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Bayesian fMRI time series analysis with spatial priors
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We describe a Bayesian estimation and inference procedure for fMRI

time series based on the use of General Linear Models (GLMs).

Importantly, we use a spatial prior on regression coefficients which

embodies our prior knowledge that evoked responses are spatially

contiguous and locally homogeneous. Further, using a computationally

efficient Variational Bayes framework, we are able to let the data

determine the optimal amount of smoothing. We assume an arbitrary

order Auto-Regressive (AR) model for the errors. Our model general-

izes earlier work on voxel-wise estimation of GLM-AR models and

inference in GLMs using Posterior Probability Maps (PPMs). Results

are shown on simulated data and on data from an event-related fMRI

experiment.
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Introduction

Functional magnetic resonance imaging (fMRI) using blood

oxygen level-dependent (BOLD) contrast is an established method

for making inferences about regionally specific activations in the

human brain (Frackowiak et al., 2004). From measurements of

changes in blood oxygenation, one uses various statistical models,

such as the general linear model (GLM) (Friston et al., 1995), to

make inferences about task-specific changes in underlying neuro-

nal activity.

Given an impulse of neuronal activity, the BOLD signal we

measure is dispersed both in space and time according to a

hemodynamic response function (HRF). The temporal character-

istics of this dispersion are determined by various time and

elasticity constants and hemodynamic processes related to the
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underlying vasculature and can be described using the Balloon

model and variants thereof (Buxton et al., 1998). They can also be

modeled in the GLM framework by convolving putative neuronal

signals with a set of hemodynamic basis functions, for example,

the so-called canonical HRF and its derivatives (Friston et al.,

1998). Essentially, BOLD activity peaks 4 to 6 s after neuronal

activity and experiences a marked undershoot after 10 to 12 s,

returning to baseline after 20 to 30 s.

The spatial characteristics of the hemodynamic response relate

to the geometry of the underlying vasculature. BOLD contrast

arises mainly from oxygenation changes in small venules lying

relatively close to the site of neuronal activity (Turner, 2002). It is

also possible that signal can appear in larger pial veins draining

activated areas. It is also of note that BOLD contrast only arises

from activity in spatially extended neuronal ensembles. Addition-

ally, there are a number of signal processing contributions to the

spatial nature of the fMRI signals. These arise, for example, from

realignment and spatial normalization operations that involve the

use of spatial basis functions and spatial interpolation. Overall, the

spatial extent of the resulting BOLD signal is of the order of

several millimeters.

In the GLM framework, the spatial nature of the BOLD

response is accounted for indirectly by smoothing the data in a pre-

processing step (Frackowiak et al., 2004). This is implemented by

smoothing using fixed-width Gaussian kernels having a Full Width

at Half Maximum (FWHM) of typically 4–8 mm for single-subject

analysis. The rationale for this approach comes from the matched

filter theorem (Rosenfeld and Kak, 1982) which states that by

changing the frequency structure of the data to that of the signal of

interest one increases the Signal to Noise Ratio (SNR). For a

discussion of this theorem in the context of neuroimaging, see

Section 2.2 of Worsley et al. (1996).

The well-known temporal characteristics of the hemodynamic

response vary across the brain and across subjects, and are

accounted for in the GLM framework by using multiple basis

functions per experimental manipulation. The regression coeffi-

cients corresponding to these bases are voxel- and subject-

dependent allowing the peak onset times and widths to vary. The

spatial characteristics of the response, however, which may also

vary across the brain and across subjects are not explicitly
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addressed in the standard GLM framework although a number of

studies have proposed methods for dealing with this.

In the context of PET, Worsley et al. (1996) have proposed a

scale-space procedure for assessing significance of activations over

a range of proposed smoothings. For fMRI, Penny and Friston

(2003) have proposed using a Mixture of General Linear Models

(MGLMs). These procedures are motivated by the fact that

smoothing images with a fixed width kernel is a sub-optimal

method for increasing SNR.

In this paper, we characterize the spatial characteristics of the

HRF using Bayesian inference and spatial priors over the

regression coefficients. The precision with which regression

coefficients, and therefore regionally specific effects, are estimated

then comprises two contributions (i) the data at a given voxel and

(ii) the regression coefficients at neighboring voxels. If data

precision is low (e.g., due to high noise variance at that voxel),

then neighboring voxels will contribute more to the estimate of the

effect. This spatial regularization falls naturally out of the Bayesian

framework. Moreover, we are able to use spatial regularization

coefficients that can be estimated from the data. The spatial

characteristics of the hemodynamic response are therefore handled

in a natural and automatic way.

A further important issue in the analysis of fMRI data is the

concern that successive samples are correlated in time. These

correlations arise from neural, physiological and physical sources

including the pulsatile motion of the brain caused by cardiac

cycles, local modulation of the static magnetic field by

respiratory movement, and unmodeled neuronal activity. Not all

of this correlation can be removed by time-domain filtering as

this would also remove much of the BOLD signal. Cardiac and

respiratory components can, however, be monitored and then

removed from the data (Glover et al., 2000; Hu et al., 1995). But

correlations due, for example, to unmodeled neuronal activity

will remain. In the GLM framework, temporal autocorrelation

can be taken into account by modeling the errors as an

Autoregressive (AR) process, as shown, for example, in our

previous work (Penny et al., 2003). This is the approach taken in

this paper.

In the recent literature, there have been a number of Baysian

approaches to modeling spatial dependencies in the signal and in

the noise. For example, Gossl et al. (2001) have proposed a

separable spatio-temporal model where these spatial dependencies

were characterized using Conditional Autoregressive (CAR) or

Markov Random Field (MRF) priors. They used Bayesian

inference and Markov Chain Monte Carlo (MCMC) to draw

samples from the relevant posterior distributions. More recently,

Woolrich et al. (2004b) described a Bayesian model of fMRI in

which the noise process was characterized by separable or non-

separable spatio-temporal models. Again, MCMC was used to

perform posterior inference. While these approaches have clearly

broken new ground in the analysis of fMRI data, their main

drawback is the large amount of computer time required (several

hours for a single slice (Woolrich et al., 2004b)). This motivated

the more recent work in which Woolrich et al. (2004a) specified a

CAR/MRF model to regularize estimation of AR coefficients using

the Variational Bayes (VB) framework. This resulted in an

algorithm that could process whole volumes of fMRI data in the

order of minutes.

