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Functional near-infrared spectroscopy (fNIRS) is an emerging technique for measuring changes in cerebral
hemoglobin concentration via optical absorption changes. Although there is great interest in using fNIRS to
study brain connectivity, current methods are unable to infer the directionality of neuronal connections. In this
paper, we apply Dynamic Causal Modelling (DCM) to fNIRS data. Specifically, we present a generative model
of howobserved fNIRS data are caused by interactions amonghiddenneuronal states. Inversion of this generative
model, using an established Bayesian framework (variational Laplace), then enables inference about changes in
directed connectivity at the neuronal level. Using experimental data acquired during motor imagery and motor
execution tasks, we show that directed (i.e., effective) connectivity from the supplementary motor area to the
primary motor cortex is negatively modulated bymotor imagery, and this suppressive influence causes reduced
activity in the primarymotor cortex duringmotor imagery. These results are consistent with findings of previous
functionalmagnetic resonance imaging (fMRI) studies, suggesting that the proposedmethod enables one to infer
directed interactions in the brainmediated byneuronal dynamics frommeasurements of optical density changes.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
Introduction

Functional near-infrared spectroscopy (fNIRS) is a noninvasive
method for monitoring hemodynamic changes in the brain (Jobsis,
1977; Villringer et al., 1993; Hoshi, 2007; Ferrari and Quaresima,
2012; Scholkmann et al., 2014). fNIRS works by shining near-infrared
light in the spectral range between 650 and 950 nm from fiber-optic
emitters placed on the scalp. Because the absorption of chromophores
in tissue is relatively low within this spectral range, near-infrared light
can propagate several centimeters through tissue. Changes in light
photon density reaching the detectors correspond to changes in the
optical properties of the tissue, reflecting changes in oxygenated and
deoxygenated hemoglobin (HbO and HbR). The loss of light levels can
then be used to calculate the changes in hemoglobin concentrations in
underlying brain regions (Delpy et al., 1988). As neuronal processes
require extra delivery of oxygen, this provides a marker of underlying
neuronal activity.

fNIRS has many advantages that make it highly useful in cognitive
and clinical neuroscience studies. Compared to other imaging
modalities, such as functional magnetic resonance imaging (fMRI),
fNIRS is mobile and compact, and the data acquisition is quiet. Further-
more, as compared to fMRI, fNIRS provides a more direct measure of
changes in HbO, HbR, and total hemoglobin (HbT), and the time series
cl.ac.uk (W.D. Penny).
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are sampled at high temporal resolution. It has therefore proved to be
an effective tool for studying physiological mechanisms in the healthy
brain and in cerebrovascular disease (Highton et al., 2010; Wolf et al.,
2012; Obrig, 2014). It is also finding unique applications in clinical
areas, including bedside monitoring of infants, and studies of auditory
and language systems (Lloyd-Fox et al., 2010; Eggebrecht et al., 2014).

There is currently a surge of interest in characterizing brain connec-
tivity using fNIRS. Recent fNIRS studies have assessed the coupling
between brain regions in terms of a measure of functional connectivity
(Homae et al., 2010; Sasai et al., 2011) and effective connectivity (Im
et al., 2010; Yuan, 2013). Specifically, Homae et al. (2010) explored
developmental changes of brain networks in early infancy, using
functional connectivity defined as temporal correlation between pairs
of fNIRS measurements. Sasai et al. (2011) investigated the frequency-
specific characteristics of functional connectivity based on spontaneous
oscillation in the low-frequency range in HbO and HbR signals. Howev-
er, functional connectivity does not provide any insight into the directed
causal interactions among brain regions underlying cognitive process-
ing. To address this shortcoming, Im et al. (2010) and Yuan (2013)
applied Granger causality analysis to fNIRS data, which provides
estimation of the directed functional connectivity between brain
regions. The analyses of both functional connectivity and effective (via
Granger causality) connectivity are usually performed at the level of
measured hemodynamic signals, such as HbO, HbR, and HbT responses
(White et al., 2009; Im et al., 2010; Homae et al., 2010; Sasai et al.,
2011; Yuan, 2013). However, connectivity estimates at the level of
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Schematic of the generative model of fNIRS data. The neurodynamic equation uses
linear differential equations and a single state variable per region describing neural
activity. Coupling parameter matrices A, Bi, and C represent the average connectivity
among regions, the modulation of effective connectivity by experimental manipulation,
and the influence of inputs on regions, respectively. The hemodynamic equation uses
the Balloon model and its extensions to describe how neural activity causes a change in
a flow inducing signal which in turn causes an increase in blood flow with concomitant
changes in relative blood volume and deoxy-hemoglobin. The optics equation uses a
sensitivity matrix, S, describing how changes in hemodynamic sources cause changes in
optical measurements. Potential pial vein contamination of the fNIRS measurements is
corrected using matrices WH and WQ. Spatially distributed hemodynamic source is
generated using Gaussian spatial smoothing kernel K.
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hemodynamic measurements are not direct measures of connectivity
changes at the neuronal level, because the hemodynamic response to
neuronal activation depends on the balance of the changes in cerebral
bloodflowandoxidativemetabolism, and also on the changes in cerebral
blood volume (Fox and Raichle, 1986; Buxton, 2012). This complex
interplay between processes can cause functional connectivity to differ
with the type of hemoglobin changes (e.g., HbO and HbR), while
underlying interactions between neuronal populations do not vary
(Lu et al., 2010). This highlights the importance of estimating causal
influences among neuronal populations, referring to a biophysical
model of howneuronal activity is transformed into fNIRSmeasurements.

