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We describe a Bayesian learning algorithm for Robust General Linear
Models (RGLMs). The noise is modeled as a Mixture of Gaussians
rather than the usual single Gaussian. This allows different data points
to be associated with different noise levels and effectively provides a
robust estimation of regression coefficients. A variational inference
framework is used to prevent overfitting and provides a model order
selection criterion for noise model order. This allows the RGLM to
default to the usual GLM when robustness is not required. The method
is compared to other robust regression methods and applied to
synthetic data and fMRI.
© 2007 Elsevier Inc. All rights reserved.
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Introduction

Neuroimaging data contain a host of artifacts arising from
‘physiological noise’, e.g. subject respiration, heartbeat or move-
ment of the head, eye, tongue or mouth or ‘non-physiological noise’,
e.g. EEG electrodes with poor electrical contact, spikes in fMRI or
extracranial magnetic sources in MEG. The presence of these
artifacts can severely compromise the sensitivity with which we can
detect the neuronal sources we are interested in. The optimal
processing of artifactual data is therefore an important issue in
neuroimaging analysis and a number of processing methods have
been proposed. One approach is visual inspection and removal of
trials deemed to contain artefacts. In the analysis of Event-Related
Potentials (ERPs), however, this can lead to up to a third of the trials
being removed. Because the statistical inferences that follow are
based on fewer data points, this results in a loss of sensitivity.

In fMRI, signal processing methods exist for the removal of
k-space spikes (Zhang et al., 2001; Greve et al., 2006), and
Exploratory Data Analysis (EDA) methods have been proposed for
removal of outliers in the context of mass-univariate modeling
(Luo and Nichols, 2003). Alternatively, Independent Component
Analysis (ICA) can be used to isolate ‘noise sources’ and remove
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them from the data (Jung et al., 1999). This is, however, a non-
automatic process and will typically require user intervention to
disambiguate the discovered components. In fMRI, autoregressive
(AR) modeling can be used to downweight the impact of periodic
respiratory or cardiac noise sources (Penny et al., 2003). More
recently, a number of approaches based on robust regression have
been applied to imaging data (Wager et al., 2005; Diedrichsen and
Shadmehr, 2005). These approaches relax the assumption under-
lying ordinary regression that the errors be normally (Wager et al.,
2005) or identically (Diedrichsen and Shadmehr, 2005) distributed.
In Wager et al. (2005), for example, a Bisquare or Huber weighting
scheme corresponds to the assumption of identical non-Gaussian
errors. The method was applied to group-level fMRI analysis and
was found to lead to more sensitive inferences.

Interestingly, Wager et al. (2005) tested a number of standard
robust estimation methods by generating data from a known
mixture process as this was thought to capture the essence of signal
embedded in artefactual data. In this paper we take this idea one
step further and develop an optimal robust estimation procedure for
the case of mixture errors.

Specifically, we propose a Robust General Linear Model
(RGLM) framework in which the noise is modeled with a Mixture
of Gaussians. This allows different data points to be associated
with different noise levels and provides a robust estimation of
regression coefficients via a weighted least squares approach. Data
points associated with high noise levels are downweighted in the
parameter estimation step. Moreover, a Bayesian estimation
framework (Attias, 2000) is used to prevent model overfitting
and provides a model order selection criterion for noise model
order. This allows selection of the usual GLM, i.e. a noise mixture
with a single component, when an outlier model is not appropriate.
This work is based on a similar algorithm for robust estimation of
autoregressive processes (Roberts and Penny, 2002).

Theory

We define the General Linear Model (GLM) in the usual way

y ¼ X wþ e ð1Þ
where y is an N×1 vector of data points, X is an N×p design
matrix, w is a p×1 vector of regression coefficients and e is an
odels, NeuroImage (2007), doi:10.1016/j.neuroimage.2007.01.058
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Fig. 2. Pseudo-code for Bayesian fitting of the RGLM model. The
parameters of the model are estimated by updating the approximate
posteriors, q(), until the negative free energy, F, is maximized to within a
certain tolerance (left panel). At this point, because the log evidence, L=log
p(Y), is fixed, the approximate posteriors will best approximate the true
posteriors in the sense of KL divergence (right panel), as described in
Appendix E.
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N×1 vector of errors. We can also write this relationship for the nth
data point

yn ¼ xn wþ en ð2Þ
where yn is the nth data point, xn is the nth row of X and en is the
nth error.

In the standard GLM, the noise en is modeled as a Gaussian.
This implies that the regression coefficients can be set by
minimizing a least squares cost function. Least squares, however,
is known to be sensitive to outliers. Therefore, if our data are even
marginally contaminated by artifacts the resulting regression
coefficient estimates will be seriously degraded. See Bishop
(Bishop, 1995, page 209) and Press et al. (Press et al., 1992, page
700) for a general discussion of this issue and a number of
proposed solutions.