This paper also makes use of the VB approach and may be

regarded as an extension of Penny et al. (2003) to include spatial

priors for the regression coefficients. A key technical contribution
of this paper is that we use a prior that captures dependencies

across voxels but a (approximate) posterior that factorizes over

voxels. This means that we can avoid the inversion of very large

covariance matrices. This is made possible using the VB frame-

work and results in an algorithm that both captures spatial

dependencies and can be efficiently implemented.

In Theory, we review the GLM-AR model defined in Penny et

al. (2003). We also describe the priors and show how Variational

Bayes is used to define approximate posteriors and how it provides

a set of update equations for the sufficient statistics of these

distributions. Results present synthetic data and an event-related

fMRI data set.

Notation

A multivariate normal density over x is written as N(x; m, �),

where m denotes the mean and � the covariance. A Gamma

distribution over x is written where a and b define the density as

shown in the appendix of Penny et al. (2003). We will denote

matrices and vectors with bold upper case and bold lower case

letters, respectively. All vectors are column vectors. Subscripts are

used to name different vectors; thus xn and xk refer to different

vectors. The operator diag (x) turns a vector into a diagonal matrix,

x(k) denotes the kth entry in a vector, X(j,k) the scalar entry in the

jth row and kth column, � is the Kronecker product and x̄ is used

to denote the mean of x.
Theory

We write an fMRI data set consisting of T time points at N

voxels as the T � N matrix Y. In mass-univariate models, these

data are explained in terms of a T � K design matrix X, containing

the values of K regressors at T time points, and a K � N matrix of

regression coefficients W, containing K regression coefficients at

each of N voxels. The model is written

Y ¼ XWþ E ð1Þ

where E is a T � N error matrix. The vector wn, the nth column of

W, therefore contains the K regression coefficients at the nth voxel

and the vector wk
T, the kth row of W, contains an image (after

appropriate reshaping) of the kth regression coefficients. We also

make use of the KN � 1 vector wv which contains all the elements

of W ordered by voxel. Similarly we define the KN � 1 vector wr

which also contains all elements of W but ordered by regressor.

These can both be defined using the vec operator which stacks

columns of a matrix into one long vector

wv ¼ vec Wð Þ

wr ¼ vec WT
� �

wv ¼ Hwr ð2Þ

where H is a KN � KN permutation matrix. It is useful to define

these high-dimensional vectors as the model can then be

instantiated using sparse matrix operations. This notation is used

in the derivation of the VB algorithm in the appendix.
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In this paper, the errors are modeled as an autoregressive

process. The overall GLM-AR model can be written

yn ¼ Xwn þ en

en ¼ ẼEnan þ zn ð3Þ

where, at the nth voxel, an is a P � 1 vector of regression

coefficients, zn is a vector of zero mean Gaussian random variables

each having precision kn and Ẽn is a T � P matrix of lagged

prediction errors for the nth voxel as defined in Section 2 of Penny

et al. (2003). Eqs. (1) and (3) define the likelihood of the data given

the parameters of our model. In the following section, we describe

the prior distributions over these parameters. Together, the

likelihood and prior terms define our probabilistic model, which

is portrayed graphically in Fig. 1.

Priors

Regression coefficients

The prior over regression coefficients is given by

p Wð Þ ¼ j
K

k ¼ 1
p wT

k

� �
(4)

p wT
k

� �
¼ N wT

k ; 0; a
�1
k STS
� ��1

� �
where we refer to S as an N � N spatial kernel matrix (to be

defined later) and ak is a spatial precision variable for the kth

regressor. This equation shows that the prior factorizes over

regressors. This means that different regression coefficients can

have different smoothnesses. For the case of S being the Laplacian

operator (see below), a sample from the prior is shown in Fig. 2.

The value of ak determines the amount of smoothness and in this

paper ak is estimated from the data. Spatial regularization is

therefore fully automatic.
Fig. 1. The figure shows the probabilistic dependencies underlying our generative

those in circles are random variables. The spatial regularization coefficients A c

autoregressive error processes which contribute to the measurements. The graph sh

A, l, A) = p (YjW, A, l) p(WjA) p(Ajb) p (lju1, u2) p(Ajq1, q2), where the first
the prior distributions over model parameters.
Spatial precisions

The precision variables ak are collected together in the K � 1

vector a. Although, in this paper, each component of a is to be

estimated from the data, in future we envisage constraining these

estimates using prior information. To this end, we define a prior

over a

p að Þ ¼ j
K

k ¼ 1
p akð Þ

(5)
p akð Þ ¼ Ga ak ; q1; q2ð Þ

The parameters are set to q1 = 10 and q2 = 1 which

corresponds to a Gamma density with a mean of 1 and a

variance of 100. It is therefore a relatively uninformative prior

reflecting our lack of knowledge about ak. As we gather more

experience applying such priors to fMRI data, we envisage, in

the future, choosing q1 and q2 to reflect this knowledge.

Noise precisions

The observation noise precisions are defined as

p lð Þ ¼ j
N

n ¼ 1
p knð Þ

(6)
p knð Þ ¼ Ga kn; u1; u2ð Þ

The values u1 and u2 are set so as to make p(kn) an

uninformative prior as described in the previous section. The

factorization in the above equation assumes that there is no

correlation between the variances of neighboring voxels. While

this is clearly untrue, this is nevertheless the implicit assumption

underlying most GLM analyses (Friston et al., 1995), as only data

at voxel n is used to estimate kn.
model for fMRI data. The quantities in square brackets are constants and

onstrain the regression coefficients W. The parameters l and A define the

ows that the joint probability of parameters and data can be written p (Y, W,

term is the likelihood and the other terms are priors. The equations describe



Fig. 2. The left panel shows an image of a regression coefficient generated from a Laplacian prior with a = 1 as described in the text. These regression

coefficients were then used, along with a boxar design matrix to generate time series at each voxel. The right panel shows a time series corresponding to the

voxel x = 29, y = 28. The darker line indicates the model (Xwn) and the lighter line indicates the final simulated data (the model with additive Gaussian noise).
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AR coefficients

The priors on the autoregressive parameters are given by

p Að Þ ¼ j
N

n ¼ 1
p anð Þ

(7)
p anð Þ ¼ N an; 0; b

�1IP
� �

where A is a P � N matrix of AR coefficients and an are the AR

coefficients at the nth voxel (an is the nth row of A). Again, b is

chosen as described in Penny et al. (2003) to make this prior

uninformative. This prior is unlikely to be optimal for fMRI due to

the spatial dependence in AR values, an issue that has been

addressed in a recent paper by Woolrich et al. (2004a) who show

that modeling this dependence results in greater sensitivity. While

this issue is clearly important, we have chosen an uninformative

prior here as the focus of this paper is on modeling the signal.