Several fNIRS studies have used biophysical models relating blood
inflow to HbO and HbR changes, or neuronal activity to HbO and HbR
changes during brain activation. Specifically, Cui et al. (2010) generated
synthetic HbO and HbR responses induced by blood inflow using the
Balloon model in a study that investigated the effect of head motion
on the fNIRS signal. Dubeau et al. (2012) recovered neuronal inputs
from hemodynamic measurements by deconvolving the extended
Balloon model (Friston et al., 2000), and showed significant correlation
between estimated neural inputs and measurements of local field
potentials and multiunit activity. However, to our knowledge, there
have been no studies focusing on model-based estimation of neuronal
interaction among multiple regions from the optical density changes
using fNIRS.

In this paper, we apply Dynamic Causal Modelling (DCM) to fNIRS
data, to estimate effective connectivity at the neuronal level from the
measurement of optical density changes. Effective connectivity is
defined as the (model-based) influence of one (neuronal) system on
another. DCM is a framework for fitting differential equation or state
space models of neuronal activity to brain imaging data using Bayesian
inference (Friston et al., 2003). There is now a library of DCMs and
variants differ according to their level of biological realism and the
data features which they explain. The DCM approach can be applied to
fMRI (Friston et al., 2003, 2014), electroencephalographic (EEG), and
Magnetoencephalographic (MEG) data (Moran et al., 2007; Penny
et al., 2009; Daunizeau et al., 2009b).

This paper extends the DCM approach to fNIRS. Because the varia-
tional Bayesian estimation algorithm is the same as that used for
DCMs for other imaging modalities, this paper focuses on development
of a generative model of how observed fNIRS data are caused by the in-
teractions among hidden neuronal states. In particular, we extend the
neurodynamic and hemodynamic models used for DCM-fMRI analysis
(Friston et al., 2003) to additionally include the total hemoglobin state
(Cui et al., 2010), and optics model that describes the detected optical
density changes as a linear combination of light absorption changes
due to HbO and HbR (Delpy et al., 1988; Arridge, 1999). The model is
further augmented by including spatially extended hemodynamic
sources (Shmuel et al., 2007) and pial vein contamination effects
(Gagnon et al., 2012). In short, the proposed method allows fNIRS to
be used for making inference about changes in directed connectivity
at the neuronal level.

This paper is structured as follows: In the Methods section we first
describe a generative model of fNIRS data, and then describe the
model optimization procedure for estimating the connectivity parame-
ters from this data. In the Results sectionwe provide an illustrative anal-
ysis using fNIRS data acquired during the motor imagery and motor
execution tasks. In the Discussion section we discuss future extensions
of the proposed method.

Methods

The generative model for fNIRS data comprises three components:
(i) neurodynamics describing neural activity in terms of inter-regional
interactions and its experimentally induced modulation (Friston et al.,
2003), (ii) hemodynamics linking neural activity with the changes in
total hemoglobin, and deoxy-hemoglobin based on the Balloon model
(Friston et al., 2000; Buxton et al., 2004; Cui et al., 2010), and (iii) optics
relating the hemodynamic sources to optical density changes (Delpy
et al., 1988; Arridge, 1999). A schematic of the generative model is
summarized in Fig. 1. The following subsections describe each of these
components. These are followed by sections on computing the optical
sensitivity matrix and confounding effects that underlie the optical
model, and a section on model estimation.

Neurodynamics

The neurodynamics are described by the following multivariate
differential equation

z
�

t ¼ ℑtzt þ Cut

ℑt ¼ Aþ
XM
i¼1

ut ið ÞBi
;

ð1Þ

where t indexes continuous time and the dot notation denotes a time
derivative. The entries in z correspond to neuronal activity in j =
1,…,L cortical source regions, and u(i) is the ith of M experimental in-
puts. An [L × L] matrix, ℑ, denotes the effective connectivity between



340 S. Tak et al. / NeuroImage 111 (2015) 338–349
andwithin regions, and an [L×M] matrix, C, defines a set of experimen-
tal input connections that specify which inputs are connected to which
regions.

The effective connectivity ℑ is characterized by an [L × L] connectiv-
ity matrix, A, that specifies which regions are connected in the absence
of exogenous or experimental input and whether these connections are
unidirectional or bidirectional. We also define an [L × L] modulatory
matrix, Bi, that specifies which intrinsic connections can be changed as
a result of input i. Usually, the Bi parameters are of greatest interest —
as these describe how connections among brain regions respond to
experimental manipulations. For example, in the application in this
paper we show how connections among regions in the motor system
are modulated by motor imagery.

The overall specification of input, intrinsic and modulatory connec-
tivity comprises our assumptions about model structure. This in turn
represents a scientific hypothesis about the structure of the large-scale
neuronal network mediating the underlying function.

The above neurodynamical model is bilinear, and deterministic, and
has a single-state variable per region. However, as we can build on de-
velopments made in DCM for fMRI, these models are readily extended
to the nonlinear and stochastic cases (Stephan et al., 2008; Daunizeau
et al., 2009a). In future publicationswewill also explore theuse of richer
dynamical models, employing for example two-state variables per
region (Marreiros et al., 2008).

To enforce constraints on the parameters being estimated, we make

use of latent variables. For example, the use of latent variables,Ãij andeBi j,
ensures that self connections, ℑii, are negativewith a typical value of 0.5:

ℑ ii ¼ −0:5 exp eAii þ∑kut kð ÞeBk
ii

� �
. Thus, although Ãii and eBii have

Gaussian priors (see the Priors, estimation, andmodel selection section)
and can be positive or negative, ℑii will be strictly negative. For the

off-diagonal terms, we have no such constraints, i.e. Aij = Ãij, Bi j ¼ eBi j.

Overall, the neuronal parameters are θn ¼ eA; eB;Cn o
.