In this paper, we define a Robust GLM (RGLM) as one in
which the noise is modeled as a Mixture of Gaussians (MoGs)
having m-components. This includes the standard m=1 case, i.e.
the single Gaussian that is assumed for the usual GLM. The overall
generative model is shown in Fig. 1. For data containing outliers m
will be equal to 2, comprising a low noise variance, signal-bearing
component (s=1) and a high noise variance, outlier component
(s=2). Component s has mixing coefficient πs, mean 0 and
precision (inverse variance) βs. We can write the parameters
collectively as the vectors w, π=[π1, π2,…, πm], and β=[β1, β2,…,
βm]. We concatenate all the parameters into the overall vector
θ={π, β, w}.

Using the above equations, and the generative model shown in
Fig. 1, we can generate data from a mixture process. As previously
mentioned, Wager et al. (Wager et al., 2005) followed this
procedure to generate data in a simulation study which, they imply,
caricatures the essence of signal embedded in artefactual data.
They then compared the performance of standard robust estimation
methods on this data. In this paper we take the mixture model more
literally and ask the question, assuming that data were generated
Fig. 1. Generative model with circles denoting random variables and
squares denoting constants. An [N×p] design matrix X multiplies a [p×1]
vector of regression coefficients w to produce model prediction Xw.
Samples yn are then formed by adding noise, en, from a mixture
distribution. Sample n is drawn from mixture component s if label sn=s.
These labels are drawn with class probabilities π, an [m×1] vector. Each
noise sample has zero mean and a precision given by the appropriate entry
in β, an [m×1] vector. The hyperparameters α, λ0, b0 and c0 are set so as
to produce vague priors (see Appendix B).
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from such a mixture process what are the optimal parameter
estimation and statistical inference procedures.

This question is framed within the context of Bayesian
inference. The optimal estimation and inference procedures are
described in the appendices to this paper. These comprise
descriptions of the model likelihood (Appendix A), priors over
model parameters (Appendix B), and approximate inference
procedures based on variational Bayes (Appendices C and D).
We also derive an approximation to the model evidence, p(y|m)
(Appendix E). This allows for Bayesian model comparison and
will be used to select how many mixture components to use in the
RGLM.

Our approximation to the model evidence, as described in Eq.
(26) in Appendix E, comprises two terms. The first term, the
average likelihood, can be thought of as the accuracy of the model.
The second term, composed of Kullback–Liebler (KL) diver-
gences, describes the complexity of the model. Thus, good models
have to both fit the data well and be as simple as possible. If two
models fit the data equally well, then the simpler one (e.g. one with
fewer parameters) will be preferred. This trade-off is also embodied
in frequentist model comparisons, where extra degrees of freedom
must result in better model fits to get higher statistic values
(Kleinbaum et al., 1988).

Fig. 2 shows pseudo-code for Bayesian fitting of the RGLM.
This updates the approximate posterior distributions over model
parameters (see Appendix D) so as to maximize a lower bound on
Fig. 3. Cost functions for different error models.
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Fig. 4. Box and whisker plots showing mean squared error (MSE) in
estimating the first regression coefficient. The boxes have lines at the lower,
median and upper quartile values. The whiskers extend out to the most
extreme value within a distance of one and a half times the interquartile
range from the box. Data points outside the whiskers are drawn as crosses.

Fig. 5. Sensitivity on data containing outliers: Z-statistics for RGLM versus
(A) GLM and (B) Bisquare show RGLM to be the most sensitive method.

Fig. 6. Sensitivity on normal data: Z-statistics for RGLM versus Bisquare. A
significantly (p<1e−6) higher proportion of Z scores are higher for RGLM
than Bisquare.
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the model evidence, F. As the update for the regression coefficients
(Eq. (22)) is computationally more intensive than the updates for
the other parameters (as it involves a matrix inversion) we perform
this step only once everyWt iterations. The value of Wt only affects
the computer time taken during estimation and in our experiments
we used Wt=5. We evaluate F every Wt iterations (after the
regression updates) and terminate optimization if the proportionate
increase from one evaluation to the next is less than a tolerance
value of 0.01%.

Summary of method

Before presenting applications of the method, we briefly
describe the approach for readers unfamiliar with the above
Bayesian terminology.

Occasionally, fMRI time series are corrupted with outliers, as
can be seen in Fig. 12. Fitting a GLM to this data results in inflated
estimates of the error variance. This, in turn, leads to smaller Z
scores and a loss of sensitivity.

By fitting GLMs with mixture error processes, outliers can be
soft-assigned to an outlier class. This results in an estimate for the
error covariance V that allows for weighted least squares estimation
Fig. 7. Receiver Operating Characteristic (ROC) curves.
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of the regression coefficients ŵWLS=(X
TV −1XT)−1 XTV − 1y in

which outlier samples are downweighted. In principle, this can
improve the sensitivity at both the first (subject) and second
(group) level.