Generative model

The likelihood term implicit in Eq. (3) and the priors defined in

this section together define our probabilistic generative model for

fMRI. This is shown graphically in Fig. 1. One benefit of defining

a generative model is that by fixing certain variables and sampling

from others, we can generate data from the model, as shown in

Samples from the prior. These data can then be used to check the

steps in the estimation algorithm that are defined in Approximate

posteriors.
Fig. 3. The left panel shows the elements of the Laplacian operator L. This

is incorporated in the spatial prior which penalizes differences between

cardinal neighbors. The right panel shows elements of the Laplacian

product LTL. The posterior mean for the kth regression coefficient at voxel

n regresses toward the weighted mean of the kth regression coefficient in

neighboring voxels where the weights are shown in the panel. The set of

first-nearest cardinal neighbors, R1, have value �8, the first-nearest

diagonal neighbors, R2, have value 2 and the second-nearest cardinal

neighbors R3 have value 1.
Spatial kernels

The results in this paper were obtained using a spatial matrix S

equal to the Laplacian operator,L, as defined in Pascual-Marqui et al.

(1994). This enforces smoothness by penalizing differences between

neighboring voxels and is a prior that is commonly used in the

analysis of EEG. In this paper, we define the Laplacian using cardinal

neighbors only, as shown in Fig. 3. Extension to more general

neighborhood definitions is, however, straightforward and is within

the scope of the estimation algorithmdefined in the following section.

If vk = Lwk then vk(n) is equal to the sum of the differences

between wk(n) and its neighbors. Each element vk(n) is distributed

as a zero-mean Gaussian with precision ak. Here, L acts as a

difference matrix and L�1 as a smoothing matrix. Data can be

generated from a Laplacian prior by generating independent

Gaussian variables vk and then applying the mapping wk = L�1vk.

The Laplacian prior as defined in Pascual-Marqui et al. (1994)

uses a non-singular matrix L. It is non-singular primarily because

of the boundary conditions; for 2-D data diagonal elements in L are

fixed to 4 (see left panel of Fig. 3), even if the voxel is at an edge

and therefore has fewer than 4 neighbors.

This non-singularity is important as it is a necessary condition

for evaluating the lower bound on the model evidence, F (see

later), which is important for comparing models. An unfortunate

consequence of these boundary conditions is that they result in

parameter estimates at image edges that are biased towards zero.

This results in conservative estimates of effect sizes. This prior is,

however, preferred to the Laplacian with unbiased boundary

conditions (where diagonal entries are always equal to the number

of neighbors) as such a matrix is singular.

There are a number of compelling alternative priors in the

literature, though, and these could be used in the future. One

example are spatial kernels based on thin-plate splines with

reflective boundary conditions (Buckley, 1994). It is also possible

to specify a spatial precision matrix directly as D = STS. This is the

approach taken with dConditional Autoregressive (CAR)T or

dGaussian Markov Random FieldT priors (Cressie, 1993). These

priors have been used in functional imaging by Gossl et al. (2001)

to spatially regularize regression coefficients and by Woolrich et al.

(2004a) to spatially regularize AR coefficients. In Eq. (7) of

Woolrich et al. (2004a), for example, diagonal elements Dii are set

to unity and, if voxel j is a cardinal neighbor of voxel i, Dij is set to

the inverse of the geometric mean of the number of neighbors for



Fig. 4. The figure shows the approximate posteriors and update equations

for their sufficient statistics. The top equation describes the full approximate

posterior with each component in a box below.
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voxels i and j. This specification also results in biased boundary

conditions but is necessary to make D non-singular (see above).

We also note that the prior defined in (Woolrich et al., 2004a), for

2-D data, specifies a D matrix with four neighbors per voxel,

whereas the prior used in this paper (indirectly) specifies a D

matrix with 12 neighbors (see right panel of Fig. 3).

In principle, one can use the lower bound on the model

evidence (see later) to choose the appropriate prior. In this paper,

we have only used the evidence to select between global (i.e., non-

spatial) priors and Laplacian priors (see simulation in Gaussian

blobs) as it was our aim to establish the utility of spatial priors per

se. It is perfectly possible though to compare different spatial priors

and this will be the topic of a future paper.

Approximate posteriors

Because the prior distribution over regression coefficients

allows for dependencies between voxels, it is clear that the true

posterior will also have these dependencies. Also, because design

matrices are not usually orthogonal, the true posterior over

regression coefficients will also have dependencies between

regressors at each voxel. Assuming that these dependencies are

of a Gaussian nature, then they could be described by a posterior

covariance matrix. The trouble with this, however, is that the

matrix would be of dimension KN � KN which, even for modern

computers is prohibitively large.

To get around this problem, we apply the Variational Bayes

(VB) framework. This allows one to define dapproximate

posteriorsT which are matched to the true posteriors by minimizing

the Kullback–Liebler (KL) divergence (Cover and Thomas, 1991).

In particular, we propose an approximate posterior for the

regression coefficients which factorizes over voxels (but not over

regressors). Application of VB will find the approximate posterior

distribution, out of all possible distributions that factorize over

voxels, that best matches the true posterior (in the sense of KL

divergence). In practice, this leads to us only needing to estimate a

K � K covariance matrix at each voxel (see Eq. (10)).

Application of the VB framework leads to a set of approximate

posteriors and equations for updating their sufficient statistics.

These equations are summarized in Fig. 4 and are elaborated upon

below. To improve readability we drop the dconditional on YT
notation, e.g., q(W) u q(WjY).