Hemodynamics

The hemodynamic model involves a set of hemodynamic state
variables, state equations and hemodynamic parameters, θh. Neuronal
activity in source region j, zj, causes an increase in vasodilatory signal
sj that is subject to autoregulatory feedback, and inflow fi,in responds
in proportion to this (Friston et al., 2000)

s
�

j ¼ z j−κ js j−γ j f j;in−1
� �

f
�

j;in ¼ s j;
ð2Þ

where κj is the rate of signal decay, and γj is the rate of autoregulatory
feedback by blood flow.

The rate of blood volume vj (Buxton et al., 1998) and total hemoglobin
concentration pj (Cui et al., 2010) changes as

τ jv
�

j ¼ f j;in− f j;out

τ jp
�

j ¼ f j;in− f j;out
� � pj

vj
;

ð3Þ

where the first equation describes the filling of the venous ‘Balloon’ until
inflow equals outflow, fj,out, which happens with the transit time τj.

The rate of deoxy-hemoglobin qj changes is modeled as the delivery
of deoxy-hemoglobin into the venous compartment minus that
expelled (Buxton et al., 1998)

τ jq
�

j ¼ f j;in
E f j;in;ρ
� �

ρ
− f j;out

q j

v j

E f ;ρð Þ ¼ 1− 1−ρð Þ1= f
ð4Þ
where E(f, ρ) is the proportion of oxygen extracted from the blood and ρ
is the resting oxygen extraction fraction.

In the steady-state the outflow is modeled as a power of blood
volume (Grubb et al., 1974). However, in the transient state the blood
volume changes often lag behind the blood flow changes. To address
this dynamic relationship, the outflow model is further augmented by
including viscoelastic time parameter τj,v (Buxton et al., 2004):

fj;out ¼ v1=αj þ τ j;vv
�

j; ð5Þ

where α is Grubb's exponent (Grubb et al., 1974), and τj,v describes an
additional resistance of venous blood vessels to rapid blood volume
changes.

Four of the hemodynamic parameters are estimated from each

source activity: θh ¼ eκ j; eγ j; eτ j; eτ j;v

n o
. The use of latent variables ensures

that estimated hemodynamic parameters are within a physiologically
realistic range:

κ j ¼ 0:64 exp eκ j

� �
γ j ¼ 0:32 exp eγ j

� �
τ j ¼ 2 exp eτ j

� �
τ j;v ¼ 2 exp eτ j;v

� �
:

ð6Þ

The other parameters are fixed to α = ρ = 0.32 in accordance with
previous work (Stephan et al., 2007).

The viscoelastic time constant τj,v ranges from0 to 30 s (Buxton et al.,
2004). However, it is known from high field fMRI studies (Yacoub et al.,
2005; Jin and Kim, 2008) that τj,v can decrease as onemoves from deep
to more superficial cortical layers. fNIRS measures signal mainly from
the superficial cortical layers, potentially reflecting tissue properties
from deeper layers through draining veins. We therefore used, a broad
prior over τj,v having amean of 2 with prior standard deviation of latent
variable eτ j;v ¼ 1 in Eq. (6), so that three standard deviations (i.e., 2
exp(3) = 40.17) can cover the physiological ranges.

Optics

A fNIRS optode array comprises Ns optical sources (emitters) and Nd

optical detectors which are paired up to form i = 1, …, N channels. In
principle, all optical channels are sensitive to all neuronal sources. In
practice, the sensitivity of channels to sources is governed by the
sensitivity matrix (see below). It provides N channel measurements of
optical density changes at time t and wavelength λ1, and N at λ2.
These are written as the [N × 1] vectors y(λ1) and y(λ2). These channel
measurements are then related to the [L × 1] vectors of HbO and HbR,
ΔHc and ΔQc, in the L cortical source regions of interest as

y λ1ð Þ
y λ2ð Þ

� �
¼ ϵH λ1ð ÞWHS λ1ð Þ ϵQ λ1ð ÞWQS λ1ð Þ

ϵH λ2ð ÞWHS λ2ð Þ ϵQ λ2ð ÞWQS λ2ð Þ
� �

ΔHc
ΔQc

� �
; ð7Þ

with

ΔHc ¼ ΔPc−ΔQ c

ΔPc ¼ P0 � p−1
ΔQc ¼ Q0 � q−1;

where ϵH and ϵQ are the extinction coefficients for HbO and HbR; S is the
[N × L] sensitivity matrix; p and q are HbT and HbR normalized to their
baseline concentrations P0 and Q0 = P0(1 − SO2) where SO2 is the
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baseline oxygenation saturation; and WH and WQ are [N × N] matrices
for correcting pial vein contamination of fNIRS measurements:

WH ¼ diag
1

ω1;H
;…;

1
ωN;H

" #
;

WQ ¼ diag
1

ω1;Q
;…;

1
ωN;Q

" #
;

ð8Þ

where ω is the ratio of cortical tissue signal over the total activated
signal originating from cortical tissue and pial vein: ω ¼ cortical

corticalþpial

(Gagnon et al., 2012).
Two of the optics parameters are estimated from the data for each

channel location: θp ¼ eωi;H ; eωi;Q
� 	

. The other parameters in Eq. (7)
are fixed to P0 = 71 μM (Yücel et al., 2012), and SO2 = 0.65 (Boas
et al., 2003). The use of latent variables ensures that the estimated cor-
tical fraction of fNIRS measurements is within a physiologically realistic
range:

ωi;H ¼ 0:5 exp eωi;H

� �
ωi;Q ¼ 0:5 exp eωi;Q

� �
:

ð9Þ

The optical densitymeasurement, y, is affected by the signals arising
from both cerebral and extracerebral (e.g., pial vasculature and skin)
regions, since the fNIRS signal is integrated through the different
superficial layers of the head (Liebert et al., 2004; Dehaes et al., 2011;
Gagnon et al., 2012; Kirilina et al., 2012) Specifically, Gagnon et al.
(2012) showed that evoked oxygenation changes in the cortex can
propagate through the pial veins at the surface of the cortex, which
leads to different cortical weighting factors for HbO and HbR
(ωH ≈ 0.76, ωQ ≈ 0.19). We set prior means of ωi,H and ωi,Q to 0.5
(Eq. (9)), and then estimated these values from data.

