
Bayesian Comparison of Spatially Regularised
General Linear Models

Will Penny,1* Guillaume Flandin,1 and Nelson Trujillo-Barreto2

1Wellcome Department of Imaging Neuroscience, University College, London WC1N 3BG
2Cuban Neuroscience Center, Havana, Cuba

Abstract: In previous work (Penny et al., [2005]: Neuroimage 24:350–362) we have developed a spa-
tially regularised General Linear Model for the analysis of functional magnetic resonance imaging data
that allows for the characterisation of regionally specific effects using Posterior Probability Maps
(PPMs). In this paper we show how it also provides an approximation to the model evidence. This is
important as it is the basis of Bayesian model comparison and provides a unified framework for Bayes-
ian Analysis of Variance, Cluster of Interest analyses and the principled selection of signal and noise
models. We also provide extensions that implement spatial and anatomical regularisation of noise pro-
cess parameters. Hum Brain Mapp 28:275–293, 2007. VVC 2006 Wiley-Liss, Inc.
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INTRODUCTION

Functional Magnetic Resonance Imaging (fMRI) using
Blood Oxygen Level Dependent (BOLD) contrast is an
established method for making inferences about regionally
specific activations in the human brain [Frackowiak et al.,
2003]. From measurements of changes in blood oxygen-
ation one uses various statistical models, such as the Gen-
eral Linear Model (GLM) [Friston et al., 1995b], to make
inferences about task-specific changes in underlying neuro-
nal activity.
In this paper we propose analysing fMRI using a Bayes-

ian Model Comparison (BMC) framework based on spa-
tially regularised GLMs. Whilst model comparison can be
thought of as a secondary concern, used primarily for fine-

tuning, an alternative perspective places it at the heart of
the scientific endeavour. This is because in any mature sci-
entific discipline there will be a candidate set of hypothe-
ses. BMC can then be used to update ones beliefs about
the competing hypotheses in light of experimental data.
A more prosaic example is the analysis of data from fac-
torial experimental designs using Analyses of Variance
(ANOVA). This is a mainstay of scientific research [Winer
et al., 1991]. To infer that manipulation of an experimental
factor caused a significant effect one compares two models,
one with that factor and one without.
In neuroimaging, BMC is used in the analysis of func-

tional integration [Penny et al., 2004]. This allows infer-
ences to be made about effective connectivity and how
that connectivity changes as a function of perceptual or
cognitive set. In analyses of functional specialisation, BMC
has been used to select the optimal order of autoregressive
noise models [Penny et al., 2003].
Model comparison can be implemented using classical

or Bayesian inference. In classical inference, however, one
is restricted to comparing nested models [Gelman et al.,
1995]. Whilst this is sufficient for ANOVA, it is suboptimal
in other domains. In this paper we show that a non-nested
approach is optimal for the comparison of hemodynamic
basis sets.
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In previous work we have developed a Bayesian frame-
work that allows inferences to be made about regional acti-
vations using Posterior Probability Maps (PPMs) [Penny
et al., 2005]. This has been extended by incorporating a
spatial prior embodying our knowledge that evoked
responses are spatially contiguous [Penny et al., 2005]. A
key feature of that work is that it provides an approxima-
tion to the model evidence.
In this paper we show how the model evidence can be

used for model comparison and give details of the neces-
sary computations. This provides a unified framework for
Bayesian ANOVAs, Cluster of Interest (COI) analyses and
the principled selection of signal and noise models. We also
describe extensions to the framework that implement spatial
and anatomical regularisation of noise process parameters.
The paper is structured as follows. In the next section we

describe BMC and show how the model evidence can be ap-
pproximated. In later sections we describe our probabilistic
model for fMRI and show how approximate inference can pro-
ceed. We also describe a variant of the model using ‘tissue-
type priors’ that make use of anatomical information. In the
results section the method is applied to simulated data to illus-
trate the properties of COI analysis and to compare nested ver-
sus non-nested model comparison of hemodynamic basis sets.
Results on an event-related fMRI data set illustrate Bayesian
selection of signal and noise models and Bayesian ANOVA.

THEORY

Bayesian Model Comparison

Posterior model probabilities

Given a set of probabilistic models indexed by m ¼ 1 . . . M
and a data set Y, Bayesian Model Comparison (BMC) can be
implemented as follows [Kass and Raftery, 1995]. Firstly, one
requires a prior distribution over models, p(m). Typically this
will be a uniform distribution indicating that no model is fav-
oured a priori. One then needs the evidence for model m,
p(Y|m). The evidence is not straightforward to compute but
the next section shows how it can be approximated. From the
model prior and model evidence one can then compute the
posterior probability of modelm using Bayes rule

pðmjYÞ ¼ pðYjmÞpðmÞP
m0 pðYjm0Þpðm0Þ ð1Þ

This posterior distribution can be used in a number of
ways. In Bayesian Model Averaging p(m|Y) provides a
weighting for combining model predictions. This has
been used, for example, to improve EEG source local-
isation [Trujillo-Barreto et al., 2004].
In this paper we use p(m|Y) for BMC. In a later section,

for example, we compare the evidence of models with dif-
ferent hemodynamic basis sets. All the examples in this
paper assume a uniform prior over models ie. p(m) ¼ 1/M.
The model with the highest posterior probability will

therefore also have the highest evidence. This means
that the model evidence alone can also be used for model
selection.

Approximating the model evidence

Given that model m has parameters u, the evidence for
model m can be written as

pðYjmÞ ¼ pðY; ujmÞ
pðujY;mÞ ð2Þ

Taking logs, and writing the log-evidence as L(m) :
log p(Y|m) gives

LðmÞ ¼ log pðY; ujmÞ � log pðujY;mÞ ð3Þ

If we now take expectations with respect to, what for
the moment we will regard as an arbitrary distribution,
q(u|Y,m) we get

LðmÞ ¼
Z

qðujY;mÞ log pðY; ujmÞ du

�
Z

qðujY;mÞ log pðujY;mÞ du ð4Þ

This can be re-arranged as follows

LðmÞ ¼ FðmÞ þ KL½qðujY;mÞ; pðujY;mÞ� ð5Þ

where the first term is known as the negative free
energy [Neal and Hinton, 1998]

FðmÞ ¼
Z

qðujY;mÞ log
pðY; ujmÞ
qðujY;mÞ du ð6Þ

and the second term is the Kullback Leibler (KL) diver-
gence [Cover and Thomas, 1991], which can be written
generically for any probability densities q(x) and p(x) as

KL½qðxÞ; pðxÞ� ¼
Z

qðxÞ log
qðxÞ
pðxÞ dx ð7Þ

KL measures the discrepancy between two probability
densities. It is equal to zero if the densities are identical
and greater than zero otherwise. Because KL � 0, Eq. (5)
tells us that L(m) � F(m). That is, the log model evi-
dence is bounded below by F, and the closer q(u|Y,m)
is to p(u|Y,m), the tighter the bound.
Equation (5) describes the fundamental relationship

between model evidence, free energy and KL-divergence.
This relationship is used in the inference framework
known as Variational Bayes (VB) [Beal, 2003]. In VB, the
parameters of an approximate posterior density, q(u|Y,m)
(see later section) are updated to maximise F(m). This
therefore maximises a lower bound on the model evidence.
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A number of methods now use this approach in the analy-
sis of neuroimaging data [Penny et al., 2003, 2005; Sahani
and Nagarajan, 2004; Sato et al., 2004; Wolrich et al., 2004].
Model comparison proceeds using F(m) as a surrogate

for the model evidence, under the assumption that the
bound in Eq. (5) is tight. This will be the case if the ap-
proximate posteriors are close to the true posteriors. In our
previous work on modelling fMRI time series (see Section
5 in [Penny et al., 2003]) we have used Gibbs sampling to
show that this is indeed the case.
It is also possible to approximate the model evidence

using sampling methods [Beal, 2003; Gelman et al., 1995].
In the very general context of probabilistic graphical mod-
els, Beal and Ghahramani [2003] have shown that the VB
approximation of model evidence is considerably more
accurate than the Bayesian Information Criterion whilst
incurring little extra computational cost. Moreover, model
selection using VB is of comparable accuracy to a much
more computationally demanding method based on
Annealed Importance Sampling [Beal, 2003].