Regression coefficients

As described above, the posterior over regression coefficients is

assumed to factorize over voxels. That is

q Wð Þ ¼ j
N

n ¼ 1
q wnð Þ ð8Þ

This is the key assumption of this paper and is central to the

derivation of update rules for the posteriors. As shown in

Appendix, this results in a posterior over regression coefficients

at voxel n given by

q Wnð Þ ¼ N wn; ŵwn; ŜSn

� �
ð9Þ

where

ŵwn ¼ ŜSn k
P

nb
T
n þ rnÞ

�
(10)

ŜSn ¼ k
P

nÃAn
þ Bnn

� ��1
The estimated regression coefficients at the nth voxel are

described by the K � 1 vector ŵn . The approximate

covariance at the nth voxel is described by the K � K

matrix, �̂n. We emphasize that, because the approximate

posterior factorizes over voxels, this matrix is of dimension

K � K, rather than KN � KN. Matrix operation and storage is

therefore straightforward.

The quantity k̄n in Eq. (10) is the estimated noise precision at

the nth voxel defined in Eq. (18). The matrix Ãn is related to the

data precision at the nth voxel and the vector b̃n is related to the

data at the nth voxel projected onto the design matrix. These last

two quantities are identical to those defined in Eqs. (63) and (64) in

Penny et al. (2003). The matrix B is the KN � KN spatial precision

matrix (with entries ordered by voxel—hence the permutation

matrix H in the following equation) and is given by

B ¼ H diag aPð Þ � STSÞHT
�

ð11Þ

The quantity rn is given by

rn ¼ �
XN

i ¼ 1; i p n

Bniŵwi ð12Þ

The above equation is implemented using doldT ŵi values. This

results in dnewT rn values and consequently dnewT ŵn values in Eq.

(10). The subscripts in Bni denote those entries in B pertaining to

voxels n and i. The matrix Bnn, for example, is of dimension K �
K and contains entries in the spatial precision matrix relevant to

voxel n. An intuitive description of Eq. (10) is given in Special

cases.



W.D. Penny et al. / NeuroImage 24 (2005) 350–362 355
Spatial precisions

The posteriors over the spatial precision variables can be shown

to be (the derivation is similar to that for the regression coefficients

and the derivations in the Appendix of Penny et al. (2003)

q að Þ ¼ j
K

k ¼ 1
q akð Þ

q akð Þ ¼ Ga ak ; gk ; hkð Þ

1

gk
¼ 1

2
Tr �̂�kS

TS
� �

þ ŵwT
k S

TSŵwk

#
þ 1

q1
ð13Þ

"

hk ¼
N

2
þ q2

aPk ¼ gkhk

where �k is a N � N diagonal matrix with nth entrySn (k, k). The

posteriors over the noise precision and autoregressive coefficients

are identical to those defined in previous work (Penny et al., 2003).

For completeness, they are given in the Appendices A–C.

Model evidence

The lower bound on the model evidence, F, can be computed as

shown in the Appendices A–C. This bound can be used for model

selection as shown in Penny et al. (2003), where it was used to find

the optimal AR model order. In principle, it can be used to tune

whatever aspect of the model is of special interest, e.g., the design

matrix, spatial kernel. In this paper, it is used to compare spatial

versus non-spatial priors (see Gaussian blobs). The quantity F also

doubles as the objective function of the VB algorithm.

Special cases

Gaussian errors

The equations for the approximate posteriors are perhaps best

understood by looking at special cases. For the special case of

Gaussian errors rather than AR(P) errors, the posterior distribution

over regression coefficients is given by

ŵwn ¼ ŜSn

�
k
P

nX
Tyn þ rn

�
(14)

ŜSn ¼
�
k
P

nX
TXþ Bnn

��1
No spatial prior

In the absence of any spatial prior, the above estimate reduces

to the least squares solution

ŵwn ¼ XTX
� ��1

XTyn ð15Þ
Zero data precision

When there is a spatial prior, however, the regression coefficients

regress towards a linear combination of the values of regression

coefficients in neighboring voxels. This can be seen most clearly in

the limit of zero data precision, k̄nY0. For our Laplacian spatial

kernel, the kth regression coefficient at the nth voxel then becomes

ŵwn kð Þ ¼ 1

20
8
X

i a R1

ŵwi kð Þ � 2
X

i a R2

ŵw i kð Þ �
X

i a R3

ŵw i kð Þ
! 

ð16Þ

where R1 denotes the set of first-nearest cardinal neighbors of n, R2

denotes the first-nearest diagonal neighbors, and R3 denotes the
second-nearest cardinal neighbors. As k̄nY0, the regression

coefficients become equal to a weighted mean of neighboring

coefficients. This is shown graphically in the right panel of Fig. 3.

Global shrinkage prior

If the spatial kernel S is set to the identity matrix, then our prior

reduces to the dglobal-shrinkageT prior proposed in Friston and

Penny (2003). The parameter ak then corresponds to the (inverse)

prior variance of the kth regression coefficient. Note ak in this

paper is then equivalent to km in Friston and Penny (2003). Our

algorithm therefore generalizes the approach in that work. In

following sections, we will compare global-shrinkage priors (dG-
priorsT) to Laplacian priors (dL-priorsT) using the model evidence.

Uninformative prior

We will also compare the L-prior to the use of uninformative

priors (dUT-priors)—see, e.g., (Penny et al., 2003)—applied to

smoothed data. This will allow us to compare our results

against the more common method of taking into account the

spatial characteristics of the signal—namely, smoothing. We use

an uninformative prior in conjunction with smoothing as it

allows us to look at the effects of smoothing in the absence of

other effects—such as shrinkage. We instantiate U-priors by

setting S = I and ak = 1e�6.

Coefficient RESELS

For the general case of the algorithm described in Approximate

posteriors, the effect of the prior is determined by the ratio of the

data precision to the prior precision. As these quantities are both

estimated from the data, spatial regularization is fully automatic.

The ratio of the data precision to the posterior precision, which

for the kth coefficient at the nth voxel we will label cnk, plays an
interesting role in our model. Firstly, we note that because the

posterior precision is equal to the data precision plus the prior

precision cnk can be evaluated as 1 minus the prior precision

divided by the posterior precision

cnk ¼ 1� ŜSn k; kð ÞBnn k; kð Þ ð17Þ

where Aˆ n is the approximate posterior covariance matrix for the

nth voxel (defined in Eq. (10)) and Bnn contains those elements in

the prior spatial precision matrix pertinent to voxel n. If we then

sum this over voxels, ck =
P

n cnk, then ck represents the number

of voxels for which the kth regression coefficient has been

determined by the data (rather than the prior). For the definition

of such a quantity in the context of Bayesian regression, see

Mackay (1992). This quantity plays a role that is somewhat

analogous to the concept of Resolution Elements (RESELs) in

Random Field Theory (Worsley et al., 2004). A key difference is that

ck refers to particular regression coefficients that describe regionally
specific effects, whereas RESELs correspond to spatial degrees of

freedom in images of residuals. Nonetheless, the concept is similar

and it may be useful to think of ck as a dCoefficient RESELT.
Typically, as we shall see, this is much less than N and gives a

measure of how regionally specific an effect is.