The i, jth element of the sensitivity matrix, Si,j at wavelength λ in
Eq. (7) is given by

Si; j λð Þ ¼
G ri;s; r j;h
� �

G r j;h; ri;d
� �

G ri;s; ri;d
� � ð10Þ

where ri,s and ri,d are the optical source and optical detector positions for
the ith of N channel measurements, and rj,h is the hemodynamic source
position in the jth brain region of interest. The quantity G(r1, r2) is
Green's function of the photon fluence at position r2 from a source at
r1. Si,j is the ratio of light received indirectly (by detector di from source
si) via scattering from hemodynamic source hj versus that received
directly, which corresponds to the effective pathlength of detected pho-
tons for the ith channelmeasurement in the jth hemodynamic source. In
practice, the sensitivity matrix can be estimated by simulating photon
migration through the head and brain based on a Monte Carlo method
(Wang et al., 1995; Boas et al., 2002; Fang, 2010) or finite element
methods (Dehghani et al., 2009). These computations require a struc-
tural Magnetic Resonance Image (sMRI) of the subject's head and
brain. However, when the subject-specific sMRI is not available, it is
also possible to use a canonical sMRI (see Cooper et al., 2012; Ferradal
et al., 2014 for a comparison). In addition, given a set of standard optode
positions and a canonical cortical surface, Green's functions can be pre-
computed. This is analogous to the pre-computation of a standard lead
field model for M/EEG source reconstruction (or DCM for M/EEG).
Thus, users of DCM for fNIRS can use these standard forward models,
thus saving a large amount of computation time.

Computing the sensitivity matrix

In this study, we used the mesh-based Monte Carlo simulation soft-
ware (MMC, Fang (2010)) to estimate Green's function of the photon
fluence, and then calculate a matrix of the sensitivity to the absorption
coefficient changes S in Eq. (10). Specifically, given a 3D finite-element
mesh generated from a canonical sMRI (Holmes et al., 1998; Fang and
Boas, 2009), we launch 108 photons from the optical source position
of each channel rs to estimate Green's functions, G(rs, rh) and G(rs, rd),
from the position of optical source rs into the positions of the hemody-
namic sources rh and the position of optical detector rd, respectively.
We also launch 108 photons from the optical detector position of each
channel rd to estimate Green's function G(rd, rh), which, according to
the reciprocity theorem (Arridge, 1999), is equivalent to G(rh, rd).
Since tissue-type specific labeling of optical properties provides a
more accurate lightmodel than assuming homogeneous optical proper-
ties (Heiskala et al., 2009), each tetrahedral volume element is labeled
by tissue type, and assigned optical properties as summarized in
Table 1. Optical properties for the scalp/skull, cerebrospinal fluid
(CSF), gray matter, and white matter are identical to those used in the
literature (Fang, 2010; Eggebrecht et al., 2012).

Distributed sources

In Eq. (7), we have modeled each hemodynamic signal as a point
source which produces a hemodynamic response at a single specified
anatomical location. However, it is also possible to consider hemody-
namic responses as being spatially extended. Assuming that the spatial
point spread functions of hemodynamic responses are approximately
Gaussian (Shmuel et al., 2007), the spatially distributed hemodynamic
source can be specified by convolving the temporal response with a
Gaussian spatial kernel whose width can be estimated during model
inversion. Hemodynamic activity at source location rl is then given by

ΔHc rl; r j
� �

¼ K rl; r j
� �

ΔHc r j
� �

ΔQc rl; r j
� �

¼ K rl; r j
� �

ΔQc r j
� �

K rl; r j
� �

¼ exp
− rl−r j



 


2

2σ2 r j
� �

0B@
1CA;

ð11Þ

where rj is the center of the hemodynamic kernel, rl is the position in the
Montreal Neurological Institute (MNI) space, K(rl, rj) is the Gaussian
spatial smoothing kernel at position rl fromposition rj, distance between
the lth distributed source and jth point source, |rl− rj| ≤ dj,max, and band-

width of kernel, σ r j
� �

¼ dj;max=2
ffiffiffiffiffiffiffiffiffiffiffi
2ln 2

p
. Here, the maximum distance

between point and distributed sources, dj,max, is estimated, and the use

of a latent variable, edj;max, allows the estimate of dj,max to vary about
4 mm as

dj;max ¼ 4exp edj;max

� �
: ð12Þ

when using distributed sources, we have three optics parameters to

estimate: θp ¼ eωi;H ; eωi;Q ;
edj;max

n o
.

Confounds

One of the challenges for fNIRS-based connectivity studies is that the
fNIRS signal can be significantly contaminatedwith systemic physiolog-
ical interference. Such systemic physiological noise, induced by heart
beat, respiration, and blood pressure variations, may interfere with the
estimation of fNIRS-based connectivity (Boas et al., 2004; Kirilina
et al., 2012). However, recent fNIRS studies have shown that this phys-
iological interference can be effectively removed by regressing out the
global signal (Mesquita et al., 2010), physiological noises generated
from different frequency bands of fNIRS data (Tong et al., 2011), or a
signal derived from superficial scalp measurements using a short



Table 1
Optical properties of scalp & skull, cerebrospinal fluid (CSF), graymatter, andwhite matter for Monte Carlo simulation. Absorption coefficients μa and scattering coefficients μs for various
brain tissue types are based on those used in Eggebrecht et al. (2012). Anisotropy factor g and refraction index n are based on those used in Fang (2010). The units of μa and μs aremm−1.