Computing the free energy

In this paper we will use F(m) as an approximation to the
log evidence. This will form the basis of all model compari-
sons. This quantity can also be expressed in a more conven-
ient form. If we expand the joint density p(Y,u|m) ¼
p(Y|u,m)p(u|m) and collect terms it can be written

FðmÞ ¼ VðmÞ �KL½qðujY;mÞ; pðujmÞ� ð8Þ

where V(m) is the average log likelihood

VðmÞ ¼
Z

qðujY;mÞ log pðYju;mÞ du ð9Þ

and KL[q(u|Y,m),p(u|m)] is the divergence between the
approximate posterior and the prior. The quantity F(m)
therefore comprises two terms: (i) an accuracy term, the
average log likelihood, and (ii) a complexity term, the
KL divergence. This can be viewed as a complexity
term because, as the number of parameters grows (ie.
the dimension of u) so does the KL.

Analysis of fMRI Time Series

To apply the model comparison framework we need a
set of models m and for each model we must specify a set
of parameters, u, a prior distribution of those parameters,
p(u|m) and the likelihood p(Y|u,m). Together, the likeli-
hood and prior define a probabilistic generative model
that we describe in the following section.

Generative model

We write an fMRI data set consisting of T time points at
N voxels as the T � N matrix Y. In mass-univariate models

[Friston et al., 1995b], these data are explained in terms
of a T � K design matrix X, containing the values of K
regressors at T time points, and a K � N matrix of regres-
sion coefficients W, containing K regression coefficients at
each of the N voxels. The model is written

Y ¼ XW þ E ð10Þ

where E is a T � N error matrix.
It is well known that fMRI data are contaminated with

artifacts. These stem primarily from low-frequency drifts
due to hardware instabilities, aliased cardiac pulsation and
respiratory sources, unmodelled neuronal activity and resid-
ual motion artifacts not accounted for by rigid body registra-
tion methods [Wolrich et al., 2001]. This results in the resid-
uals of an fMRI analysis being temporally autocorrelated.
In previous work we have shown that, after removal of

low-frequency drifts using Discrete Cosine Transform (DCT)
basis sets, low-order voxel-wise autoregressive (AR) models
are sufficient for modelling this autocorrelation [Penny et al.,
2003]. It is important to model these noise processes as pa-
rameter estimation becomes less biased [Gautama and Van
Hulle, 2004] and more accurate [Penny et al., 2003]. Together,
DCT and AR modelling can account for long-memory noise
processes. Alternative procedures for removing low-fre-
quency drifts include the use of running-line smoothers or
polynomial expansions [Marchini and Ripley, 2000].
In this paper, we adopt the approach taken in previous

work. For a Pth-order AR model, the likelihood of the data
is given by (see equation 10 in [Penny et al., 2003])

pðYjW;A; lÞ ¼
YT

t¼Pþ1

YN
n¼1

Nðytn � xtwn; ðdtn � XtwnÞTan; l�1
n Þ

ð11Þ

where N() is the Normal density defined in Appendix E,
at the nth voxel, an is a P � 1 vector of AR coefficients,
wn is a K � 1 vector of regression coefficients and ln is
the observation noise precision. The vector xt is the tth
row of the design matrix and Xt is a P � K matrix con-
taining the previous P rows of X prior to time point t.
The scalar ytn is the fMRI scan at the tth time point and
nth voxel and dtn ¼ [yt�1,n, yt�2,n ,. . ., yt�P,n]

T. This
shows that higher model likelihoods are obtained when
the prediction error ytn � xtwn is closer to what is expected
from the AR estimate of prediction error. Because dtn
depends on data P time steps before, the likelihood is eval-
uated starting at time point P þ 1, thus ignoring the GLM
fit at the first P time points.
The voxel wise parameters wn and an are contained in the

matrices W and A and the voxel-wise precisions ln are con-
tained in l. Appendices A, B and C describe the prior distri-
butions over these parameters. Appendix B, for example,
describes a prior over regression coefficients that enforces
an automatic spatial regularisation using eg. Low Resolution
Tomography (LORETA) or Gaussian Markov Random Field
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(GMRF) priors. These have been described in detail in previ-
ous work [Penny et al., 2005]. Together, the likelihood and
priors define the generative model, which is portrayed
graphically in Fig. 1. This generative model is identical to
that described in our previous work [Penny et al., 2005],
except that we have augmented the model so that the AR
coefficients are regularised as described in the next section.

AR priors

It is well established that the amount of temporal auto-
correlation in fMRI data varies as a function of voxel posi-
tion. This can be modelled using voxel-wise AR processes
[Bullmore et al., 1996; Penny et al., 2003; Woolrich et al.,
2001; Worsley et al., 2002].
It has also been observed that the autocorrelation varies

as a function of tissue type i.e. grey matter, white matter or
Cerebro-Spinal Fluid (CSF). For example, in AR(1) models,
larger coefficients are observed in CSF [Penny et al., 2003].
It is an open question, however, as to whether tissue

type is sufficient to explain the observed spatial variability.
In this paper we address this question from a model com-
parison perspective by comparing two types of model.
Each model regularises the estimation of voxel-wise AR
coefficients in a different way.
The first type of model uses a ‘tissue-type prior’ that we

define as follows. First, each voxel is labelled as belonging
to one of S discrete categories. For example, s ¼ {1,2,3}

could correspond to the voxel belonging to (1) grey matter,
(2) white matter or (3) CSF. This information can be
derived from a segmentation of registered structural
images [Ashburner and Friston 2003a]. Second, archetypal
AR coefficient vectors are associated with each category.
This is implemented by specifying a Gaussian distribution
for each category. Appendix F describes these priors math-
ematically and shows how the means and precisions of the
Gaussians can be estimated from the data.
The second type of model uses a spatial prior that takes

into account voxel position. Following Woolrich et al.
[2004] we use a GMRF prior. This has been shown to
improve estimation of AR parameters, especially for the
lower order coefficients. This prior is defined mathemati-
cally in Appendix C. It is also illustrated in the generative
model in Figure 1. Similar spatial regularisation proce-
dures, but based on Gaussian kernels, have been proposed
in the context of classical inference [Gautama and Van
Hulle, 2004; Worsley et al., 2002].
In later sections we show that our model comparison

procedures are capable of detecting the correct type of var-
iation (eg. spatial versus tissue-type), and of indicating
which is the better model for fMRI.

Approximate posteriors

This paper uses the VB framework [Beal, 2003] for esti-
mation and inference. This requires the specification of an

Figure 1.

Generative model: The figure shows the probabilistic dependen-

cies underlying our generative model for fMRI data. The quanti-

ties in square brackets are constants and those in circles are

random variables. The spatial regularisation coefficients a con-

strain the regression coefficients W. The parameters l and A

define the autoregressive error processes that contribute to the

measurements. The spatial regularisation coefficients b constrain

the AR coefficients A. The graph shows that the joint probability

of parameters and data can be written p(Y, W, A, l, a, b) ¼
p(Y|W, A, l)p(W|a)p(A|b)p(l|u1, u2)p(a|q1, q2)p(b|r1, r2), where
the first term is the likelihood and the other terms are the pri-

ors. The likelihood is given in Eq. (11) and the priors are defined

in greater detail in Appendices A–C.
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approximate posterior distribution whose parameters are
updated so as to maximise the negative free energy, as
described in an earlier section.
This paper uses the algorithm described in previous

work [Penny et al., 2005] in which we assume that the ap-
proximate posterior factorises over voxels and subsets of
parameters. This leads to a set of equations for updating
the sufficient statistics of components of the approximate
posterior shown in Figure 2. These update equations are
also provided in the appendices. These appendices are self-
contained except for a number of quantities that are marked
out using the ‘tilde’ notation. These are ~An;~bn; ~Cn; ~dn and ~Gn

that are all defined in Appendix B of [Penny et al., 2003].
Derivations of update equations that are new to this pa-

per (see e.g. Appendixes C and F) have been omitted but
follow the standard variational approach, which is also
described in Appendix A of [Penny et al., 2005].
The central quantity of interest in fMRI analysis is our

estimate of effect sizes, embodied in contrasts of regression
coefficients. A key update equation in our VB scheme is,
therefore, the approximate posterior for the regression
coefficients. This is given by Eq. (B4) in the appendix. For
the special case of temporally uncorrelated data we have

�̂n ¼ �lnX
TX þ �Bnn

� ��1

ŵn ¼ �̂n
�lnX

Tyn þ rn
� � ð12Þ

where B is a spatial precision matrix and rn is the weighted
sum of neighboring regression coefficient estimates.

