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Group studies implicitly assume that all subjects activate one common

system to sustain a particular cognitive task. Intersubject variability is

generally treated as well-behaved and uninteresting noise. However,

intersubject variability might result from subjects engaging different

degenerate neuronal systems that are each sufficient for task

performance. This would produce a multimodal distribution of

intersubject variability. We have explored this idea with the help of

Gaussian Mixture Modeling and Bayesian model comparison proce-

dures. We illustrate our approach using a crossmodal priming

paradigm, in which subjects perform a semantic decision on environ-

mental sounds or their spoken names that were preceded by a

semantically congruent or incongruent picture or written name. All

subjects consistently activated the superior temporal gyri bilaterally,

the left fusiform gyrus and the inferior frontal sulcus. Comparing a

One and Two Gaussian Mixture Model of the unexplained residuals

provided very strong evidence for two groups with distinct activation

patterns: 6 subjects exhibited additional activations in the superior

temporal sulci bilaterally, the right superior frontal and central sulcus.

11 subjects showed increased activation in the striate and the right

inferior parietal cortex. These results suggest that semantic decisions

on auditory–visual compound stimuli might be accomplished by two

overlapping degenerate neuronal systems.

D 2005 Elsevier Inc. All rights reserved.
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Introduction

Functional localization is a central aim in cognitive neurosci-

ence. It entails associating a particular cognitive function with one

brain structure, i.e., the identification of structure– function

relationships. Structure–function relationships might be of different

sorts: In the simplest case of a one-to-one mapping a single brain
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structure sustains one and only one function. Although many

functional imaging studies implicitly assume a one-to-one mapping,

their diverse findings cannot be accommodated within this

simplistic framework: First, there is evidence for one-to-many

structure–function relationships, in which the same structural

configuration can support multiple functions (Friston and Price,

2003; Wilkinson and Halligan, 2004). For instance, the left

prefrontal cortex has been implicated in multiple cognitive

functions. Second, the remarkable ability of the human brain to

maintain and recover cognitive functions after focal cortical damage

suggests that multiple neuronal systems can sustain the same

function. This many-to-one structure–function relationship has

been referred to as degeneracy (Edelman and Gally, 2001; Price and

Friston, 2002). Multiple degenerate sets of brain regions might

sustain the same cognitive task either via similar mechanisms or by

implementing different cognitive strategies. Thus, several cognitive

models suggest that complex cognitive processes such as sentence

comprehension, action retrieval or reading can be accomplished in

multiple ways, i.e., by engaging different sub-processes. For

instance, the sentence ‘‘the boy eats an apple’’ can be understood

by simply combining the semantic knowledge of the single words

with pragmatic knowledge of the world or by formally assigning a

syntactic structure to the lexical items. Similarly, based on

neuropsychological data, it has been suggested that the appropriate

action for an object can be retrieved either directly from visual

structural features or indirectly through accessing semantic (con-

textual, associative) knowledge (Phillips et al., 2002; Rumiati and

Humphreys, 1998). These examples demonstrate that cognitive

functions can be characterized at multiple levels of description (e.g.,

action retrieval as one cognitive process or as a series of sub-

processes) in the same way as structural elements can constitute sets

of multiple brain regions, single brain regions, neuronal popula-

tions/assemblies or single neurons. Hence, the characterization of

structure–function relationships depends implicitly on the descrip-

tive level at which the structural and functional elements are

specified (Noppeney et al., 2004; Price and Friston, 2005).

How can we identify degenerate structure–function relation-

ships using (1) lesion studies or (2) functional imaging? (1) Single

lesion studies are of limited use because if only one system is
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lesioned, the cognitive function can be supported by the remaining

degenerate systems. Only lesioning all other degenerate elements

will impair task performance and thus reveal the functional

contribution of a particular neuronal element (i.e., the decrement

in performance after lesioning). Thus, in multiple lesion studies,

degeneracy can be inferred if the functional contribution of a

neuronal element depends on the state (i.e., lesioned or intact) of

another degenerate neuronal element (Aharonov et al., 2003)—

hence the interest in multifocal TMS. (2) Functional imaging allows

us to define a set of regions that are sufficient for a particular function

within a single subject—at least if sensitivity issues are ignored.