760 nm 850 nm Anisotropy factor Refraction index

μa μs μa μs g n

Scalp & skull 0.0143 7.6364 0.0164 6.7273 0.89 1.37
CSF 0.0040 2.7273 0.0040 2.7273 0.89 1.37
Gray matter 0.0180 7.5991 0.0192 6.1145 0.89 1.37
White matter 0.0167 10.8255 0.0208 9.1882 0.84 1.37
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source–detector separation channel (White et al., 2009; Saager et al.,
2011; Gagnon et al., 2011; Gagnon et al., 2014; Goodwin et al., 2014).

In our approach, very low-frequency confounds (c.f., drift terms in
fMRI convolution models) were removed from the fNIRS channel
measurements, by using a high-pass filter with a cutoff frequency of
0.008 Hz. Physiological noises, including respiration and cardiac
pulsation, were then removed by using a band-stop filter with cutoff
frequencies of [0.12 0.35] and [0.7 1.5] Hz, respectively. In addition,
the forward model in Eq. (13) produced by integrating the neuronal
and hemodynamic state equations can be extended by adding the
confounding effects X (see below). We therefore used a discrete cosine
transform set with cutoff periods of [8 12] seconds and a constant term
in X, to model Mayer waves (Obrig et al., 2000) and baseline shift.
Confounding effects on the observed signal were then estimated and
removed during model inversion. Note that additional measurements
of systemic confounds e.g., changes in blood pressure (Minati et al.,
2011; Tachtsidis et al., 2009; Takahashi et al., 2011) and arterial partial
pressure of CO2 (Scholkmann et al., 2013) can also be used in the
proposed method, which may enhance the efficiency of effective
connectivity estimates.

Priors, estimation, and model selection

The neurodynamic, hemodynamic, and optics parameters can be
concatenated in a vector of free parameters, θ = {θn, θh, θp}. The DCM
parameters are then estimated from the data, y, using Bayesian
inference, where competing hypotheses or models are compared
using their evidence (Penny, 2012).

For any given parameters θ, model predictions, g(θ) can be generated
by integrating the forward equations as described in Friston et al. (2003).
The observed data y is then modeled as

y ¼ g θ;mð Þ þ Xβ þ e; ð13Þ

where X contains confounding effects, β is the associated parameter
vector, and e is the zero mean additive Gaussian noise with covariance
Table 2
Priormean and standard deviation (SD) on neurodynamic and hemodynamic parameters.
i and j index source regions, k indexes an experimental input, l indexes sensor region, andeX denotes the latent variables from which X is derived.

Parameter Description Prior mean Prior SD

Ãij Extrinsic connection in the absence of input 0.0078 0.25
Ãii Intrinsic connection in the absence of input 0 0.25eBk
i j

Extrinsic connection modulated by input 0 1

eBk
ii

Intrinsic connection modulated by input 0 1

Cij Influence of input on regional activity 0 1eκ j Signal decay rate 0 0.05eγ j Rate of autoregulatory feedback 0 0.05eτ j Transit time 0 0.05eτ j;v Viscoelastic time 0 1edj;max
Spatial kernel width 0 0.05eωl;H Cortical fraction of HbO 0 0.22eωl;Q Cortical fraction of HbR 0 0.22
Cy. The error covariances are assumed to decompose into terms of the
form Cy

−1 =∑i exp(λi)Qi where Qi are the known precision basis func-
tions. The likelihood of the data is therefore

p y θ;λ;mjð Þ ¼ N y; g θ;mð Þ;Cy

� �
: ð14Þ

The priors, p(θ|m), assume to be Gaussian. The priors used in this
paper correspond to those implemented in SPM12 software, and their
mean and variance are summarized in Table 2. We also use a normal
prior p(λ|m) over the log error precision, λ.

The posterior distribution is then estimated using a variational
Laplace (VL)method (Friston et al., 2007). Specifically, the VL algorithm
assumes an approximate posterior density of the following factorized
form

q θ;λ y;mjð Þ ¼ q θ y;mjð Þq λ y;mjð Þ; ð15Þ

where q(θ|y,m) = N(θ;mθ, Sθ), and q(λ|y,m) = N(λ;mλ, Sλ). The DCM
parameters θ and hyperparameters λ of these approximate posteriors
are then iteratively updated so as to minimize the Kullback–Leibler
(KL)-divergence between the true and approximate posteriors. This is
a standard approach in Bayesian statistics and machine learning
(Bishop, 2006).

The structure of a DCM is defined by the connectivity matrices A, B,
and C. Different models can be compared using the evidence for each
model. This can be thought of as a second-level of Bayesian inference.
The model evidence is given by

p y mjð Þ ¼
ZZ

p y θ;λ;mjð Þp θ mjð Þp λ mjð Þdθdλ: ð16Þ

While the model evidence is not straightforward to compute, it is
possible to place a lower boundon the logmodel evidence of the follow-
ing form

log p y mjð Þ ¼ F mð Þ þ KL q θ;λ mjð Þ p θ;λ y;mjð Þk½ �; ð17Þ

where F(m) is known as the negative variational free energy and the last
term is the Kullback–Leibler (KL) distance between the true posterior
density, p(θ, λ|y, m), and an approximate posterior q(θ, λ|m). Free
energy is estimated as above using the Laplace approximation (Friston
et al., 2007). Once the evidence has been computed, Bayesian inference
at the model level can then be implemented using the Bayes rule:

p m yjð Þ ¼ p y mjð Þp mð ÞXM
m¼1

p y mjð Þp mð Þ;
ð18Þ

where M is the total number of models to be tested, and p(m) = 1/M
under uniform model priors.