This update therefore indicates that the regression coeffi-
cient estimate at a given voxel regresses towards those at
nearby voxels. This is the desired effect of the spatial prior
and it is preserved despite the factoristion over voxels in the
approximate posterior. Equation (12) can be thought of as the
combination of a temporal prediction XTyn and a spatial pre-
diction from rn. Each prediction is weighted by its relative
precision to produce the optimal estimate ŵn. In this sense,
the VB update rules provide a spatio-temporal deconvolution
of fMRI data. Moreover, the parameters controlling the rela-
tive precisions, �ln and �a, are estimated from the data. This
means that our effect size estimates derive from an automati-
cally regularised spatio-temporal deconvolution.

Computing the free energy

The negative free energy, F(m), will be used to approxi-
mate the model evidence and can be computed using the
expression in Eq. (8). It comprises two types of term: the
average log likelihood and the KL terms. Appendix D
shows how the average log likelihood is computed. For
the KL terms we have (dropping the m’s)

KL½qðujYÞ; pðuÞ� ¼ KL½qðWÞ; pðWÞ� þKL½qðAÞ; pðAÞ�
þ KL½qðlÞ; pðlÞ� þKL½qðaÞ; pðaÞ� þ KL½qðbÞ; pðbÞ� ð13Þ

where W are regression coefficients, A are AR coeffi-
cients, l are observation noise precisions and a and b
are the spatial regularisation coefficients for W and A,

Figure 2.

Approximate posteriors: The full approximate posterior distribution is q(W, A, l, a, b) ¼
[#zn¼1

N q(wn)q(an)q(ln)] q(a)q(b). The boxes in the figure show each component of the approxi-

mate posterior along with update equations for their sufficient statistics.
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respectively (Fig. 1). Appendix E shows in detail how
each KL term is computed. It is also possible to re-
arrange the computation of F(m) to make it more effi-
cient, as a number of terms in the average log-likeli-
hood cancel with those in the KL expressions (see e.g.
Miskin and Mackay, 2000). We have not used this re-
arrangement, however, as it compromises the readabil-
ity and extendability of the implementation.
When comparing models with the same type of spatial

prior (ie. same Dw and Da), and the same number of
regression coefficients, K, and the same number of AR
coefficients, P, there is no need to compute terms involving
log |Dw| or log |Da|. This saves time, especially for slices
with large numbers of voxels. Otherwise, this log-determi-
nant must be computed.1 This can be implemented by
eigendecomposition and then taking the sum of the log of
eigenvalues greater than machine precision. This last step
is necessary as the matrices are not full rank [Penny et al.,
2005].
Because our approximation to the model evidence

depends on the aforementioned KL terms, it will also
depend on the constants that define the priors at the high-
est level of the model. These are the priors p(ln), p(ak) and
p(bp), which have associated constants q1, q2, r1, r2, u1 and
u2 (see Appendix A). In previous work, however, we have
shown for example that the optimal AR model order is ro-
bust to variations in �bp ¼ r1r2 over several orders of mag-
nitude (see Section 5.2 in [Penny et al., 2003]).

Unique contributions

It is possible to decompose the evidence for each model
into a sum of unique contributions from each voxel

FðmÞ ¼
X
n

UnðmÞ ð14Þ

where

UnðmÞ ¼ VðnÞ � KWðnÞ � KAðnÞ � KLGa½qðlnÞ; pðlnÞ�
� 1

N
ðKL½qðaÞ; pðaÞ� þ KL½qðbÞ; pðbÞ�Þ ð15Þ

The computation of these voxel-specific terms is
described in detail in Appendices D and E.
Breaking the evidence down into contributions from

each voxel has two advantages. First, the update equations
need only be applied at voxels whose contribution, Un(m),
is still increasing. We envisage that this could speed the
estimation process, although this has yet to be imple-

mented. Second, the differences in voxel-wise contribu-
tions between two models can be used to plot PPMs. For
example, given two models with equal priors the posterior
probability of model 2 at voxel n is given by

pðm ¼ 2jY; nÞ ¼ expðUnð2ÞÞ
expðUnð1ÞÞ þ expðUnð2ÞÞ ð16Þ

Because Un(m) is a contribution to the log evidence
rather than the log-evidence per se, maps based on
Un(m) are ‘pseudo’-PPMs rather than PPMs proper.
Nevertheless, they should be useful in characterising
regionally specific effects. This method is used in the
context of Bayesian ANOVAs in a later section.
The pseudo-PPMs we have defined are conceptually dif-

ferent from PPMs proper. They are not a numerical
approximation to proper PPMs. This is because our mod-
els are spatially extended and the model evidence is only
defined for a slice of spatially extended data. In the
abscence of spatial correlation pseudo-PPMs will corre-
spond to proper PPMs.

Hemodynamic basis sets

It is well known that the shape of the hemodynamic
response varies from voxel to voxel and from subject to
subject [Zarahn et al., 1997]. This is accounted for in the
context of GLM analyses by characterising the response
using a hemodynamic basis set [Frackowiak et al., 2003].
For example, Friston et al. [1998] proposed the use of a ‘ca-
nonical’ basis function composed of a sum of gamma func-
tions. This can be augmented to include two other basis
functions, the derivative of the canonical with respect to
time and the derivative with respect to dispersion. To-
gether, these basis functions constitute an ‘Informed’ basis
set [Henson, 2003]. For event-related designs, other authors
have proposed ‘selective averaging’ procedures. These
are formally equivalent to the use of a Finite Impulse
Response (FIR) basis set [Henson, 2003].
In this paper we consider use of the following hemody-

namic basis sets. Unless otherwise specified the basis func-
tions cover a 32 s period post-stimulus. We use the seven
standard options available in the Statistical Parametric Map-
ping (SPM) software [SPM, 2002] (i) Inf-1: the canonical
response, (ii) Inf-2: the canonical plus temporal derivative,
(iii) Inf-3: the canonical plus temporal and dispersion deriv-
atives, (iv) F: a Fourier basis set with 10 sinusoids covering
20s, (v) FH: as (iv) but with Hanning windows, (vi) Gamm3:
a set of three Gamma basis functions and (vii) FIR: a finite
impulse response with 10 2-second windows.