Practicalities

The estimation algorithm is implemented by updating Eqs. (10),

(13), (18), and (19) until convergence which is defined as less than
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a 1% increase in F, the objective function, which is defined in

Appendices A–C. In practice, convergence is very often seen to

occur within four iterations (see, for example, Fig. 6). Because it is

expensive to compute F on the larger models (e.g., when whole

volumes are analyzed) an alternative is to simply run the algorithm

for four iterations.

The algorithm is initialized using Ordinary Least Squares

(OLS) estimates for regression and autoregressive parameters as

described in Penny et al. (2003). Although, in this paper, the order

of the autoregressive model is chosen apriori it can be estimated

using F as described in Penny et al. (2003). In this paper, we

present results where slices are analyzed separately and a 2-D

Laplacian prior was used. The extension to 3-D priors is

straightforward.
Fig. 6. The plot shows the lower bound on the log model evidence, F, as a

function of iteration number. This indicates that the algorithm has

converged after five VB iterations.
Results

Samples from the prior

Our estimation algorithm and the spatial prior underlying it are

perhaps best understood with an example in which we compare VB

with an L-prior to OLS. To this end, we generated data from our

model as follows. We used a design matrix comprising two

regressors, the first being a boxcar with a period of 20 scans and

the second a constant. The design matrix, X, is therefore of

dimension T � 2 and we chose T = 40 scans. We used spatial

precision parameters a1 = a2 = 1 and generated two N = 1024

dimensional regression coefficient vectors. These were then

reshaped into 32 � 32 images for display purposes. An image of

the first regressor is shown in Fig. 2a. We then used the regression

coefficients, the design matrix and additive Gaussian noise having

precision kn = k = 0.5 to generate the T � N data matrix Y. The

time series at one of the voxels is shown in Fig. 2b. We did not add

temporally autocorrelated errors as the focus of this simulation is

the spatial domain.

We then fitted these data firstly using voxel-wise GLMs with

parameters estimated via Ordinary Least Squares (OLS) and

secondly using the VB algorithm with the L-prior described in

this paper (the model from which the data were generated).

OLS and VB estimates of the first regression coefficient are

shown in Fig. 5. Not surprisingly, VB model fits were superior. This

can be quantified by computing the squared error between the

estimated parameters and the true parameters. VB fits had 71% less

error than OLS fits. Fig. 6 plots the log-evidence as a function of
Fig. 5. The images show estimated regression coefficients using OLS (left panel) a

true regression coefficients (Fig. 2, left panel).
iteration number indicating that the algorithm has converged after

five iterations of the update equations. The spatial precision for the

first regression coefficient was estimated to be a = 0.51. The number

of RESELS for the first regression coefficient was found to be 366.

The above example shows the main features of the algorithm

for a particular setting of model parameters (a, T, k). Generally, as
compared to OLS, the algorithm is more beneficial for smoother

data (larger a) and lower data precision (smaller T and k).

Gaussian blobs

In this second set of simulations, we compare the use of L-

priors with G-priors and with the standard approach of smoothing

the data. Again, the AR aspect of the model was neglected as we

wished to focus on the spatial domain. We used the same design

matrix as in the previous section. We then generated two 32 � 32

images of regression coefficients each containing Gaussian blobs.

The image of the first regression coefficient is shown in Fig. 7a

(the second coefficient is identical). This was formed by placing

delta functions at three locations and then smoothing with

Gaussian kernels having FWHMs of 2, 3, and 4 pixels (going

clockwise from the top-left blob). The images were rescaled to

make the peaks unity. We then used the regression coefficients, the

design matrix and additive Gaussian noise of precision k = 10 to
nd VB with an L-prior (right panel). The VB images are clearly closer to the



Fig. 7. The images are (a) true regression coefficients and regression coefficients estimated using (b) smoothing and an uninformative prior, (c) a global-

shrinkage prior and (d) a Laplacian prior. Black corresponds to zero and white to one.

Fig. 8. ROC curve for Gaussian blob data. The preponderance of green

points in the upper left corner, the region of high specificity and high

sensitivity, mark out the Laplacian prior as the superior method.
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generate the T � N data matrix Y where T = 40 and N = 1024. We

also created another data set, Ys, in which data images at each time

point were smoothed using a Gaussian kernel having FWHM = 3

pixels. The smoothing was implemented so as to preserve the

power (variance) in the signal (see later).

We then fitted (i) smoothed data with a model having an

uninformative prior, unsmoothed data with (ii) a global-shrinkage

prior and (iii) a Laplacian prior. Images of the estimated first

regression coefficient are shown in Fig. 7. The quality of the

estimates was then quantified by computing the squared error

between the estimated parameters and the true parameters. Use of the

L-prior resulted in parameter estimates with 66% less error than the

U-prior on unsmoothed data and 64% less error than the G-prior.

Compared to the L-prior, the other schemes tend to under-

estimate effect sizes in activated regions (the blobs are much grayer

in Fig. 7b and c than in 7d). At the center of the upper right-hand

blob, for example, the true effect size is 1 and the estimated effect

sizes were 0.92 using the L-prior, 0.61 using the U-prior on

smoothed data and 0.79 using the G-prior.

We also tried smoothing as it is implemented in SPM

(Frackowiak et al., 2004), where the coefficients of the Gaussian

kernels sum to unity. This does not preserve the variance of the

signal—in fact, it reduces it. This led to estimated effect sizes

(images not shown) that were even smaller. For example, in the

center of the upper right blob, the estimated effect size was 0.51.

The overall quality of estimates, however, was better than with

variance preservation because truly non-activated areas were

modeled better. But the L-prior still had 47% less estimation error.