Inference about a characteristic of interest, such as (i) which regions
receive driving input? and (ii) which connections are modulated by
other experimental factors?, and so on can be calculated by family
level inference (Penny et al., 2010). That is inference at the level of
model families, rather than at the level of the individual models. To
implement family level inference, one specifies which models belong
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to which families. The posterior distribution over families is then given
by summing up the relevant posterior model probabilities

p f k yjð Þ ¼
X
m∈ f k

p m yjð Þ; ð19Þ

where the subset fk contains all models belonging to family k.

Motor execution and imagery data

In this section, we applied DCM for fNIRS to experimental data from
a single subject recorded during the motor execution and motor imag-
ery tasks. Specifically, in the first run, the subject was instructed to
squeeze and release a ball with her right hand during task blocks. In
the second run, the subject was seated on a comfortable chair with
her hands on her laps in a dim-lighted room, and was instructed to
look ahead blankly and perform kinesthetic imagery of the same hand
movement, but without moving the hand. That is, the auditory cue
prompted motor imagery rather actual movement. For both runs,
there were 5 second blocks of tasks where the cue was presented with
an auditory beep, interspersed with 25 second rest blocks.

The optical density changes during motor execution and imagery
were acquired using a continuous wave fNIRS instrument (NIRScout,
NIRx, Medizintechnik, GmbH, Germany). The fNIRS system had 16
channels for bilateral placements, consisting of 2 optical sources with
wavelengths of 760 nm and 850 nm, and 6 optical detectors. The sup-
plementary motor area (SMA) and primary motor cortex (M1) of both
hemispheres were covered within the optical holder cap. However,
only fNIRS data from the left hemisphere was used in this study, as
our goalwas to study the contralateral activation of brain regions during
right hand movement. The sampling frequency was 10.4 Hz. The
distance between the optical source and the detector was 2.5 cm. The
geometry of optical probes on the left hemisphere is shown in Fig. 2.

A previous study found consistent activation in the SMA and
premotor cortex during motor execution and imagery, and reduced
activation in M1 during motor imagery (Hanakawa et al., 2003). More-
over, a recent study has revealed, using DCM for fMRI (Kasess et al.,
2008), that coupling between SMA and M1 may serve to attenuate the
activation of M1 during motor imagery. In this paper, we test 9 models
depicted in Fig. 3, in order to investigate (i) how the motor imagery
condition affects the directed connections between SMA and M1, and
(ii) how these interactions are associated with the regional activity in
M1 and SMA duringmotor execution and imagery. All models comprise
two regions including SMA andM1, and assume reciprocal connections
between SMA andM1 for theAmatrix; this connectivity is supported by
anatomical studies in monkeys (Muakkassa and Strick, 1979; Luppino
Fig. 2. Geometry of the optical probes. S, D, and Ch denote optical source, optical detector,
and channel, respectively. The distance between the source and the detector is 2.5 cm.
et al., 1993). The models then differ in regions receiving task input:
M1, SMA, and both M1 and SMA. The models also differ in which
connections are modulated by motor imagery: modulation of intrinsic
(within-region) connectivity, modulation of extrinsic (between-region)
connectivity, and modulation of both intrinsic and extrinsic connectivi-
ties. Additionally, for each of these 9 configurations, we fit two models;
onewith hemodynamic responsemodeled as point source and onewith
a spatially distributed source. Overall, these 18 models allow us to ad-
dress 3 experimental questions (i) which regions receive task input?,
(ii) which type of connections is modulated by imagery?, and (iii) are
distributed sources better than point source models?

Results

SPM analysis

Prior to DCM analysis, brain regions whose dynamics are driven by
experimental conditions were identified using Statistical Parametric
Mapping (SPM) analysis (Friston et al., 1995; Ye et al., 2009). Specifical-
ly, the HbO response was calculated from fNIRS data using themodified
Beer–Lambert law (Delpy et al., 1988), and was subject to SPM analysis
with the canonical hemodynamic response function plus its temporal
and dispersion derivatives. Statistical significance was assessed using
F-tests and the resulting statistical maps were thresholded at a voxel
level of p b 0.000001, corrected using random field theory in the usual
way. We found that SMA was significantly activated during both
motor execution and motor imagery, whereas M1 was only activated
during motor execution, as shown in Fig. 4. The most significantly
activated voxelswithin SMA andM1were then selected as the source po-
sitions for DCM analysis: The MNI coordinates are: SMA, [−51,−4, 55];
and M1, [−44,−16, 65].

DCM analysis

DCM was then fitted to the optical density signal averaged across
trials. Bayesian model selection compared DCM models which differed
in spatial extent of hemodynamic source, regions receiving task input,
and connections modulated by motor imagery (Fig. 5). Family level
inference indicated that the models with spatially distributed hemody-
namic source outperformed the models with point source. Moreover,
together with Bayesian inference at the model level, the best model
structure was model 9 in which task input could affect regional activity
in both SMA andM1, and motor imagery modulated both extrinsic and
intrinsic connections.

The posterior mean DCM parameters for the best model are

A ¼ −0:16 −0:49
−0:02 −0:33

� �
; B2 ¼ −0:02 −0:77

0:33 −1:31

� �
; C ¼ 0:08 0

0:06 0

� �
κ1 γ1 τ1 τ1;v d1;max ωH
κ2 γ2 τ2 τ2;v d2;max ωQ

� �
¼ 0:69 0:28 2:11 4:12 4:26 0:72

0:63 0:34 1:97 0:92 3:88 0:59

� �
;

where Ai,j represents the connectivity from region j to region i in the
absence of experimental input; Bi, jk represents the change in connectiv-
ity from region j to region i induced by kth input; and Ci,k represents the
influence of input on region i. The units of connections are the rates (Hz)
of neural population changes. In otherwords, inmodels based upon dif-
ferential equations, effective connectivity plays the role of a rate con-
stant; where a strong influence implies a fast response. The posterior
mean of estimated hemodynamic and optics parameters is within the
range of values reported from the literature (Buxton et al., 2004;
Huppert et al., 2009; Gagnon et al., 2012). Amongestimated parameters,
cortical fraction of HbO averaged across the channels ωH ¼ 0:72ð Þ
was higher than that of HbR ωQ ¼ 0:59

