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1 Introduction

Images from functional imaging experiments are subject to a data process-
ing stream involving motion correction and spatial normalization. The next
step is then to smooth the images using a Gaussian kernel. One reason for
the smoothing step is to render activation information amenable to classical
statistical inference via Random Field Theory. This requires that the resid-
ual fields have a smoothness, measured by the Full Width at Half Maximum
(FWHM) of a Gaussian kernel, that is of the order of three times the voxel
edge size.

If one were to abandon the classical inference framework in favour of
Bayesian inference however, see eg. [5], then the above motivation for smooth-
ing disappears. This then leaves the second reason for smoothing which de-
rives from the fact that a point mass of neural activity gives rise to a spatially
extended hemodynamic response, the relation being defined by the spatial
hemodynamic Point Response Function (PRF). If one assumes that the PRF
is Gaussian with a known FWHM, then one can increase the Signal-to-Noise
Ratio (SNR) in functional images by smoothing with that kernel. Over- or
under specification of the FWHM, however, will lead to suboptimal increase
in SNR. Further, if the PRF is non-stationary then smoothing with a fixed
size Gaussian kernel is clearly sub-optimal. This provides the motivation for
smoothing with other methods - such as wavelets.
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2 Wavelet Transform

The wavelet spatial model is that introduced by Mallat [8] and described
further in [9]. It consists of a multiresolution hierarchy in which an image
is represented at a number of spatial resolutions. These are known as the
’coarse’ levels where lower levels correspond to succesively lower frequency
aspects of the original image. The difference between successive coarse level
images are the ‘detail’ images. These correspond to high frequency com-
ponents. Overall, a wavelet transform is defined in which an N-dimensional
image is represented by an N-dimensional image of wavelet coefficients. These
coefficients consitute the coarse and detail levels making up the multireso-
lution hierarchy, as shown in standard figures (see eg. figures 10 and 11 in
[8]).

Importantly, the wavelet transform (WT) is orthogonal and there exists
a fast ‘cascade’ algorithm for implementing it. An image can be exactly re-
constructed using a fast inverse wavelet transform (IWT). Wavelets are of
interest to us because it turns out that, for images of natural scenes, the prob-
ability density over the wavelet coefficients is heavy-tailed (super-Gaussian)
ie. the vast majority of coefficients are close to zero and a few are large.
For Gaussian white noise images, however, the probability density is itself
Gaussian. Hence, natural images which have been corrupted by additive
Gaussian white noise can be restored by forcing the wavelet coefficient prob-
ability density to be heavy tailed and then applying the IWT. This can be
achieved with Bayesian inference using shrinkage priors.

We consider images having Nx × Ny pixels. These are then represented
as N -element column vectors v where N = NxNy. The corresponding vector
of wavelet coefficients d (which can be re-shaped into an image) can, in
principle, be computed by projecting v onto a set of wavelet basis functions,
W, ie.

d = W T v (1)

In practice, this projection takes place using a fast cascade algorithm (see [11]
for an excellent description). Equivalently, the original image is represented
using

v = Wd (2)

where we make use of the orthogonality of the WT ie. W T W = I. At each
level in Mallat’s multiresolution hierarchy there are coefficients referring to
three different orientations (‘horizontal’, ‘vertical’ and ‘horizontal and verti-
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cal’). So, for a 4-resolution hierarchy there are 12 sub-images in the wavelet
coefficient images. If we let j index these sub-images and k index the kth
wavelet coefficient within each sub-image we can write

v =
∑
j,k

W (j, k)djk (3)

where W (j, k) is a wavelet basis function picked out from the appropriate
column of W and djk is a scalar.

3 Shrinkage Priors

In this paper we consider the shrinkage prior described by Clyde and George
[3] (see also [2]). This assumes that the wavelet coefficients are a priori
independent and the prior density of each coefficient is given by a mixture
of a zero-mean Gaussian and a point mass at zero. The parameters of the
prior distributions are tuned for each detail level j. The prior probability of a
coefficient being non-zero is αj and the variance of the Gaussian is cjσ where
σ is the standard deviation of the observation noise (this necessarily assumes
that the observation noise variance is uniform). We note that shrinkage is
only applied to the detail levels and not the coarse level.

Due to the orthogonality of the basis functions, the fact that the additive
noise is white, and the independence of the prior, the posterior distribution
of wavelet coefficients also factorises over coefficients. The posterior proba-
bility that the wavelet coefficient is non-zero is γjk. This probability and the
parameters αj and cj can be computed using the following Empirical Bayes
algorithm [3].

pjk =
1√

1 + cj

αj

1− αj

exp

0.5

(
djk

σ

)2
cj

1 + cj

 (4)

γjk =
pjk

1 + pjk

cj =

∑
k γjkd

2
jk

σ2
∑

k γjk

− 1
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∑
k γjk

Nj
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where Nj are the number of wavelet coefficents in the jth sub-image. We
start with the values αj = 0.1, cj = 0 and the equations are iterated until
consistent values for αj and cj are reached.

The posterior mean of the j, kth coefficient is then given by

sjk =
cj

1 + cj

γjkdjk (5)

Two different point estimates of the wavelet coefficients are then made. The
first is the ‘threshold’ estimate

tjk =
cj

1 + cj

(γjk > 0.5)djk (6)

which sets the value either to zero or to djkcj/(1 + cj). The second is the
‘model averaging’ point estimate

ajk = sjk (7)

so called because it averages over the posterior probability of mixture com-
ponents. The IWT is then applied to either tjk or ajk to restore the image.
We refer to the above restoration processes as the Bayesian thresholding and
Bayesian averaging methods. As we shall see, the averaging methods are
more accurate but the thresholding methods require fewer basis functions.

4 Results

The following applications used the bi-orthogonal wavelet bases described by
Daubechies [9].