FACE fMRI DATA

This paper uses an event-related fMRI data set acquired
by Henson et al. [2002]. This data and a full description of
the experiments and pre-processing are available from
http://www.fil.ion.ucl.ac.uk/spm/data/. The data were

1A promising alternative to GMRF and LORETA priors are the
thin plate spline priors defined in Buckley [1994]. These have the
benefit that the determinant has a known algebraic form making
computation of the log-determinant much simpler.
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acquired during an experiment concerned with the pro-
cessing of images of faces [Henson et al., 2002]. This was
an event-related study in which greyscale images of faces
were presented for 500 ms, replacing a baseline of an oval
chequerboard that was present throughout the interstimu-
lus interval (Fig. 3). Some faces were of famous people
and were therefore familiar to the subject and others were
not. Each face in the database was presented twice. This
paradigm is a two-by-two factorial design where the fac-
tors are familiarity and repetition. The four experimental
conditions are ‘U1’, ‘U2’, ‘F1’ and ‘F2’, which are the first
or second (1/2) presentations of images of familiar ‘F’ or
unfamiliar ‘U’ faces. The design is shown pictorially in
Figure 3.
Images were acquired from a 2T VISION system (Sie-

mens, Erlangen, Germany), which produced T2*-weighted
transverse Echo-Planar Images (EPIs) with BOLD contrast.
Whole brain EPIs consisting of 24 transverse slices were
acquired every 2 s, resulting in a total of T ¼ 351 scans.
All functional images were realigned to the first functional
image using a six-parameter rigid-body transformation. To
correct for the fact that different slices were acquired at
different times, time series were interpolated to the acqui-
sition time of the reference slice. Images were then spa-
tially normalized to a standard EPI template using a non-
linear warping method [Ashburner and Friston, 2003].
To implement a classical SPM analysis using Random

Field Theory one usually spatially smooths the data at this
stage [Brett et al., 2003]. But because our model incorpo-
rates a spatial prior that automatically determines the opti-
mal amount of spatial regularization, this smoothing step
is unnecessary.
We then computed the global mean value, g, over all

time series, excluding non-brain voxels, and scaled each
time series by the factor 100/g. This makes the units of the
regression coefficients ‘percentage of global mean value’.
Each time series was then high-pass filtered using a set of
discrete cosine basis functions with a filter cut-off of 128 s.

A structural scan was also acquired. This was normal-
ised to the mean functional image and segmented into
grey matter, white matter and CSF using the algorithm
described in [Ashburner and Friston, 2003b]. Analysis of
the functional data was restricted to within-brain voxels,
as identified by the structural segmentation.

RESULTS

Simulated Data

Comparing noise models

In this section we compare different assumptions about
the prior distribution of AR coefficients using simulated
data. The use of spatial GMRF priors assumes that AR
coefficients vary smoothly across a slice, whereas the use
of tissue-type priors assumes that they vary about a small
number of typical values. The simulations use first-order
AR models for simplicity. If the Signal to Noise Ratio
(SNR) is sufficiently high, and our approximation, F, to the
model evidence is sufficiently accurate then we should be
able to use F to identify which prior was used to generate
the data.
The leftmost column in Fig. 4 shows four different pro-

files of AR(1) coefficients. The first three profiles have one,
two and three different typical values and the fourth has
values that vary continuously as a function of position.
For each AR(1) profile we generated data as follows. We

used a design matrix comprising two regressors, the first
being a boxcar with a period of 20 scans and the second a
constant. The design matrix, X, is therefore of dimension
T � K (K ¼ 2) and we chose T ¼ 100 scans. We then used
a K � N element regression coefficient matrix, W, whose
elements were all set to 0.5. We chose N ¼ 64 so that the
coefficients could be reshaped into 8 � 8 images for dis-
play purposes. From this, we generated a simulated fMRI
signal XW of dimension T � N. We also generated a simu-

Figure 3.

Face paradigm: (a) Experimental stimuli and (b) time series of stimuli presentation. [Color figure

can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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lated noise fMRI signal by first generating a Gaussian IID
noise sequence with mean zero and precision l ¼ 1. For
each voxel n, we then introduced a noise correlation as
determined by the value of the AR coefficient at that voxel.
The simulated data Y then comprised the simulated fMRI
signal plus the simulated fMRI noise. Overall, we gener-
ated four data sets having the profile of AR(1) coefficients
shown in Figure 4.
We then fitted each data set with four different models.

The corresponding estimated profiles are shown in columns
two to five in Figure 4. Columns two to four are estimates
from tissue-type priors with 1, 2 and 3 different categories,
respectively. The fifth column contains estimates from a
model with spatial GMRF priors. The final column shows
the posterior model probabilities, p(m|Y). These posterior
probabilities are computed using the constraint Sip(mi|Y) ¼
1, where i indexes the model and p(mi|Y) ! p(Y|mi) !
F(mi) (under flat model priors p(mi)). These show that the
appproximation to the model evidence (see earlier section)
is sufficiently accurate for the method to correctly detect the
type of spatial structure in the data.
The estimate of F(mi) entailed assigning each voxel to

the appropriate ‘tissue-type’ for the first three models. This

is a component that is eschewed by the AR model with
spatial GMRF priors.
As noted in an earlier section, our approximation to the

model evidence is dependent on the constants that define
the priors at the highest level of the model. We investi-
gated this dependence by repeating the model fitting using
different values for the relevant constants. Varying the
prior mean precision of AR coefficients �b ¼ r1r2 between 1
and 100 did not have a major effect on the choice of opti-
mal model order.

COI analysis

If one has a strong prior hypothesis about the potential
location of an activation then a Region Of Interest (ROI)
analysis can be made. A region comprising a number of vox-
els is first chosen. This is often identified using localizer con-
trasts or scans (see e.g. [Kanwisher et al., 1999]). A single
time series is then extracted using Principal Component
Analysis or Singular Value Decomposition [Buchel and Fris-
ton, 1997], the mean operator or multiplication with a user-
specified activation shape [Brett et al., 2002]. Analysis is
then based on this single ‘summary’ time series.

Figure 4.

AR(1) images for synthetic data: Each row in this figure corre-

sponds to analysis of a different data set. The leftmost column

shows the AR(1) profile used to generate the data. The second,

third and 4th columns show AR profiles as estimated by models

with tissue-type priors having 1, 2 and 3 (known) discrete levels,

respectively. The fifth column shows the estimated profiles from

models with spatial GMRF priors. The final column shows bar

plots of the posterior model probabilities. The first three bars cor-

respond to models with tissue-type priors having 1, 2 and 3 levels

and the fourth bar corresponds to the spatial GMRF model. These

results show that our approximation to the model evidence can

correctly detect the type of structure in the coefficients.
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This section describes an alternative approach that we
call COI analysis. Again, a region comprising a number of
voxels is first chosen but the analysis is based on all time
series in that region. The approach may also be viewed as
a Bayesian cluster-level inference as it shares the funda-
mental property of classical cluster level inference that an-
atomical specificity is traded off for increased sensitivity
[Friston et al., 1995a].
To illustrate the properties of a COI analysis, we use

simulations based on the experimental design of the face
fMRI data in which models with different design matrices
are compared. Design matrix 1, a ‘null’ model, comprises a
column of 1s to model the mean response at a voxel.
Design matrix 2 has a single additional experimental con-
dition that was the presentation of a face regardless of fac-
tor or level. This was convolved with the canonical hemo-
dynamic response function. Evidence in favour of a model
using design matrix 2 allows one to infer that there was a
response to faces.
Two types of data were generated, type 1 data sets using

design matrix 1 and type 2 data sets using design matrix 2.
Both types of data were generated for two-dimensional clus-
ters containing N ¼ 1, 4, 9, 16 and 25 voxels. For each size of
cluster we generated 500 data sets of each type. Overall, 2 �
5 � 500 ¼ 5,000 data sets were generated. Both types of data
were generated using regression coefficients fixed at unity
across the patch. For data type 2 this represents a cluster of
voxels that is uniformly active. The observation noise var-
iance was set so that a range of sensitivities would be
observed. This was achieved using a voxel-wise SNR of 0.2
(we define SNR as the ratio of signal to noise standard devi-
ation). This is very small for fMRI. The same observation
noise variance was used for both types of data.
For each data set we then fitted four models: design

matrices 1 and 2 with spatial GMRF priors and design
matrices 1 and 2 with shrinkage priors. These shrinkage
priors have been used in previous work [Friston et al.,
2002] and do not make use of spatial information. A clus-
ter was declared to be ‘active’ if the posterior probability
of the model using design matrix 2 was greater than 0.999.
We then computed the sensitivity and specificity of the in-
ference over the 500 instances for each N. Overall, 4 �
5,000 ¼ 20,000 models were fitted.
The specificity was found to be 100% for all sizes of