However, it cannot determine whether all regions are necessary for

task performance or whether they represent multiple – partly

overlapping – degenerate neuronal systems that are co-activated and

thus functioning redundantly (Barlow, 2001; Friston and Price,

2003; Shannon andWeaver, 1949). Furthermore, functional imaging

cannot disclose degenerate neuronal systems that are inhibited by the

pre-potent system or not activated.

Here, we explore how functional imaging can nevertheless help

us to identify degenerate neuronal systems based on intersubject

variability in functional activations. Using random effects analy-

ses, functional imaging studies usually focus on activations that

are consistent across a group of subjects. Activations that are

observed only in a subset of subjects or within individual subjects

are treated as uninteresting noise. However, intersubject variability

might result from subjects engaging different degenerate neuronal

systems (see Kherif et al., 2003). Establishing structure within the

unexplained residuals at the between-subject level may therefore

enable us to define candidate regions for degenerate neuronal

systems.

Based on this rationale, our approach was as follows: first, we

perform a random effects analysis to identify the set of regions that

are consistently activated across subjects. Second, performing a

singular value decomposition on the residuals, we reduce their

dimensionality to a few dominant activation patterns (i.e.,

eigenimages). The expression of these activation patterns over

subjects is reflected in their associated eigenvariates. Third, we

investigate whether the differential expression of activation

patterns (i.e., eigenvariates) provides evidence for subjects coming

from a single or two distinct Gaussian distributions. This involves a

cluster analysis of the eigenvariates using multivariate Gaussian

mixture modeling and Bayesian model comparison procedures.

Fourth, if we obtain strong evidence for two clusters, we compare

their activations in a two-sample t test. This shows the set of

regions that are differentially engaged by the two groups and thus

disclose candidate regions for degenerate neuronal systems.

We illustrate our approach using a crossmodal priming

paradigm, in which subjects performed a semantic decision on

environmental sounds or their spoken names that are preceded by a

semantically congruent or incongruent picture or written name.
Methods

Subjects

17 healthy right-handed English native speakers (5 females;

median age: 25) gave informed consent to participate in the study.

The study was approved of by the joint ethics committee of the

Institute of Neurology and University College London Hospital,

London, UK.
Experimental design

The paradigmwas a two-choice forced categorization of auditory

stimuli that were preceded by visual stimuli. The activation

conditions conformed to a 3 � 2 � 2 factorial design manipulating

(1) Priming: (i) congruent semantics and response, (ii) incon-

gruent semantics and congruent response, (iii) incongruent

semantics and incongruent response

(2) Prime modality: wordswritten, pictures

(3) Target modality: wordsspoken, sounds

At the beginning of each trial, a visual prime (i.e., wordswritten
or pictures) was presented for 100 ms. After an additional ISI

(interstimulus interval) of 100 ms, the auditory target (i.e.,

wordsspoken or sounds) was presented. The trial onset asynchrony

was 3.25 s. Subjects performed a semantic decision on the auditory

targets (FIs the target stimulus heavier than 4 kg?_). 50% of the

trials were primed, i.e., prime and target were semantically

congruent. In these semantically congruent trials, prime and target

referred to the same object (e.g., a picture of a dog followed by the

barking sound of a dog). 25% of the trials were response congruent

but semantically incongruent. In those trials, prime and target

referred to different objects but required the same response, i.e.,

both weighed more or less than 4 kg (e.g., a picture of an elephant

followed by the sound of a car).

Altogether, there were 64 stimuli. Each stimulus was presented

8 � 2 times, four times in each modality for each subject (i.e., 64 �
8 � 2 = 512 crossmodal trials).

Additional 24 � 2 intramodal visual trials (i.e., picture–picture,

picture–written word, written word–picture, written word–written

word) were included to maintain subjects’ attention to the visual

primes that were response irrelevant. 50% of the trials required a

yes response. Yes/No responses to all conditions were indicated (as

quickly and as accurately as possible) by a two-choice key press.

