)

Hence

pk =
1

Z
exp(−βek) (17)

where Z = e1+α. This is the Boltzmann distribution.

5 The Partition Function

The quantity logZ is known as the partition function and the fundamental
quantities entropy, energy and temperature can all be related to it.

5.1 Energy

Using the definition of energy we have

E =
∑
k

ekpk (18)

=
1

Z

∑
k

ek exp(−βek)
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and given that Z is the normalisation constant, we have

Z =
∑
k

exp(−βek) (19)

dZ

dβ
= −

∑
k

ek exp(−βek)

Hence

E = − 1

Z

dZ

dβ
(20)

= −d logZ

dβ

5.2 Entropy

Using the definition of entropy we have

S = −
∑
k

pk log pk (21)

and from the Boltzmann distribution we know

pk =
1

Z
exp(−βek) (22)

log pk = −βek − logZ

Hence

S = β
∑
k

pkek + logZ
∑
k

pk (23)

= βE + logZ

5.3 Temperature

From the above relation between S and logZ we can write

dS = βdE + Edβ +
d logZ

dβ
dβ (24)

= βdE + Edβ − Edβ

Hence

β =
dS

dE
(25)

Therefore β = 1/T is the inverse temperature.

6 Helmholtz Free Energy

We can rewrite equation 23, by multiplying through by temperature, T = 1/β,
and re-arranging as

E − TS = −T logZ (26)
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The Helmholtz Free Energy, A, is then defined as the above quantity

A = E − TS (27)

= −T logZ

So, A is a function of temperature.

7 Adiabatic Change

In dependent variables that one may vary experimentally are referred to as
control parameters. For example, one may alter volume, V , and measure what
is the effect on the dependent variable energy.

We can define pressure on eg. a piston connected to a volume of material as

P = −∂E
∂V

(28)

Increasing the volume results in less pressure on the piston. An adiabatic change
is defined as one which does not change the entropy. Thus if the volume changes
adiabatically we have

P = −∂E
∂V

∣∣∣∣
S

(29)

From basic calculus (see section 1.6.1) we can write

− P =
∂E

∂V

∣∣∣∣
T

− ∂E

∂S

∣∣∣∣
V

∂S

∂V

∣∣∣∣
T

(30)

=
∂E

∂V

∣∣∣∣
T

− T ∂S
∂V

∣∣∣∣
T

=
∂

∂V
(E − TS)

∣∣∣∣
T

=
∂A

∂V

∣∣∣∣
T

where the second line follows from the definition of temperature, and the last
line follows from the definition of the Helmholtz Free Energy. We therefore also
have

P = T
∂ logZ

∂V

∣∣∣∣
T

Pressure is sometimes referred to as the ’thermodynamic conjugate’ of volume
(cf. dependent and independent variables).

7.0.1 Example: Ideal gas

For an ideal gas

Z =
V N

N !
f(β) (31)

logZ = N log V + log f(β) + ...

∂ logZ

∂V
=

N

V
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Hence PV = NT , the ideal Gas law, or if you measure temperature in kelvin
PV = NkT .

Appendix

Calculus for Adiabatic Change

The change in entropy given by a change in volume and temperature is

dS =
∂S

∂V

∣∣∣∣
T

∆V +
∂S

∂T

∣∣∣∣
V

∆T (32)

Therefore, if there is no change in entropy dS = 0 we must have

∆T

∆V
=

− ∂S
∂V

∣∣∣∣
T

∂S
∂T

∣∣∣∣
V

(33)

This is our adiabatic constraint. Similarly, the change in energy given by a
change in volume and temperature is

∆E =
∂E

∂V

∣∣∣∣
T

∆V +
∂E

∂T

∣∣∣∣
V

∆T (34)

Therefore, the change in energy per change in volume is

∆E

∆V
=

∂E

∂V

∣∣∣∣
T

+
∂E

∂T

∣∣∣∣
V

∆T

∆V
(35)

=
∂E

∂V

∣∣∣∣
T

+
∂E

∂S

∣∣∣∣
V

∂S

∂T

∣∣∣∣
V

∆T

∆V

Finally, plugging in equation 33 (our adiabatic constraint) into this last equation
gives

∂E

∂V

∣∣∣∣
S

=
∂E

∂V

∣∣∣∣
T

− ∂E

∂S

∣∣∣∣
V

∂S

∂V

∣∣∣∣
T

(36)
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