cluster and for both types of prior. Figure 5 shows a plot
of sensitivity as a function of number of voxels. This indi-
cates that the effect is too weak to be detected at the single
voxel level. But the signal is increasingly detectable as the
cluster size increases. This shows the power of cluster-
level inference. Weak, diffuse signals can be detected at
the ‘cluster-level’ that cannot be detected at the ‘voxel-
level’. The figure also shows that use of a spatial prior
markedly increases this sensitivity. For the cluster contain-
ing 9 voxels the sensitivity is increased by over 30%.
In a second set of simulations we repeated the above

process but the regression coefficients were set to conform
to a non-uniformly activated cluster. A spatial Gaussian

shape was chosen. The SNR was again chosen to obtain a
range of sensitivities. This was achieved using SNR ¼ 0.4.
We again generated two types of data sets, with 500 in-
stances of each type for each value of N.
Each data set was then fitted with six models: design

matrices 1 and 2 with spatial GMRF priors, design matri-
ces 1 and 2 applied to mean cluster activity, and design
matrices 1 and 2 applied to the Principal Component (PC)
of cluster activity. The first two models are used to assess
the COI approach and the last four to assess two different
ROI approaches. Clearly, the spatial parameters are redun-
dant when modelling univariate summaries of regional
responses like the mean or regional eigenvariate.
Clusters were again declared to be ‘active’ if the poste-

rior probability of the model using design matrix 2 was
greater than 0.999. Figure 6 shows a plot of sensitivity as a
function of number of voxels, for each of the three
approaches. Sensitivity reaches a peak for the cluster hav-
ing 9 voxels. It then falls off due to the Gaussian nature of
the spatial activation profile. This is seen most severely for
the ROI approaches. Sensitivity is lowest using the mean
time series and slighty higher using the PC time series.
For the largest cluster, the COI approach is 20–30% more
sensitive than the ROI approaches.
These properties hold for all types of model comparison,

whether it be an inference about a main effect, interaction
(see later section) or selection of a hemodynamic basis set.

Comparing hemodynamic basis sets

This section describes the properties of nested versus
non-nested model comparison in the context of selecting

Figure 5.

COI analysis for a uniformly activated region: The figure shows

of a plot of sensitivity versus number of voxels in the cluster, N,

for models using a spatial prior (circles and solid line) and a

shrinkage prior (crosses and dotted line).
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an optimal hemodynamic basis set. As in the previous sec-
tion, we use simulations based on the experimental design
of the face fMRI data. Two types of data set are generated.
The design matrix of type 1 data comprises the time series
of delta functions, indicating the presentation of a face,
regardless of factor or level, convolved with Inf-3, the
Informed basis set (see earlier section). Type 2 data sets
use the same time series of delta functions but convolved
with an FIR basis set having 10 time bins. Both types of
data used design matrices also containing a constant term.
Type 2 data sets used FIR coefficients that were set to

resemble the canonical response but with a pronounced
undershoot. These non-canonical undershoots have been
observed by the authors in previous work, and so make an
interesting hypothetical signal. Type 1 data sets were gen-
erated by projecting noise-free type 2 data onto the Inf-3
basis set. Type 2 data therefore contains a subtle effect that
can be captured by an FIR basis but not by Inf-3. Noise-
free versions of each type of data are shown in Figure 7.
The difference between these noise-free time series consti-
tutes our signal of interest.
Noise was then added to each type of data set, as in the

previous section, such that the noise level would provide a
range of sensitivities. This was achieved using SNR ¼ 0.6.
Again, 500 data sets of each type were generated for each
cluster size. Overall, 2 � 5 � 500 ¼ 5,000 data sets were
generated.
We then fitted three different models to each data set.

Model 1 used an Inf3-basis, model 2 an FIR basis and
model 3 used an augmented design matrix containing both

an Inf3 and FIR basis. Model 1 is therefore ‘nested’ within
model 3. Comparing the evidence of model 2 to model 1
constitutes a non-nested model comparison, whereas com-
paring the evidence of model 3 to model 1 constitutes a
nested model comparison. The equivalent nested model
comparison in classical inference is a standard approach
for comparing basis sets in functional imaging using the
‘extra sum of squares’ principle [Henson et al., 2001].
Figure 8 plots the sensitivity of nested and non-nested

model comparison approaches. First, we note that the
subtle undershoot effect cannot be detected at the voxel
level. But as the clusters get larger the effect becomes
increasingly detectable. Moreover, it is clear from the fig-
ure that non-nested model comparison is more sensitive.
For the cluster with 9 voxels, for example, the non-nested
approach is nearly twice as sensitive.

Face fMRI Data

Comparing noise models

This section compares spatial versus tissue-type AR pri-
ors on the face fMRI data. We used a GLM with a design
matrix where each level of each factor is represented sepa-
rately. Each event type was convolved with the Inf-2 basis
set. An additional constant term gives 9 regressors.
We then compared a number of approaches for specify-

ing the AR component of the model. Whilst the model evi-
dence can be used to select the optimal model order, as

Figure 6.

COI analysis for a non-uniformly activated region: The figure

shows of a plot of sensitivity versus number of voxels in the

cluster, N, for a model using a spatial prior (circles and solid

line), ROI analysis using the mean voxel time series (crosses and

dotted line) and an ROI analysis using the principal component

time series (plusses and dashed line).

Figure 7.

Noise-free time series: From type 2 data (thin line), generated

from an FIR model, and type 1 data (thick line), generated from

a best fitting Informed basis set model. These data were used to

compare the sensitivity of nested versus non-nested model

comparison, in the context of selecting an optimal hemodynamic

basis set.
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shown in Penny et al. (2003), the focus of this section is on
comparing spatial versus tissue-type priors. We therefore
used an AR model order of P ¼ 1 for all comparisons.
We compared four different priors. The first three are

tissue-type priors which use (i) a single Gaussian for all
voxels, (ii) three Gaussians, one for voxels in grey matter,
one for white matter and one for CSF, (iii) two Gaussians,
one for voxels in CSF (as defined using a spatially
smoothed and thresholded CSF mask) and the other for
the remaining voxels and (iv) a spatial GMRF prior. Prior
(iii) was included in an attempt to improve the correspon-
dence between the observed structure in the functional

data (AR images) and the segmentation obtained from the
structural data. Various spatial smoothing and threshold-
ing operators were fine-tuned so as to obtain the best
results possible.
Figure 9 shows the estimated AR coefficients for priors

(iii) and (iv) for selected slices. The corresponding images
for priors (i) and (ii) are visually very similar to the prior
(iii) images. Estimates using the GMRF prior are smoother,
as one would expect. We now turn to a comparison of the
model evidence.
Prior (i) had the lowest evidence in 95% slices. This indi-

cates that there is tissue-type structure in the pattern of
AR coefficients (as priors (ii) and (iii) had higher evi-
dence). Whilst this is evident from the images themselves
and is widely recognised, our framework allows this infer-
ence to be made using a statistical test by evaluating the
posterior beliefs that correspond to the differences in evi-
dence. This posterior belief was unity for 95% slices.
Prior (ii) had the third highest evidence in 70% slices

and prior (iii) had the second highest evidence in 70% of
slices. This reflects our extensive efforts to improve the
correspondence between the observed structure in the
functional data (AR images) and the segmentation
obtained from the structural data.
Despite these efforts, however, models with the spatial

GMRF prior had the highest evidence in all slices exam-
ined. This shows that although tissue-type effects are
strong, they are not sufficient to explain the observed spa-
tial variability in temporal autocorrelation.

Analysis of variance

We now present a Bayesian Analysis of Variance
(ANOVA) for the face fMRI data. The presentation of faces
conforms to a factorial design with two factors, familiarity
and repetition. There are therefore four putative effects of
interest: (i) the average effect of presenting faces, (ii) the

Figure 8.

Nested versus non-nested: The figure shows of a plot of sensi-

tivity versus number of voxels in the cluster, N, for non-nested

model comparison (circles and solid line) versus nested model

comparison (crosses and dotted line).