The activation conditions were interleaved with 6-s fixation. The

stimuli and order of conditions were randomized and the stimuli

rotated across conditions within and between subjects.

fMRI scanning technique

A 3-T Siemens Allegra system was used to acquire both T1

anatomical volume images and T2*-weighted axial echoplanar

images with blood oxygenation level-dependent (BOLD) contrast

(GE-EPI, Cartesian k-space sampling, TE = 30 ms, TR = 2.47 s, 38

axial slices, acquired sequentially in descending direction, matrix

64 � 64, spatial resolution 3 � 3 � 3.4 mm3 voxels, interslice gap

1.4 mm, slice thickness 2.0 mm). To avoid Nyquist ghost artefacts,

a generalized reconstruction algorithm was used for data process-

ing (Josephs et al., 2000). There were two sessions with a total of

473 volume images per session. The first six volumes were

discarded to allow for T1 equilibration effects.

Conventional SPM analysis

The data were analyzed with statistical parametric mapping

(using SPM2 software from the Wellcome Department of Imaging

Neuroscience, London; http//www.fil.ion.ucl.ac.uk/spm, Friston et

al., 1995). Scans from each subject were realigned using the first as a

reference, spatially normalized into standard space (Talairach and

Tournoux, 1988), resampled to 3 � 3 � 3 mm3 voxels and spatially
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smoothed with a Gaussian kernel of 8 mmFWHM. The timeseries in

each voxel were highpass filtered to 1/128 Hz and globally

normalized with proportional scaling. The fMRI experiment was

modeled in an event-related fashion using regressors obtained by

convolving each event-related stick function with a canonical

hemodynamic response function and its first temporal derivative.

We modeled the 12 conditions in our 2� 2� 3 factorial design and

the intramodal stimuli. Nuisance covariates included the realign-

ment parameters (to account for motion artefacts). Condition-

specific effects for each subject were estimated according to the

general linear model and passed to a second-level analysis as

contrasts. This involved creating contrast images (average of all

crossmodal stimuli > fixation) for each subject and a second-level

one-sample t test. Inferences were made at the second level to allow

a random effects analysis and inferences at the population level

(Friston et al., 1999). We only report activations that are significant

(P < 0.05) corrected for the entire brain volume (extent threshold > 3

voxels).

Singular value decomposition, Gaussian mixture modeling and

Bayesian model comparison

The residuals of the one-sample t test (subject-specific devia-

tions from the group mean activation for crossmodal stimuli >

fixation) were entered into a singular value decomposition (SVD)

using the multivariate toolbox as implemented in SPM99. This

SVD decomposed the original series of residual activations over the

17 subjects into two orthogonal sets of vectors: (1) eigenimages

representing patterns of activation in space and (2) eigenvariates

indicating the expression of the activation patterns in each subject.

The importance of each eigenimage (i.e., the amount of variance it

accounts for in the residuals) is indicated by the associated singular

value.

Next, we investigated whether the differential expression of the

5 most dominant activation patterns (explaining 52% of the

variance) across subjects provides evidence for subjects coming

from a single or two distinct Gaussian distributions (i.e., unimodal

or bimodal). For this, we fitted two models, one with a single

Gaussian and the other with a mixture of two Gaussians. By

comparing the likelihood of (or evidence for) the models, we were

able to infer a unimodal or bimodal distribution. The parameters of

the Gaussian mixture models were estimated using a Variational

Bayesian algorithm (Attias, 2000) with shrinkage priors (Friston et

al., 2002). This approach prevents overfitting by down-weighting

the Gaussian components that are not supported by the data. The

Variational Bayesian algorithm operates by iterating between two

steps until convergence: in the responsibility update step, it assigns

each data point to the most likely Gaussian cluster. In the parameter

update step, it recomputes the means, variances and mixing

proportions of the two Gaussian components such that they

maximise the evidence of the model (i.e., the likelihood of the

data given a model). As the Variational Bayesian algorithm is a

non-linear optimization procedure, it may become trapped in local

minima and potentially lead to sub-optimal solutions. Therefore,

we repeated model fitting for 10,000 different initializations so as

to obtain an optimal cluster assignment.