� 

. This result suggests that the

remaining 28% and 41% of the signal for HbO and HbR arise from
extracerebral regions, including pial vasculature and skin, where oxy-
genation changes occur following brain activation. While ωQ was



Fig. 3. The model structure for the DCM analysis of motor execution and imagery data. (a) The model comprises two regions including supplementary motor area (SMA) and primary
motor cortex (M1), and two inputs according to the experimental paradigm. The first input variable (i.e., task) encodes the occurrence of motor execution and motor imagery tasks. Ac-
tivation of the second input variable (i.e., motor imagery) indicates that the task is motor imagery. (b) 9 models are tested in this study. The models differ in regions receiving task input,
and connections modulated by motor imagery.
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slightly higher than the values estimated in Gagnon et al. (2012), this
discrepancy may be caused by differences in anatomical vasculature,
channel position, or experimental protocol.
Fig. 4.Cortical activation duringmotor tasks detected using oxy-hemoglobin (HbO) responses. (
on other two panels. (b) Main effects of motor execution task, and (c) main effects of motor i
statistic maps were thresholded at a voxel level of p b 0.000001 (corrected). Results show tha
M1 was only activated during motor execution. Two regions of interest for the DCM analysis w
We selected M1 and SMA for source region 1 and source region 2,
task for the first input, and motor imagery for the second input. So, as
an example of analysis results, B1,22 indicates that connectivity strength
a) Left lateral view of volume rendered brainwith bounding box showing region displayed
magery task. A conventional SPM analysis was applied to fNIRS data, and the resultant F-
t SMA is significantly activated during both motor execution and imagery tasks, whereas
ere selected using the local maxima of the F-statistics closest to M1 and lateral SMA.



Fig. 5. Results of Bayesian model comparison. Family level inference indicated that models with spatially distributed hemodynamic source outperformed models with point sources.
Moreover, together with Bayesian inference at the model level, the best model structure was model 9 in which task input could affect regional activity in both supplementary motor
area (SMA) and primary motor cortex (M1), and motor imagery could modulate both the extrinsic and intrinsic connections.
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from SMA toM1was reduced bymotor imagery (−0.77). This is entire-
ly consistent with previous fMRI activation studies of this paradigm –
and the notion that imaginedmovement calls on the same sensorimotor
schemata here as executed movements – but gated at the level of the
motor cortex. More details about the estimate of DCM parameters,
including posterior variance, are shown in Fig. 6.

Fig. 7 shows the parameter estimates as a network model. The re-
sults indicate that while all motor stimuli positively affect the regional
activity in M1, motor imagery negatively modulates the connection
from SMA to M1, resulting in the suppressive influence of SMA on M1.
Quantitatively, the strength of connectivity from SMA to M1, −0.49 is
significantly reduced by motor imagery, −0.77. This suppressive influ-
ence causes reduced activity inM1 duringmotor imagery. Interestingly,
we also found that motor imagery positively modulates the connection
from M1 to SMA.

As an example of the accuracy of DCM model fits, Fig. 8 shows the
predicted and measured optical density signals. Note that our DCM
models comprise two neuronal sources, including M1 and SMA,
Fig. 6. Estimates of DCM parameters, including neurodynamic and hemodynamic effects. Ma
indicates the standard deviation (square root of posterior variance) for model 9.
whose activities each generate optical density changes in all eight chan-
nels using the forward model in Eq. (13). To compare model fit to the
channel measurements, we selected channels 2, 5, and channels 3, 4,
whose sensitivities to M1 and SMA are highest among eight channels,
respectively. DCM produces similar traces to the actual fNIRS data at
both wavelengths 760 nm and 850 nm.

Estimated neural responses shown in Fig. 9 show that during motor
imagery, neural activity in M1 is significantly reduced, while neural
activity in SMA is relatively consistent, compared with activity during
motor execution. These results correspond to the findings of previous
fMRI studies which have shown that M1 is more active during motor
execution, while lateral SMA is more involved in motor imagery
(Kasess et al., 2008; Gerardin et al., 2000).

Discussion

In this paper, we have introduced DCM for fNIRS. The generative
model of fNIRS data is created by linking the fNIRS optics equation to
gnitude of bar graph indicates posterior mean of each parameter, and the red error bar



Fig. 7.Modelwith estimated parameters of effective connectivity. The units of connections
are the rates (Hz) of neural population changes. Black and red dotted lines indicate
intrinsic and extrinsic connectionsmodulated bymotor imagery, respectively. The results
indicate thatwhile allmotor stimuli positively affect the regional activity in primarymotor
cortex (M1), motor imagery negativelymodulates connection from supplementarymotor
area (SMA) to M1, resulting in the suppressive influence of SMA onM1. These results are
consistent with the findings of previous fMRI studies (Kasess et al., 2008; Gerardin et al.,
2000).
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the hemodynamic and neurodynamic equations. DCM parameters are
estimated using the same Bayesian scheme which is used for dynamic
causal modelling of other imaging modalities. Bayesian inference at
Fig. 8. DCM fit to optical signal measured duringmotor execution andmotor imagery. Black and
850 nm, respectively. Red plots indicate the corresponding estimates from DCMmodel 9. To co
sensitivities to M1 and SMA were highest among eight channels, respectively. DCM produce
empirical task periods (5 s), including motor execution and motor imagery.
the family and model levels then allows one to test specific hypotheses
about functional brain architectures and select a model structure which
explains the fNIRS data best.