Figure 9.

AR(1) images for face data: The

top row shows estimated pro-

files from a tissue-type prior

(smoothed CSF versus other,

prior (iii)) and the bottom row

shows the estimated profiles

from models with spatial GMRF

priors. Columns in this figure

show results for slices z ¼ �27,

3, 33 and 63 mm.
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main effect of repetition (iii) the main effect of familiarity
and (iv) the interaction between repetition and familiarity.
As described in [Winer et al., 1991] (see also [Henson

and Penny, 2003]), ANOVA is fundamentally a model
comparison procedure. To test for our putative effects we
therefore fitted a number of models to the data. For each
model, all experimental conditions were modelled by con-
volving the appropriate stimulus functions with the Inf-2
hemodynamic basis set. The design matrix of Model 1, a
‘null’ model, comprised a column of 1s to model the mean
response at each voxel. Model 2 had a single additional ex-
perimental condition, which was the presentation of a face
regardless of factor or level. Model 3 had two conditions,
first or second repetition regardless of familiarity. Model 4
had two conditions, familiar or unfamiliar regardless of
repetition. Model 5 had a design matrix containing all the

conditions from models 3 and 4 (i.e. both main effects but
no interaction). Model 6 had a ‘full’ design matrix com-
prising four conditions where each level of each factor is
entered separately (i.e. all effects).
Voxel-wise contributions to the approximate log-evi-

dence were computed for each model, Un(m). These were
then compared to assess putative experimental effects. For
(i) the average effect of presenting faces we compared
models 1 and 2, for (ii) the main effect of repetition we
compared models 2 and 3, for (iii) the main effect of famil-
iarity we compared models 2 and 4 and for (iv) the inter-
action between repetition and familiarity we compared
models 5 and 6.
Figure 10 shows a map of the average effect of present-

ing faces for selected slices. Figure 11 shows a map of the
main effect of repetition. In each figure the top row shows

Figure 10.

Average effect of faces: The top

row shows maps of the differ-

ence in contributions to the log

evidence, Un(2)�Un(1), for slices

z ¼ �24, �21, �18 and �15

mm. The bottom row shows

the same map but thresholded

so that only effects with a pos-

terior probability greater than

0.999 (difference in log evidence

¼ 4.6) survive.

Figure 11.

Main effect of repetition: The

top row shows maps of the dif-

ference in contributions to the

log evidence, Un(3)�Un(2), for

slices z ¼ �24, �21, �18 and

�15 mm. The bottom row

shows the same maps but

thresholded so that only effects

with a posterior probability

greater than 0.999 (difference in

log evidence ¼ 4.6) survive.
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a map of the relevant difference in contribution to the ap-
proximate log-evidence, Un(m1) � Un(m2), and the bottom
row shows the same but thresholded so that the corre-
sponding posterior probability, computed using Eq. (16), is
greater than 0.999. For this subject there is a large bilateral
occipital and fusiform response to the main effect of faces
(Fig. 10) but no repetition effect (Fig. 11). The familiarity
and interaction effects were also absent in this subject and
so have not been presented.

Comparing hemodynamic basis sets

This section compares models with different hemody-
namic basis sets. We use the seven options described in

earlier section. The basis functions were convolved with
stimulus functions corresponding to all four experimental
conditions.
The approach is illustrated on COIs from three regions

centred on left occipital cortex (LOC) x ¼ �45, y ¼ �60,
z ¼ �24 mm, right occipital cortex (ROC) x ¼ 45, y ¼ �66,
z ¼ �24 mm and sensorimotor cortex x ¼ 36, y ¼ �9, z ¼
66 mm. All COIs were 9 mm spheres and contained 83,
41 and 33 voxels, respectively. We also optimised the
Hanning-windowed Fourier and FIR basis sets by selecting
the number of time-bins and bin-size that gave the highest
model evidence.
Despite this the model evidence favours strongly an

Informed basis set for all of the regions, as shown in

Figure 12.

Comparing hemodynamic basis sets: The bar plots show the log-

evidence for each hemodynamic basis set for COIs in (a) LOC

x ¼ �45, y ¼ �60, z ¼ �24 mm, (b) ROC x ¼ 45, y ¼ �66, z

¼ �24 mm and (c) Sensorimotor Cortex x ¼ 36, y ¼ �9, z ¼

66 mm. The evidence values have been normalised (by sub-

traction) so that the minimal log-evidence is zero. [Color figure

can be viewed in the online issue, which is available at www.

interscience.wiley.com.]
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Figure 12. The set Inf-2 is preferred for LOC and Inf-3 for
the others. The differences in log evidence provide poste-
rior probabilities of unity in favour of the most probable
model. We also repeated the analyses with smaller COIs,
but the results were much the same, with the informed ba-
sis sets always being preferred with high posterior proba-
bility (� 0.95).

DISCUSSION

We have presented a unified framework for the analysis
of fMRI data based on Bayesian comparison of spatially
regularised GLMs. This allows for Bayesian ANOVAs, COI
analysis and the principled selection of signal and noise
models.
COI analysis is similar to an ROI approach but all time

series in a region are used rather than a single ‘representa-
tive’ time series. Our simulations have shown that, for
non-uniformly activated regions the COI approach is sub-
stantially more sensitive. The COI approach may also be
viewed as a Bayesian cluster-level inference as it shares
the fundamental property of classical cluster-level infer-
ence that anatomical specificity is traded-off for increased
sensitivity. As is the case for classical inference, Bayesian
cluster-level inferences are more sensitive to weak, diffuse
activations than are voxel-level inferences. For diffusely
activated regions this sensitivity increases with number of
voxels in the region. Moreover, the use of spatial regular-
isation increases that sensitivity yet further. Unlike classi-
cal cluster-level inferences [Friston et al., 1995a], a primary
‘height’ threshold is not required.
Bayesian ANOVAs can be implemented in two ways (i)

using COI analysis or (ii) to produce pseudo PPMs for the
whole image volume. The term ‘pseudo’ is used as these
probabilities are based on contributions to the model evi-
dence rather than the model evidence per se. These PPMs
show voxels expressing overall effects, main effects or
interactions.
In previous work we have shown how PPMs can be used

to make inferences about regionally specific effects [Friston
et al., 2002]. The approach is based on computing the proba-
bility that a contrast of parameter estimates is larger than a
user-specified effect size. For example, in primary sensory
areas only effect sizes greater than 1% of global brain activ-
ity may be deemed biologically relevant. PPMs based on
Bayesian ANOVAs, however, do not require the specifica-
tion of an effect size threshold. This can be viewed as an
advantage or a disadvantage depending on your perspec-
tive. On the one hand, imagers are unable to describe the
effects that interest them so precisely, but on the other, they
have one less parameter to specifiy.
A disadvantage of the Bayesian ANOVA approach,

which we have described, is that a family of models must
be fitted, which is obviously more computationally de-
manding than fitting a single model. This is not a problem
for a COI analysis where models can be fitted in seconds,

but it is potentially a problem for the production of PPMs.
Fitting the six models required to produce a full ANOVA
took 3 h of computer time.
An alternative to PPMs here is to make inferences based

on F-maps, as is standard in neuroimaging [Kiebel, 2003].
It is also possible to make ANOVA-like Bayesian in-
ferences about effect sizes based on multivariate Gaussian
posteriors. The generic approach is described in Box and
Tiao [1992].
We have also shown how our framework can be used

for the principled selection of signal and noise models. We
have illustrated its use on a single-subject event-related
fMRI study of face processing. The following observations
are therefore specific to our analysis of this data. Whether
or not they apply generically to fMRI remains to be seen.
The framework was applied to determine the optimal reg-