That the L-prior produces better parameter estimates than the

G-prior is also reflected in the model evidence which was many

orders of magnitude higher (the difference in log-evidence was

857). The smoothness of the parameter estimates is reflected in the
number of coefficient RESELS, which for the first regression

coefficient was estimated to be 109 using the L-prior and 714 using

the G-prior. Use of the G-prior leads to a mistaken inference that

the effect is less regionally specific than it actually is. Note also the

patches of false weak activations in the smoothed data in Fig. 7b.

This also implies a lack of regional specificity.

Another perspective on these simulation results is given by the

Receiver Operating Characteristic (ROC) curve which is a plot of

the sensitivity versus 1 minus the specificity. This curve, shown in

Fig. 8, was generated by declaring a voxel to be active if the effect

size was larger than some arbitrary threshold. This threshold was



Fig. 10. Contrasts for the main effect of faces. Slice z = �24 mm (a)

Normalized structural image and images of estimated contrasts for (b)

smoothed data and a U-prior, (c) unsmoothed data and a G-prior and (d)

unsmoothed data and an L-prior. For plots (b), (c) and (d) black denotes an

effect size of �1 and white denotes 2.7 (in units of percentage global mean

value).
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then varied over the range 0.1 to 0.7 to produce the points in each

curve. The preponderance of green points in the upper left corner,

the region of high specificity and high sensitivity, mark out the L-

prior as the superior method. This is important as it indicates that

increased sensitivity can be achieved while maintaining high

specificity.

Face-repetition data

This data set and a full description of the experiments and data

pre-processing are available from http://www.fil.ion.ucl.ac.uk/spm/

data. The data were acquired during an experiment concerned with

the processing of images of faces (Henson et al., 2002). This was

an event-related study in which greyscale images of faces were

presented for 500 ms, replacing a baseline of an oval chequerboard,

which was present throughout the interstimulus interval. Images

were acquired from a 2T VISION system (Siemens, Erlangen,

Germany) which produced T2*-weighted transverse Echo-Planar

Images (EPIs) with BOLD contrast. Whole brain EPIs consisting

of 24 transverse slices were acquired every 2 s resulting in a total

of T = 351 scans.

All functional images were realigned to the first functional

image using a six-parameter rigid-body transformation. To correct

for the fact that different slices were acquired at different times,

time series were interpolated to the acquisition time of the

reference slice. Images were then spatially normalized to a standard

EPI template using a nonlinear warping method. This set of images

constitutes an dunsmoothedT data set. We also created a dsmoothedT
data set by convolving the images with an isotropic Gaussian

kernel having FWHM = 8 mm as was implemented in the original

paper (Henson et al., 2002). This was implemented in SPM (note

that this implies the variance of the images was not preserved—see

previous section).

We then computed the global mean value, g, over all time

series, excluding non-brain voxels, and scaled each time series by

the factor 100/g. This makes the units of the regression coefficients
Fig. 9. Design matrix for face-repetition fMRI analysis. There are 9

regressors relating to 4 types of event dN1T, dN2T, dF1T and dF2T which are

the first or second (1/2) presentations of images of famous dFT or non-famous

dNT faces. These comprise the 1st and 2nd, 3rd and 4th, 5th and 6th, and 7th

and 8th columns, respectively. Regressors 1, 3, 5 and 7 have been convolved

with a canonical hemodynamic response function and regressors 2, 4, 6, and 8

with its temporal derivative. The last regressor is a constant term.
dpercentage of global mean valueT. Each time series was then high-

pass filtered using a set of discrete cosine basis functions with a

filter cut-off of 128 s.

The data set was analyzed using a GLM with a design matrix as

shown in Fig. 9. There are nine regressors relating to 4 types of

event dN1T, dN2T, dF1T and dF2T which are the first or second (1/2)

presentations of images of famous dFT or non-famous dNT faces.
These comprise the 1st and 2nd, 3rd and 4th, 5th and 6th, and 7th

and 8th columns, respectively. Regressors 1, 3, 5, and 7 have been

convolved with a canonical hemodynamic response function and

regressors 2, 4, 6, and 8 with its temporal derivative. Modeling the

HRF in this way allows one to capture onset variability across

voxels. The last regressor is a constant term.

We then fitted GLM-AR models to the smoothed and

unsmoothed data sets. We chose an AR model order of P = 3 as

this was shown to be sufficient in a previous analysis (Penny et al.,

2003). If we were to regress out cardiac and respiratory activity as

in Glover et al. (2000) and Hu et al. (1995), the optimal AR model

order is likely to be smaller. These were, however, not measured

for this data set.

For the smoothed data, we used a U-prior on the regression

coefficients. This is because the spatial characteristics of the data

have already been accounted for so it would not make sense to use

an L-prior. Also, this allows us to assess the effect of smoothing on

effect size independently of the effect of informative priors (such as

G or L). For the unsmoothed data, we applied both a G-prior and

an L-prior.

These three different approaches are compared, firstly, by

looking at the main effect of faces. This is assessed by applying the

 http:\\www.fil.ion.ucl.ac.uk\spm\data 


Fig. 12. Contrasts for the main effect of fame Slice z = �18 mm (a)

Normalized structural image and images of estimated contrasts for (b)

smoothed data with a U-prior, (c) unsmoothed data with a G-prior and (d)

unsmoothed data with an L-prior. For plots (b), (c) and (d) black denotes an

effect size of �1.2 and white denotes 1.9 (in units of percentage global

mean value).

Fig. 11. PPMs for the main effect of faces. Slice z = �24 mm (a)

Normalized structural image and Posterior Probability Maps of the effect

size being greater than 1% of the global mean value for (b) smoothed data

and a U-prior, (c) unsmoothed data and a G-prior and (d) unsmoothed data

and an L-prior. For plots (b), (c) and (d) black denotes a probability of 0 and

white denotes 1. Only voxels with probabilities greater than 0.9 are shown.
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contrast weight vector cT = 0.25k[1,0,1,0,1,0,1,0,0] to the

estimated regression coefficients where k is the peak hemodynamic

response to a single event (this depends on the TR and for our data

k = 2.1). This contrast shows the average peak response to the

presentation of a face image. Maps of the estimated contrast are

shown for a single slice at z = �24 mm (MNI coordinates) in Fig.

10. These maps show large responses in bilateral fusiform and

occipital cortex as previously reported (Henson et al., 2002).