The Variational Bayesian algorithm also provides an approxi-

mation to the model evidence (Penny et al., 2003, 2004). Bayes

Factors (the ratio of the model evidences, here of the one- and two-

Gaussian component models, Kass and Raftery, 1995) were used for

model comparison, i.e., to decide whether the one- or two-Gaussian
component model was a better model of the data. If strong evidence

(i.e., Bayes factors > 20) was provided for a two-cluster model,

subjects were assigned to the two clusters based on their final

responsibilities (Ueda et al., 2000). The activations of the two subject

groups were then compared in a two-sample t test SPM to reveal the

neuronal systems that were differentially engaged by the two groups

using an uncorrected threshold of P < 0.01 (extent threshold > 50

voxels). This uncorrected threshold was chosen only for character-

ization of the two degenerate neuronal systems. The statistical

inference is based alone on the model evidence and not the SPM.

Recently, tensor probabilistic independent component analysis

(tensor PICA) has been proposed as a method to explore

intersubject variability(Beckmann and Smith, 2005). Tensor PICA

is a model-free approach that decomposes multisubject fMRI data

into spatial, temporal and subject-dependent variations by iterating

between (1) estimating a 2-dimensional PICA of the spatial modes

and a mixing matrix M and (2) decomposing the mixing matrix M

into temporal and subject factors using SVD. In contrast, the

approach, proposed here, encompasses model-dependent and

model-free elements: first, we model single subject data using

experimentally designed stimulus functions in a conventional SPM

analysis. Second, we perform a model-free SVD on the unex-

plained residuals of the random effects analysis. Combining model-

dependent and model-free analysis steps enables us to investigate

intersubject variability associated with particular cognitive pro-

cesses and hence address the specific question whether different

groups engage distinct semantic retrieval systems for crossmodal

stimuli.
Results

Conventional SPM analysis

Semantic decision > fixation

Semantic decisions on crossmodal stimuli, relative to fixation,

activated the superior temporal gyri extending into the superior

temporal sulci bilaterally, the left superior precentral/inferior

frontal sulcus and the fusiform gyri/cerebellum bilaterally consis-

tently across subjects. Activations were also observed in the

cingulate sulcus.

Semantic decision < fixation

Semantic decisions relative to fixation decreased activation in

the superior frontal gyri/sulci, inferior/superior temporal gyri,

calcarine and collateral sulci bilaterally. Deactivations were also

found in the cingulate sulcus, right lingual gyrus, insula and several

occipital extrastriate areas (Table 1; Fig. 1).

Gaussian mixture modeling and Bayesian model comparison

The optimal Gaussian mixture modeling using the 5 eigenvari-

ates with the greatest eigenvalues sorted the 17 subjects into two

groups of 6 and 11, with one female in the 6 and four females in the

11 group. Comparing the one- and two-cluster models provided very

strong evidence for the two-cluster model (Bayes factors > 150).

Out of 10,000 cluster solutions, 9308 provided a higher model

evidence for the two-relative to the one-cluster model.

The optimal Gaussian mixture modeling using only one, two,

three or four eigenvariates consistently provided evidence for a two

cluster model (strong evidence for 2 to 4 eigenvariates).



Fig. 1. Activations (red) and deactivations (green) for semantic decisions on

crossmodal compound trials (for all normal subjects) relative to fixation are

rendered on an averaged normalized brain. Height threshold: P < 0.05

corrected. Extent threshold > 3 voxels.