ularisation method for an AR model of fMRI noise pro-
cesses. Two types of regularisation were compared: (i) a spa-
tial prior which assumes that AR coefficients vary smoothly
across the brain and (ii) a ‘tissue-type’ prior which assumes
they vary about a small number of tissue-specific values.
BMC showed spatial priors to be better. Our results there-
fore show that tissue type is not sufficient to explain the
observed spatial variability in temporal autocorrelation. The
largest single source of this variability appears to be the
strong autocorrelation observed close to the cerebral
arteries, as shown for example in the plots on the left-most
side of Figure 9. Unless one has angiographic data, these
regions are not easily delineated. The spatial prior approach
can, however, automatically accomodate these variations.
The framework was also applied to determine the opti-

mal basis set for describing the hemodynamic response.
We have shown that the previously established method
of nested-model comparison [Henson et al., 2001] is sub-
optimal. Application of the optimal non-nested framework
revealed the ‘informed basis set’ to be the optimal choice
in a number of COIs.
We now turn to a discussion of future work. Application

of tissue-type-priors to regression coefficients is one simple
extension. This would use zero mean Gaussians with prior
variances that depend on tissue type. Low prior variances
in CSF and white matter could be implemented using
equivalents of the Gamma priors in Appendix F. Whether
these models would be better than the spatial GMRF pri-
ors in this paper (based entirely on functional data) is an
issue that can be resolved using the model comparison
framework. In a similar vein, we are currently working on
spatial-basis set priors, that include e.g. wavelets, as an al-
ternative to GMRFs.
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APPENDIX A: PRECISIONS

Priors

We use Gamma priors on the precisions a, b and l

pðaÞ ¼
YK
k¼1

pðakÞ

pðbÞ ¼
YP
p¼1

pðbpÞ

pðlÞ ¼
YN
n¼1

pðlnÞ

ðA1Þ

pðakÞ ¼ Gaðak; q1; q2Þ
pðbpÞ ¼ Gaðbp; r1; r2Þ
pðlnÞ ¼ Gaðln; u1; u2Þ

ðA2Þ

where Ga( ) is defined in Appendix E. Gamma priors were cho-
sen as they are conjugate priors for Gaussian error models. The
parameters are set to q1 ¼ r1 ¼ u1 ¼ 10 and q2 ¼ r2 ¼ u2 ¼ 0.1.
These parameters produce Gamma densities with a mean of 1
and a variance of 10. The robustness of model selection to the
choice of these parameters is discussed in an earlier section.

where ~Gn is the expected prediction error defined in Ap-
pendix B of Penny et al. [2003].

APPENDIX B: REGRESSION

COEFFICIENTS

Priors

For the regressions coefficients, we have

pðWÞ ¼
YK
k¼1

pðwT
k Þ

pðwT
k Þ ¼ NðwT

k ; 0;a
�1
k D�1

w Þ
ðB1Þ

where Dw is a spatial precision matrix. This can be set to cor-
respond to e.g. a LORETA or GMRF prior, as described in
earlier work [Penny et al., 2005]. These priors are specified
separately for each slice of data. Specification of three-dimen-
sional spatial priors (i.e. over multiple slices) is desirable
from a modelling perspective but is computationally too
demanding for current computer technology.
We also write wv ¼ vec(W), wr ¼ vec(WT), wv ¼ Hwwr

where Hw is a permutation matrix. This leads to

pðWÞ ¼ pðwvÞ
¼ Nðwv; 0;B

�1Þ ðB2Þ

where B is an augmented spatial precision matrix given by

B ¼ HwðdiagðaÞ �DwÞHT
w ðB3Þ

This form of the prior will be used in the derivation of KL-
divergences in Appendix E.
The aforementioned Gaussian priors underly GMRFs and

LORETA and have been used previously in fMRI [Penny
and Flandin, 2005] and EEG [Marqui et al., 1994]. They are by
no means, however, the optimal choice for imaging data. In
EEG, for example, much interest has focussed on the use of Lp-
norm priors [Auranen et al., in press] instead of the L2-norm
implicit in the Gaussian assumption. Additionally, we are cur-
rently investigating the use of wavelet priors. This is an active
area of research and will be the topic of future publications.

Posteriors

We have

qðWÞ ¼
YN
n¼1

qðwnÞ

qðwnÞ ¼ Nðwn; ŵn; �̂nÞ
�̂n ¼ �ln ~An þ �Bnn

� ��1

ŵn ¼ �̂n
�ln~b

T
n þ rn

� �

rn ¼ �
XN

i¼1;i 6¼n

�Bniŵi

ðB4Þ

where �B is defined as in Eq. (B3) but uses �a instead of a.
The quantities Ãn and ~bn are expectations related to autore-

Posteriors

The approximate posteriors are also Gamma densities.
For the precisions of the regression coefficients, we have

qðaÞ ¼
YK
k¼1

qðakÞ

qðakÞ ¼ Gaðak; gk; hkÞ
1

gk
¼ 1

2
ðTrð�̂kDwÞ þ ŵT

k DwŵkÞ þ 1

q1

hk ¼ N

2
þ q2

ðA3Þ

For the precisions of the AR coefficients, we have

qðbÞ ¼
YP
p¼1

qðbpÞ

qðbpÞ ¼ Gaðbp; r1p; r2pÞ
1

r1p
¼ 1

2
ðTrðVpDaÞ þmT

pDampÞ þ 1

r1

r2p ¼ N

2
þ r2:

ðA4Þ

For the precisions on the observation noise, we have

qðlÞ ¼
YN
n¼1

qðlnÞ

qðlnÞ ¼ Gaðln; bn; cnÞ
1

bn
¼

~Gn

2
þ 1

u1

cn ¼ T

2
þ u2

ðA5Þ
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gressive processes and are defined in Appendix B of
Penny et al. [2003]. In the absence of temporal autocorrela-
tion we have Ãn ¼ XT X and ~bTn ¼ XTyn. The above density
can be written as a distribution over wv

qðWÞ ¼ qðwvÞ
¼ Nðwv; ŵv; �̂vÞ

ðB5Þ

where ŵT
v ¼ ½ŵT

1 ; ŵ
T
n ; ::ŵ

T
N� and �̂v ¼ blkdiag �̂1; �̂n; . . . ;

�
�̂NÞ.

This form of the posterior will be used in the derivation of
KL-divergences in Appendix E.

APPENDIX C: AR COEFFICIENTS

Priors

Similarly, for the AR coefficients, we have

pðAÞ ¼
YP
p¼1

pðqpÞ

pðapÞ ¼ Nðap; 0;b�1
p D�1

a Þ
ðC1Þ

Again, Da is a user-defined spatial precision matrix, av ¼
vec(A), ar ¼ vec(AT) and av ¼ Haar where Ha is a permuta-
tion matrix. We can write

pðAÞ ¼ pðavÞ
¼ Nðav; 0; J�1Þ ðC2Þ

where J is an augmented spatial precision matrix

J ¼ Hað diagðbÞ �DaÞHT
a ðC3Þ

This form of the prior will be used in the derivation of
KL-divergences in Appendix E.

Posteriors

We have

qðAÞ ¼
YN
n¼1

qðanÞ

qðanÞ ¼ Nðan;mn;VnÞ
ðC4Þ

where

Vn ¼ �ln~Cn þ �Jnn
� ��1

mn ¼ Vn
�ln~dn þ jn

� �

jn ¼ �
XN

i¼1;i 6¼n

�Jnimi

ðC5Þ

and �J is defined as in Eq. (C3) but �b is used instead of b.
The subscripts in Jni denote that part of J relevant to the
nth and ith voxels. The quantities ~Cn and ~dn are expecta-
tions that are defined in Eq. (50) of Penny et al. [2003]. The
distribution over A can be re-written as

qðAÞ ¼ qðavÞ
¼ Nðav;mv;VvÞ

ðC6Þ

where mv
T ¼ [m1

T,mn
T,..mN

T] and Vv ¼ blkdiag(V1, Vn,. . .,VN).
This form of the posterior will be used in the derivation of
KL-divergences in Appendix E.