However, use of the Laplacian prior results in much higher

estimates of effect size in these regions. A typical voxel (x = 45,

y = �66, z = �24 mm) in the activated region in the right

hemisphere, for example, has effect sizes of 1.9% for the U-prior

on smoothed data, 1.2% for the G-prior and 2.6% for the L-prior on

unsmoothed data.

These differences in effect size are also reflected in the

Posterior Probability Maps (PPMs) (Friston and Penny, 2003) in

Fig. 11. Here, we plot the probability that the contrast is greater

than 1%. Bilateral activations of this size or greater have highest

probability using the L-prior on unsmoothed data. Use of the L-

prior also shows up an additional area, the parahippocampal gyrus

(x = 18, y = �27, z = �24 mm).

We also looked at the main effect of fame-judgement. This is

assessed by applying the contrast weight vector cT =

0.25k[�1,0,�1,0,1,0,1,0,0] to the estimated regression coeffi-

cients. This contrast shows the average difference in peak response

to famous versus non-famous faces. Maps of the contrast are

shown for a single slice at z = �18 mm in Fig. 12. These maps

show little variation in response over the slice except for the
contrast map obtained with the L-prior which has a cluster of large

values in left anterior temporal cortex. Damage to this part of the

brain is often associated with loss of personal knowledge, e.g., an

inability to name famous faces (Damasio et al., 1996). The voxel in

the center of this activated region (x = �42, y = �3, z = �18 mm)

has an estimated effect size of 1.9%. The corresponding value for

the G-prior is 0.6% and for the U-prior on smoothed data it is

0.8%. These differences in effect size are reflected in the PPMs in

Fig. 13. Here, we plot the probability that the contrast is greater

than 1%. Only the L-prior allows us to infer, with high probability,

that there are two focal activations in this slice, the second being at

(x = 0, y = �6, z = �18 mm).
Discussion

We have proposed a Bayesian estimation and inference

procedure for fMRI time series based on the use of GLM-AR(P)

models. The novel contribution of this paper has been the

incorporation of a spatial prior over regression coefficients which

embodies our prior knowledge that evoked responses are spatially

contiguous and locally homogeneous. Further, we have been able

to let the data determine the spatial regularization coefficients. Our

model generalizes earlier work on voxel-wise estimation of GLM-

AR models that used uninformative priors (Penny et al., 2003) and

inference in GLMs using Posterior Probability Maps (PPMs) based

on global-shrinkage priors (Friston and Penny, 2003).

As compared to the standard approach based on smoothing the

data, our simulations show that the use of our VB algorithm with



Fig. 13. PPMs for the main effect of fame. Slice z = �18 mm (a)

Normalized structural image and PPMs of the effect size being greater than

1% of the global mean value for (b) smoothed data with a U-prior, (c)

unsmoothed data with a G-prior and (d) unsmoothed data and an L-prior.

For plots (b), (c) and (d) black denotes a probability of 0 and white denotes

1. Only voxels with probabilities greater than 0.9 are shown.
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Laplacian priors has higher sensitivity for any given high level of

specificity. Results on event-related fMRI data show that the

smoothing approach underestimates the effect size of fsneurophy-

siologically interpretable activations. On simulated data, the

Laplacian prior was shown to be superior to the use of a global

shrinkage prior in terms of Bayesian evidence, estimation accuracy

and area under the ROC curve. On the event-related fMRI data, the

global shrinkage prior also appeared to underestimate effect size.

While effect size is not of concern in classical inference, it is of

central interest to Bayesian inference (Friston and Penny, 2003).

From our results, we conclude that currently the best way to

estimate effect size accurately is via the use of Laplacian spatial

priors.

One attractive property of our spatial regularization scheme is

that different regression coefficients have different regularizes. So,

for example, if one models the hemodynamic response to an event

with two regressors, e.g., a dcanonicalT response and its temporal

derivative (as in Face-repetition data), then the canonical regressor

can be smoothed a different amount than the temporal derivative

regressor. The optimal amount of smoothing will be determined

separately for each regressor using Eq. (13). Allowing different

signal components to have different smoothnesses is a further

reason why this spatial regularization procedure is superior to

simply smoothing the data (which smooths all components

equally).

Previous use of spatial priors in fMRI has either relied on the

use of hard (i.e., non-adaptive) priors and projection of the data
onto a subspace spanned by these priors (see, for example, Section

3 of (Friston et al., 2002)) or used adaptive priors but the

computationally expensive MCMC algorithm to sample from the

relevant posterior distributions (Gossl et al., 2001). In this paper,

we have shown how to use a fast analytic approximation to the

posterior distribution which was derived using the VB framework.

Woolrich et al. (2004a) have shown that inference using VB is

orders of magnitude quicker than with similar MCMC approaches

(Woolrich et al., 2004b).

In the application of VB to regularizing AR coefficients

Woolrich et al. (2004a) still faced a key technical challenge which

was to invert an N � N spatial precision matrix, where N is the

number of voxels. The solution was found by first noticing that the

inverse (say, A�1) only ever occurred when postmultiplied by a

positive symmetric definite matrix (say B, i.e., x = A�1B). A

conjugate gradient method was then used to find the vector x that

minimized Ax-B (see Appendix B.3 of Woolrich et al. (2004a). In

this paper, we have presented a different solution. We specified a

prior that captures dependencies between voxels, but an approx-

imate posterior that factorizes over voxels. In other words, we have

spatial dependencies in the prior but not in the (approximate)

posterior. This factorization is essential to the development of a

tractable learning algorithm and relies upon the VB framework

where such factorizations play a central role. In practice this means

that, in an fMRI model with K regressors and N voxels, we only

have to invert K � K matrices, rather than KN � KN matrices.

While we favor the use of Laplacian priors over uninformative

and non-spatial priors and note their widespread application in

localizing sources underlying EEG data, they could yet be

improved upon. One simple extension would allow separate spatial

regularization coefficients for the x and y (phase-encode)

directions. The motivation for this is that, for Echo Planar Imaging,

the BOLD signal is more blurred in the phase-encode direction

than in the read-out direction (O. Josephs, personal communica-

tion). As this would entail more than one spatial regularization

coefficient per regressor this would require an extension, albeit a

minor one, to the current framework.