Table 2

Comparison of fMRI activations between the two groups

Region Co-ordinates z score

6 > 11 subjects

L. superior temporal sulcus ant. �48, �27, 0 3.1

post �42, �60, 30 3.4

post. �33, �72, 33 2.9

R. superior temporal sulcus post 39, �66, 33 3.0

R. angular g. 51, �51, 51 3.4

R. superior frontal sulcus 30, 27, 42 3.1

R. central sulcus 30, �36, 63 2.9

Table 1

Activations consistent across subjects

Region Co-ordinates z score

(a) Semantic decision > fixation

L. superior temporal gyrus/ �63, �24, 9 6.8

L. superior temporal sulcus �63, �12, 3 6.2

�45, �27, 3 6.0

R. superior temporal gyrus 66, �27, 0 6.5

R. superior temporal sulcus 54, �12, �6 6.3

45, �33, 3 5.8

L. superior precentral

gyrus/L. inferior frontal sulcus

�39, 12, 24 6.0

L. fusiform g. �42, �57, �24 5.5

R. cerebellum/fusiform g. 33, �63, �30 5.2

Cingulate sulcus �9, 12, 48 5.2

(b) Fixation > semantic decision

Cingulate sulcus �6, 33, �12 6.6

�15, �36, 48 6.0

12, �48, 57 5.9

R. superior frontal g. 15, 39, 57 5.1

R. superior frontal sulcus 30, 36, 48 5.9

21, 18, 57 5.2

L. superior frontal sulcus �30, 30, 39 5.1

�9, 54, 42 5.2

�15, 57, 30 5.2

Superior frontal g. 0, �21, 63 5.7

R. insula 36, 15, �18 5.2

R. intraparietal sulcus 24, �84, 27 5.5

R. superior temporal sulcus 45, �69, 30 5.5

42, �78, 12 5.0

R. temporal pole 33, 15, �36 5.5

45, 0, �33 4.9

R. collateral sulcus 30, �48, �9 5.4

L. collateral sulcus �21, �48, �6 5.0

R. lingual g. 18, �75, �6 5.1

L. superior occipital g. �15, �93, 33 5.2

Calcarine sulcus �15, �63, 12 5.7

15, �57, 12 5.5
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Comparison of fMRI activations between the two groups

Six relative to 11 subjects showed enhanced activation in the

superior temporal sulci bilaterally and the right central and superior

frontal sulci. 11 relative to 6 subjects exhibited increased activation

in the striate cortex and the right inferior parietal cortex (Table 2).

Comparison of behavioural measures between the two groups

There were no significant (>0.05) differences in mean reaction

times or accuracy for any of the 12 conditions between the two

groups. This is important if we want to link our bimodal BOLD-

response distribution to degeneracy. In this instance, we are

inferring there is a two-to-one mapping between structure (areas

activated in the two groups) and function. Function is defined

operationally in terms of task performance (i.e., accuracy and

reaction time in a speeded weight judgement).
11 > 6 subjects

Striate cortex 15, �93, �6 3.9

�21, �63, 12 3.8

�9, �78, 0 3.5

R. inferior parietal cortex 63, �39, 42 3.5
Discussion

The current functional imaging culture is dominated by group

studies focussing on activations that are observed consistently
across subjects. Activations that are detected only variably in a

subset of subjects are often discarded as uninteresting or spurious.

Group studies implicitly assume that all subjects activate one

common system to sustain a particular cognitive task, and that all

deviations from this are well-behaved random effects. In the

Introduction, we have introduced the notion of degeneracy, where

multiple neuronal systems are each sufficient for task performance.

If sub-sets of subjects engage these degenerate neuronal systems

differentially, the consistently activated brain areas might represent

only a subset of the regions that are required for task performance.

Furthermore, intersubject variability would then contain important

information that enables us to identify candidate regions for

degenerate neuronal systems. In this paper, we have explored this

idea with the help of mixture modeling of the residuals from a

second-level analysis. We illustrated our methodology using

functional imaging data from a crossmodal priming paradigm.

Semantic decisions on auditory stimuli (e.g., spoken name or

sound of a dog) that were preceded by semantically congruent or

incongruent visual stimuli (e.g., written name or picture of a dog)

consistently activated the superior temporal gyri bilaterally, the left

fusiform gyrus and the superior precentral gyrus/inferior frontal

sulcus. This suggests that all subjects focussed on the auditory

stimulus that determined the response to the crossmodal trial.
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However, the residuals of the second-level one-sample t test

exhibited structure that was not modeled or explained by the mean

activation across subjects. Bayesian model comparison provided

very strong evidence for two groups with distinct activation patterns:

6 subjects exhibited additional activations in the superior temporal

sulci bilaterally. 11 subjects showed increased activation (or less

activation decreases) in the striate cortex and the right inferior

parietal cortex. The few regions that are consistently activated across

subjects might therefore form only a subset of the regions that each

subject engages for task performance. Importantly, there was no

significant difference in behavioural performance across the two

groups. Both groups showed comparable mean reaction times and

error rates across conditions. Collectively, our results suggest that

there might be two partly overlapping degenerate neuronal systems

that can each sustain semantic decisions on crossmodal compound

trials. Both systems commonly engage the superior temporal gyri

bilaterally. However, in the first group, the STG co-activate with the

STS bilaterally, while in the second group, they interact with early

visual areas in the occipital cortex.

The two degenerate neuronal systems are sufficient for task

performance as defined operationally in terms of response accuracy

and reaction times. However, it is well recognized in cognitive

neuroscience that complex cognitive tasks can often be accom-

plished in multiple ways, i.e., by engaging different strategies.

Many cognitive models even postulate multiple routes that can be

used to sustain a task. For instance, the dual route model of reading
Fig. 2. Semantic decisions on crossmodal compound trials. Differential activation a

P < 0.01 uncorrected. Extent threshold > 50 voxels. Red = 6 > 11 subjects. Gree

subject cluster (green) during semantic decisions on crossmodal stimuli. The bar gr

percent whole brain mean).
proposes that reading of familiar, regularly spelt words can be

achieved via either spelling–sound relationships or lexical

semantic processes (Fiez and Petersen, 1998; Fiez et al., 1999;

Hagoort et al., 1999; Marshall and Newcombe, 1973; Shallice,

2003). Similarly, the two degenerate neuronal systems in our

experiment might accomplish semantic decisions on crossmodal

compound stimuli via similar mechanisms or by implementing

different strategies. Given our prior knowledge about STS and

occipital cortex (Beauchamp et al., 2004; Calvert, 2001; Gottfried

and Dolan, 2003; Malach et al., 1995), we might speculate on

potential strategies that the two subject groups engaged in. For

instance, subjects with increased occipital cortex activation might

have relied more on the visual structural information that in 75% of

the trials was sufficient for correct responses. On the contrary,

subjects with increased STS activations but relatively decreased

activation in the visual cortex might have engaged more in auditory

processing, crossmodal integration of visual and auditory infor-

mation and semantic retrieval (see Shomstein and Yantis, 2004).

These hypotheses could be tested in future experiments that

degrade visual information or manipulate the percentage of

congruent trials in order to modulate the influence of visual

information on subjects’ judgement.

In this study, the degenerate neuronal systems were revealed

using intersubject variability. Degeneracy can therefore be

expressed at the level of the individual or the population

(Noppeney et al., 2004). In the first case of degenerate functional
cross groups is rendered on an averaged normalized brain. Height threshold:

n = 11 > 6 subjects. Parameter estimates for 6 subject cluster (red) and 11

aphs represent the size of the effect in adimensional units (corresponding to
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neuroanatomy (i.e., within-subject degeneracy), semantic deci-

sions on crossmodal stimuli can be performed by the STG co-

activating either with the STS or with the occipital cortex within

the same subject. In the second case of degeneracy over subjects,

there is no degenerate organization within a single brain, but

semantic decisions are sustained by STG/STS in one group of

subjects and STG/occipital cortex in another subset. Multiple

lesion studies – for instance using TMS – may enable us to

distinguish between these two cases and confirm that STS and

occipital cortex make important functional contributions to

semantic decisions. In the case of degenerate functional neuroanat-

omy, TMS only to both, STS and occipital cortex, will result in a

behavioural deficit. In the case of degeneracy over subjects, TMS to

any of the two areas alone is associated with impaired performance

in one subset of subjects (but not the other one) (Fig. 2).

In conclusion, intersubject variability can help us to identify

candidate regions of multiple degenerate neuronal systems that can

be investigated using multilesion methods. Moreover, if subsets of

subjects engage different neuronal systems, group analyses (e.g.,

random effects analyses) will not reveal the entire set of regions

that sustain a particular cognitive task but only a sub-system that

by itself is not sufficient for task performance.
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