4.1 Dexter image

Figure 1 shows a 4-level multiresolution representation of a natural image
(containing Professor Denzil Dexter, University of Southern California). The
wavelet coefficients correspond to the lowest coarse level and the detail images
(not shown). We then added Gaussian noise to the original image and applied
the Bayesian restoration algorithms. As expected the Bayesian averaging
method provides the best reconstruction in terms of squared error. The
reconstruction error of the Bayesian threshold methods was marginally bigger
but this was achieved with less than a full basis set. In fact, at detail levels
4 to 7 only 60%, 25%, 5% and 1% of coefficients were kept (these are typical
values across the three different orientations at each level).
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4.2 fMRI activation images

We now show how Bayesian wavelet restoration can be used to smooth con-
trast images from functional imaging experiments. We are therefore consid-
ering smoothing at a later stage of the data processing stream than is usual.
Unsmoothed but motion-corrected and spatially normalised functional im-
ages are modelled using a voxel-wise General Linear Model (GLM) approach.
In this paper we used the algorithm described in [10]. One then specifies a
contrast vector to test for the effect of scientific interest. In this paper we
have analysed data from a face processing study [6] and chosen a contrast
vector that looks for voxels that are differentially active when presented with
face images versus checkerboard images. We look at a single transverse slice
of data from 12 different subjects. Application of the contrast vector to the
GLM produces an image of the estimated effect size (the so-called ’con’ im-
age), vxy. This is accompanied by an estimate of the effect variability ie. a
variance image, σ2

xy. The two are related as follows

vxy = hxy + exy (8)

where Var[exy] = σ2
xy and hxy is the true effect size. That is, for voxels

with larger σ2
xy we are more uncertain about the true effect size (Note that

as we’ve explained it, equation 8 should be hxy = vxy + exy but the two
equations are the same except for the sign of the error). The key point
is that, mathematically, the problem of estimation of the true effect size is
identical to the problem of restoration of images corrupted by additive noise.
We can therefore used image restoration algorithms to solve our effect size
problem and, fortunately, this is a mature field with a large body of literature.
Wavelet methods are our current focus.

We first note that the standard algorithms are not readily applied to im-
ages with heteroscedastic noise ie. nonstationary error variance. This is be-
cause the posterior distribution over wavelet coefficients no longer factorises.
One can, however, resort to methods described in [7] in which bandlimited
covariance matrices are computed using wavelet transforms. For images,
however, these matrices are still prohibitively large.

An alternative solution is to apply the wavelet transform to contrast
images which have been normalised with respect to the error variance at
each voxel. These pre-processed data then have constant error variance σg

ie.
ṽij = σg

vij

σij

(9)
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We then apply the wavelet restoration process on ṽij to get restored images
r̃ij. This amounts to smoothing normalised effect-size images (or, normalised
contrast images).

Normalised contrast images from each of 12 subjects are shown in Fig-
ure 3. These have been produced by a voxel-wise GLM analysis. Figure 4
shows the result of smoothing these images using a fixed width Gaussian ker-
nel and Figure 5 shows the wavelet restored images using the Bayesian aver-
aging approach. All images in these figures are on the same scale. The signal
size in activation areas is greater for the wavelet-smoothed images. Gaussian
smoothing blurs these signals resulting in a lower SNR. The main reason for
this is that the Gaussian approach uses stationary smoothing whereas the
wavelet approach uses nonstationary smoothing (ie. effectively with a kernel
of varying width).

5 Discussion

Spatial wavelets have been used in the analysis of PET images by Turkheimer
et al. [12]. This work used Battle-Lemarie wavelets and a wavelet thresh-
olding based on minimax [4] and Bonferroni criterion. Brammer [1] applied
spatio-temporal wavelets to fMRI images using the bi-orthogonal Daubechies
bases. Significantly non-zero clusters of wavelet coefficients were identified
using Kolmogorov-Smirnoff statistics.

Both of the above approaches estimate the noise variance by looking at
the variability of wavelet coefficients at the finest level of detail (this is the
standard procedure in wavelet restoration). In our approach we used an
estimate based on a global value, σ2

g , derived from the average noise variance
across subjects. This quantifies the average uncertainty of the normalised
effect-size at each voxel.

Following the logic of our approach to random effects analysis (ie. looking
at the mean and variance images across subjects) yielded activation images
with very low spatial resolution. One inconsistency in our approach is that we
have smooth signal images but unsmooth variance images. A fully consistent
approach would have a spatial model for the signal and the error. Finally,
we would ideally like to look at the posterior distribution of effect size in
image space. Whilst this can be achieved with wavelets, it is computationally
prohibitive (see references in section 3.2 of [2]).
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Figure 1: Coarse images at various resolution levels, L, where (a) L = 7,
(b) L = 6, (c) L = 5 and (d) L = 4. At resolution level L the image is
represented by 2L pixels in each direction. In the above figure the images
been reshaped to the same size. The detail images at a particular level are
produced by ‘horizontal’, ’vertical’ and ‘horizontal and vertical’ differences
between successive levels. The set of coefficients produced by the wavelet
transform consist of the lowest coarse level images and the higher level detail
images. When added together these reproduce the original image without
error. The original image is 28 × 28 pixels and is shown in figure 2(a).
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Figure 2: (a) Original image, (b) corrupted with additive Gaussian noise
of known variance (Mean Squared Error=0.36), (c) wavelet-restored image
using Bayesian thresholding (Error=0.086), (d) wavelet-restored image using
Bayesian averaging (Error=0.072).
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Figure 3: Contrast images from 12 subjects.
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Figure 4: Gaussian smoothed contrast images from 12 subjects
(FWHM=8mm).
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Figure 5: Wavelet restored contrast images from 12 subjects.
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