APPENDIX D: AVERAGE LIKELIHOOD

The average log-likelihood for model m is given by

VðmÞ ¼
XN
n¼1

VnðmÞ ðD1Þ

where

VnðmÞ ¼ T � P

2
ðcðcnÞ þ log bnÞ �

�ln
2

~Gn � T � P

2
log 2p

ðD2Þ

where c( ) is the digamma function [Press et al., 1992] and
the quantity ~Gn is defined in Eq. (77) of Penny et al.
[2003]. This expression is identical to that given in Eq. (92)
of Penny et al. [2003].

APPENDIX E: KL DIVERGENCES

Normal Densities

The multivariate Normal density is given by

Nðx;m;�Þ ¼ ð2pÞ�d=2j�j�1=2 exp � 1

2
ðx� mÞT��1ðx� mÞ

� �
ðE1Þ

The KL divergence for Normal densities q(x) ¼ N(x; mq,
Sq) and p(x) ¼ N(x; mp, Sp) is

KLN½qðxÞ; pðxÞ� ¼ 0:5 log
j�pj
j�qj þ 0:5Trð��1

p �qÞ

þ 0:5ðmq � mpÞT��1
p ðmq � mpÞ �

d

2
ðE2Þ

where |Sp| denotes the determinant of the matrix Sp.

Gamma Densities

The Gamma density is defined as

Gaðx; b; cÞ ¼ 1

�ðcÞ
xc�1

bc
exp

�x

b

� �
ðE3Þ

For Gamma densities q(x) ¼ Ga(x; bq, cq) and p(x) ¼ Ga(x;
bp, cp) the KL-divergence is

KLGa½qðxÞ; pðxÞ� ¼ ðcq � 1ÞcðcqÞ � log bq � cq � log�ðcqÞ

þ log�ðcpÞ þ cp log bp � ðcp � 1ÞðcðcqÞ þ log bqÞ þ
bqcq

bp

ðE4Þ
where G() is the Gamma function [Press et al., 1992].
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Precisions

For a, b and l these divergences are straightforward to
calculate as they reduce to a sum of KL-divergences
between gamma densities which have a known form and
are computationally simple to evaluate.

KL½qðaÞ; pðaÞ� ¼
XK
k¼1

KLGa½qðakÞ; pðakÞ� ðE5Þ

KL½qðbÞ; pðbÞ� ¼
XP
p¼1

KLGa½qðbpÞ; pðbpÞ� ðE6Þ

KL½qðlÞ; pðlÞ� ¼
XN
n¼1

KLGa½qðlnÞ; pðlnÞ� ðE7Þ

Regression Coefficients

For the regression coefficients, we have

KL½qðWÞ; pðWÞ� ¼ KLN½qðwvÞ; pðwvÞ�

¼ � 1

2
log j�̂vj � 1

2
log j�Bj þ 1

2
Trð�B�̂vÞ

þ 1

2
ŵT

v
�Bŵv � KN

2
ðE8Þ

The only problematic term here is log |�B|. But we note
that (i) Hw is a permutation matrix and so it will not affect
determinants and (ii) if X is an m � m matrix and Y is an
n � n matrix then det(X � Y) ¼ det(X)n det(Y)m. We can
therefore write

log j�Bj ¼ N
XK
k¼1

logak þ K log jDwj ðE9Þ

We can also write

KWðnÞ ¼ � 1

2
log j�̂nj � 1

2

X
k

log �ak � K

2N
log jDwj

þ 1

2
Trð�Bnn�̂nÞ þ 1

2
ŵT

n
�Bnnŵn þ ŵT

n

XN
i¼1;i 6¼n

�Bniŵi

 !
� K

2

ðE12Þ
The subscripts in Bni denote that part of B relevant to vox-
els n and i.

AR Coefficients

For the AR coefficients, we can use the same approach

KL½qðAÞ; pðAÞ� ¼ KLN½qðavÞ; pðavÞ� ¼ � 1

2
log jVvj

� 1

2
log j�Jj þ 1

2
Trð�JVvÞ þ 1

2
mT

v
�Jmv � PN

2
ðE13Þ

Writing as a sum over ‘unique contributions’ from each
voxel gives

KL½qðAÞ; pðAÞ� ¼
XN
n¼1

KAðnÞ

KAðnÞ ¼ � 1

2
log jVnj

� 1

2

X
p

log �bp �
P

2N
log jDaj þ 1

2
Trð�JnnVnÞ

þ 1

2
mT

n
�Jnnmn þmT

n

XN
i¼1;i 6¼n

�Jnimi

 !
� P

2

ðE14Þ

APPENDIX F: AR COEFFICIENTS WITH

TISSUE-TYPE PRIORS

AR Priors

We introduce the label s. For example s ¼ {1,2,3} could
correspond to grey matter, white matter and CSF. We also
introduce the indicator function gns which is 1 if voxel n
belongs to category s and zero otherwise. Ns ¼ P

s gns is
the number of voxels in the sth category. S is the number
of categories. A ‘tissue-type’ prior is then defined as

pðAÞ ¼
Y
n

pðanÞ

pðanÞ ¼ Nðan; gn;b�1
n Þ

ðF1Þ

where
gn ¼

X
s

gnsas

bn ¼ diag
X
s

gnsbs

 ! ðF2Þ

log jÊvj ¼
XN
n¼1

log j�̂nj

Trð�B�̂vÞ ¼
XN
n¼1

Trð�Bnn�̂nÞ

ŵT
v
�Bŵv ¼

XN
n¼1

ŵT
n
�Bnnŵn þ ŵT

n

XN
i¼1;i 6¼n

�Bniŵi

 !
ðE10Þ

We can therefore write the divergence as a sum of ‘unique
contributions’ from voxel n

KL½qðWÞ; pðWÞ� ¼
XN
n¼1

KWðnÞ ðE11Þ
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and as is the archetypal vector of AR coefficients for
voxel type s, and bs is the corresponding precision vec-
tor. This prior is like a Gaussian mixture model but one
where the labelling is known.
In this paper, the parameters as and bs are estimated

from the data on a slice-by-slice basis. We use a Gamma
prior on the precisions (see later section). For simplicity,
there is no prior on as.

AR Posteriors

We have

qðAÞ ¼
Y
n

qðanÞ

qðanÞ ¼ Nðan;mn;VnÞ

ðF3Þ

where

Vn ¼ �ln~Cn þ �bn

� ��1

mn ¼ Vn
�ln~dn þ �bn�gn

� � ðF4Þ

and
�gn ¼

X
s

gnsas

�bn ¼ diag
X
s

gns�bs

 !
ðF5Þ

AR Precision Priors

We define the precision for the sth structure type and
pth AR coefficient, bsp, as the pth element of bs. We then
have

pðbÞ ¼
YS;P

s¼1;p¼1

pðbspÞ

pðbspÞ ¼ Gaðbsp; r1; r2Þ
ðF6Þ

AR Precision Posteriors

The posterior is given by

qðbspÞ ¼ Gaðbsp; r1sp; r2spÞ
1

r1sp
¼ 1

2

X
n

gns ðmnp � aspÞ2 þ Vnðp; pÞ
� �

þ 1

r1
ðF7Þ

r2sp ¼ Ns

2
þ r2

�bsp ¼ r1spr2sp

ðF8Þ

AR Means

The archetypal AR coefficient vectors are estimated
using

as ¼
PN

n¼1 gnsan
Ns

ðF9Þ

KL Divergences

KAðnÞ ¼ KLN½qðanÞ; pðanÞ�

KL½qðbÞ; pðbÞ� ¼
XP
p¼1

XS
s¼1

KLGa½qðbspÞ; pðbspÞ� ðF10Þ

APPENDIX G: IMPLEMENTATION NOTE

The algorithm we have described is implemented in
SPM version 5 and can be downloaded from SPM [2002].
Computation of a number of quantites (e.g. ~Cn, ~dn and ~Gn

defined in appendices C and D) is now much more effi-
cient than in previous versions [Penny et al., 2005]. These
improvements are described in a separate document
[Penny and Flandin, 2005]. To analyse a single session of
data (e.g. the face fMRI data) takes about 30 minutes on a
typical modern PC.
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