Using fNIRS data whose protocol was similar to that of recent fMRI
studies,we have demonstrated the validity of estimates of effective con-
nectivity in this context. Specifically, by applying DCM to experimental
data acquired during motor imagery and motor execution, we showed
that the best-performing model comprised regions of SMA and M1
driven by task input, and both extrinsic and intrinsic connections are
modulated by motor imagery. The corresponding estimates of DCM
parameters indicated that reduced activity inM1 duringmotor imagery
can be explained by the suppression of M1 sensitivity to extrinsic
projections from SMA. These results suggest that the proposed method
enables one to infer directed interactions in the brain mediated by
neuronal dynamics from optical density changes.

In the following, we discuss potential extensions to the current DCM
for fNIRS. One extension would be to parameterize the sensitivity ma-
trix so that the optimal locations of hemodynamic sources are estimated
from the data. Currently, we have used a fixed hemodynamic source
location as identified using a prior general linear model analysis. How-
ever, because the spatial location of neuronal activation may be slightly
different from hemoglobin changes, it may be appropriate to specify the
location of neuronal sources as free parameters with informed priors.
Motivated by the lead field parameterization in DCM for EEG and MEG
(Kiebel et al., 2006), we can make the sensitivity matrix a function of
three location parameters, S(θ) where θ=(xpos, xpos, zpos). The expecta-
tion of the location prior can be given by an activated voxel location at
the cortical level. Then, hemodynamic source locations can be estimated
simultaneously with other DCM parameters using Bayesian inversion.
Furthermore, we can test the hypothesis that neuronal and hemody-
namic responses are spatially dislocated by comparing models with
and without free location parameters.

A further area of research concerns the development of the hemody-
namic equation. In the proposed scheme, the hemodynamic component
is based on the extended Balloon model (Buxton et al., 2004). This
blue plots indicate average optical density changes measured atwavelengths 760 nmand
mparemodel fit to themeasurements, we selected channels 2, 5, and channels 3, 4, whose
s similar traces to the fNIRS data at both wavelengths. The solid black line indicates the



Fig. 9. Estimated neural responses (z). During motor imagery, neural activity in primary motor cortex (M1) is significantly reduced, while neural activity in supplementary motor area
(SMA) is relatively consistent, compared with activity during motor execution. The solid black line indicates the task period (5 s).
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model can describe transient characteristics of blood flow and blood vol-
ume, particularly in the return-to-baseline stages of the response, using
viscoelastic time constant τj,v. As shown in Fig. 8, an undershoot of optical
responses was observed during post-stimulus. In the M1 source, signifi-
cantly suppressedneuronal activity and longer viscoelastic time constants
were estimated. These estimates lead to decreased blood flow and
delayed blood volume recovery, which increases HbR, and then leads to
an undershoot of optical responses in the corresponding channels, 2, 4,
and 5. This result is supported by simultaneous fMRI and electrophysical
recording studies, demonstrating the correlation between negative fMRI
response and decreased neuronal activity (Shmuel et al., 2006). However,
our model did not fit the post-stimulus undershoot of optical response in
channel 3 (Fig. 8(b)). Note that sensitivity of channel 3 to the SMA source
was approximately 9 times higher than the sensitivity to the M1 source:
S3,SMA/(S3,M1+ S3,SMA)=0.89. Therefore, less suppression of neuronal ac-
tivity during motor execution or shorter viscoelastic time constants in
SMAwould cause less undershoot of estimated optical response in chan-
nel 3. More sophisticated neurodynamic (Marreiros et al., 2008; Kumar
and Penny, 2014), vascular (Kong et al., 2004; Boas et al., 2008), and
hemodynamic (Zheng et al., 2002; Havlicek et al., 2014) models may
allow the transient hemodynamic response, such as post-stimulus
undershoot, to be better fitted from fNIRS data, and to be explained by
either neuronal or hemodynamic effects or both.

In this paperwe havemodeled each hemodynamic source as either a
point process or a spatially distributed process at a specified anatomical
location. In the latter case, the spatial point spread function is modeled
as a Gaussian kernel whose width is estimated from data. However, this
implies that the hemodynamic response is a simple low-pass spatial
filter of neuronal activity. Instead, intrinsic spatiotemporal hemody-
namics could be specified using differential equations specifying such
spatio-temporal dynamics as a function of position on the cortical
surface (Aquino et al., 2012, 2014).

Finally, we will extend the neurodynamic model to include both
excitatory and inhibitory states in each region. Current DCM for fNIRS
is based on a model which describes the neurodynamics with
one state in each region (see Eq. (1)). By adopting a two-state
neurodynamic model (Marreiros et al., 2008), we can not only model
both intrinsic and excitatory activities within intrinsic coupling, but
also relax the priors used to ensure stability in the one-state model.
The high temporal resolution of fNIRS should in principle allow fNIRS
data to support these much richer dynamical models.

A current limitation of DCM for fNIRS is that model fitting is compu-
tationally demanding, compared with functional connectivity and
Granger causality analyses. For the analysis of our fNIRS data, parameter
estimation in the fully connected network model comprising two re-
gions took approximately 6 min (for point hemodynamic sources),
and 18 min (for spatially distributed hemodynamic sources) on a desk-
top PC runningWindows 7 (64 bit)with an Intel XeonW3570 (3.2 GHz)
and 12 GB RAM. The VL optimization procedure required 20 iterations
and 49 iterations until it converged, respectively.
In this study, we focused on the development and description of a
novel method to estimate effective connectivity from fNIRS data. We
therefore showed an illustrative analysis using fNIRS data from a single
subject. In a subsequent paper, we will focus on analysis of fNIRS data
from a group of subjects (including random effects model comparison
Stephan et al., 2009), and show clinical applications of DCM-fNIRS in
patients in low awareness states.

The proposed methods are implemented in Matlab code and will be
available freely in the next beta version of SPM software (http://fil.ion.
ucl.ac.uk/spm).
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