One problem with Laplacian priors is that they conflate

magnitude and smoothness. That is, there is a single parameter a

that determines both. A promising alternative is the use of wavelet

priors where coarse levels determine dmagnitudeT, and ddetailT
levels determine smoothness. Also, Laplacian priors have no

notion of location or spatial frequency. They are therefore unable to

reflect spatial variations in smoothness arising from regional

differences in vasculature or functional anatomy. Again, wavelets

(or other basis set decompositions) provide a promising alternative.

Preliminary work in this direction, where wavelets were used to

smooth fMRI contrast images (Penny, 2002), indicates they may be

a natural choice. This family of approaches, however, would use

multiple regularization coefficients per regression coefficient and

so would require an extension to the current framework.

Another solution to the problem of non-stationary smoothness

estimation is variable resolution tomography (VARETA) which is

used in EEG source estimation (Valdes-Sosa et al., 2000).

VARETA specifies a spatial precision variable for each voxel,

a(n), but this vector of spatial precisions is itself regularized using

a Laplacian operator. Incorporation of this method into the current

VB framework via dhyperpriorsT is another possible direction for

future research.

The work in Penny et al. (2003) which used the VB framework

and assumed uninformative priors over regression and AR
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coefficients has since been extended by Woolrich et al. (2004a) to

account for spatial dependence in AR coefficients. In this paper, we

have extended it to account for spatial dependence in regression

coefficients. A natural next step is to allow for spatial dependence

in the regression coefficients, AR coefficients and possibly noise

precisions.

A further extension to the model relates to the error process. In

this paper and in previous work, we have characterized the error

process using arbitrary order autoregressive models as our aim has

been to analyze single subject fMRI data. If one wished to model

multiple subject data, however, and employ the computationally

efficient summary statistic approach (Holmes and Friston, 1998),

whereby possibly multiple contrast images from multiple subjects

form the data for a dsecond-levelT of analysis then a different model

of the error process would be appropriate. The use of spatial priors

at the second level would also need to be modified as one must

take into account between-subject differences in functional

anatomy.
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Appendix A. Derivation of approximate posterior for

regression coefficients

If the approximate posterior factorizes as q(h) = jiq(hi), where

h are the parameters of the model, then the components of the

approximate posteriors that maximise a lower bound on the model

evidence (or equivalently minimize the KL-divergence between the

true posterior and the approximate posterior) are given by Roberts

and Penny (2002).

q qið Þ ¼ exp I qið Þ½ 
R
exp I qið Þ½ 
dqi

where

I qið Þ ¼
Z

q ql=i
� �

log p Y;qð Þdql=i

and Qli indicates components of Q other than Qi. This latter integral

need only contain terms dependent on Qi. For the model in this

paper the parameters are Q = {W, A, l, a} and the joint

probability of the data and parameters, p(Y, Q), is given in the

caption to Fig. 1.

To derive an expression for the approximate posterior for

the regression coefficients at voxel n, q(wn), the relevant

integral is

I wnð Þ ¼
Z
q knð Þq að Þq w=ln

� �
log p ynjkn; an;wnð Þp wjað Þð Þdkndadw=ln

where

log p ynjkn; an;wnð Þ ¼ � kn
2

wT
nA anð Þwn � 2b anð ÞTwn

� �
þ N
and the quantities A(an) and b(an) depend on the autoregressive

coefficients and have been defined in Eq. (53) of Penny et al.

(2003). The second relevant log-probability is

log p Wjað Þ ¼ � 1

2

X
k

akw
T
k S

TSwk þ N

¼ � 1

2
wT
r diag að Þ � STS
� �

wr þ N

¼ � 1

2
wT
r H diag að Þ � STS
� �

HTwv þ N

where the second and third lines involve the KN � 1 vectors wr and

wv and the permutation matrix H defined in Eq. (2). Substituting

these quantities into the earlier integral equation gives

I wnð Þ ¼ � 1

2
wT
n k

P
nÃAn þ Bnn

� �
wn þ wT

n k
P

nb̃b
T
n þ rn

� �
where

B ¼ H diag aPð Þ � STS
� �

HT

Bnn contains those entries in B relevant to voxel n and

rn ¼ �
XN

i ¼ 1; i p n

Bniŵw i

The quantities Ãn and b̃n in the above expression for I(wn) are

equivalent to A(an) and b(an) integrated over q(an) and are given

in Eqs. (63) and (64) of Penny et al. (2003). By noting that the log

of a Gaussian density is given by

logN x;m;Sð Þ ¼ � 1

2
xTS�1xþ xTS�1m

equating terms I(wn) with shows that is q(wn) Gaussian with mean

and covariance given by

ŵwn ¼ ŜSn k
P

nb̃b
T

n
þ rn

� �

ŜSn ¼ k
P

nÃAn
þ Bnn

� ��1
Appendix B. Noise and AR updates

The posteriors over the noise precision and autoregressive

coefficients are identical to those defined in previous work (Penny

et al., 2003). For the noise precision, we have

q knð Þ ¼ Ga kn; bn; cnð Þ

1

bn
¼ G̃Gn

2
þ 1

u1

cn ¼
T

2
þ u2 (18)

k
P

n ¼ bncn

where G̃n is related to the GLM prediction error and is defined for

a single voxel in Eq. (77) in the appendix of Penny et al. (2003).

For the autoregressive coefficients, we have

q anð Þ ¼ N an;mn;Vnð Þ

Vn ¼
�
k
P

nC̃Cn þ bIp
��1

ð19Þ

mn ¼ k
P

nD̃DnVn
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where C̃n and D̃n are quantities related to AR prediction error and

are defined in Eq. (50) in the appendix of Penny et al. (2003).
Appendix C. Model evidence

The objective function for the algorithm is the lower bound on

the logarithm of the model evidence which for our model is given by

F ¼ Lav � KL Wð Þ þ KL að Þ þ KL að Þ þ KL lð Þð Þ ð20Þ

where Lav is the average log-likelihood and the KL terms are the

Kullback–Liebler divergences between the priors and approximate

posteriors. These are computed using standard results for KL-

divergences for Gamma and Normal distributions given in Roberts

and Penny (2002). The average log-likelihood is given by

Lav ¼
X
n

T

2
u cnð Þ þ log bnð Þð Þ � k

P

n

2
G̃Gn ð21Þ

where u() is the digamma function (Press et al., 1992).
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