In algorithmic terms, the RGLM approach is summarized as
follows. Fit GLMs with mixture errors according to the pseudo-
code in Fig. 2 for models with m=1 and m=2 error components.
These are referred to as Mix-1 and Mix-2 GLMs. The one with the
highest evidence is then referred to as the RGLM and is used for
subsequent inference. This allows RGLM to default to the standard
GLM for data without outliers.
Fig. 8. Log Bayes Factor, BF21, showing voxels wh

Please cite this article as: Penny, W.D., et al., Robust Bayesian general linear m
Results

Exemplar data

This section compares the standard GLM, robust regression
using a Bisquare cost function and the RGLM using synthetic data.
The aim of this section is to demonstrate the potential of the
RGLM approach.

Data were generated from a GLM with a design matrix X
comprising two regressors (i) a boxcar of period 10 samples and
(ii) a constant column. The regression coefficients were set to be
ere Mix-2 GLM is preferred to Mix-1 GLM.

odels, NeuroImage (2007), doi:10.1016/j.neuroimage.2007.01.058
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Fig. 9. Outlier probability, averaged within slice, as a function of slice
number and scan, <γ2>. This shows clear spatial variability. For slices 15 to
20, scans 383 and 514 are regarded as outliers. Moving towards the bottom
of the brain, scans 179 and 307 appear problematic but scan 514 less so. For
slices 30 to 40, scans 308 and 427 are the outliers. At the top and bottom of
the brain the outlier pattern is more complex but does show local spatial
homogeneity.

Fig. 10. Correlation in outlier probability as a function of number of slices
apart, for all voxels (higher correlation at small distance) and gray matter
voxels (lower correlation at small distance). The slice separation distance is
3 mm.
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w=[1, 1]T and the errors were drawn from a two-component
mixture process.

So that the simulations are realistic, the parameters of the
mixture process were set identical to those observed in a
preliminary analysis of fMRI time series from a ‘face fMRI data
set’, see Penny and Kilner (2006) for details. The mixing
proportions were π=[0.73, 0.27]T, and standard deviations wereffiffiffi
1

p
=b ¼ ½2:4; 8:4�T .
We generated T=1000 data sets, each containing N=351

samples, and fitted GLMs, GLMs with Bisquare cost functions,
and the RGLM. For all 1000 generated data sets, the mixture GLM
with 2 components had higher model evidence than the single-
component GLMs. RGLM therefore used the two-component
GLM in all cases.

Fig. 3 shows the implied cost function for each approach. The
Gaussian cost function, used in the GLM, pays the highest cost for
large errors. This means that outliers have a big influence on signal
estimation. Bisquare plays an increasingly smaller cost for larger
errors. The RGLM approach, which employs an MoG-2 error
model, has two operating regimes, each defined by a separate
Gaussian. The narrower Gaussian allows RGLM to pay a higher-
cost for larger error signal-bearing samples than does GLM or
Bisquare. This is the mechanism by which RGLM can provide
higher sensitivity as signal samples have a greater influence on
regression coefficient estimation.

Fig. 4 shows boxplots of the squared error in the estimate of the
first regression coefficient. Overall, RGLM is the most accurate
method with, on average 115% smaller error than the GLM and
15% smaller error than the Bisquare approach. The sensitivity of
the approaches can be assessed by computing Z-statistics, the ratio
of effect size to effect standard deviation. Fig. 5 shows that larger
Z-statistics are obtained for the RGLM model which therefore
offers greater sensitivity.

We also compared the sensitivity of RGLM and Bisquare
approaches on data with purely Gaussian errors. To this end, we
repeated the above simulations but the noise on each sample was
drawn from a single zero-mean Gaussian with variance 2.4. For all
Please cite this article as: Penny, W.D., et al., Robust Bayesian general linear m
1000 generated data sets, the mixture GLM with one component
had higher model evidence than the two-component GLM. RGLM
therefore defaulted to the standard GLM in all cases. Fig. 6
compares RGLM and Bisquare Z scores. On average the RGLM Z
scores are 3% higher. For 757 out of 1000 of these data sets, the
RGLM scores were higher. This is a significantly higher proportion
(p<1e−6) than is to be expected if the two methods are equally
sensitive.

We finish this section by addressing the sensitivity/specificity
trade-off. The slopes of the data points in Fig. 5 suggest that the
RGLM may lack specificity. To address this issue we performed
the following simulation. We generated T=10,000 data sets in
which the first regression coefficient was drawn from a uniform
distribution between 0 and 1. Other than this, the parameters were
the same as in the previous simulation. A threshold, tw, was then
defined such that values below this corresponded to a null
hypothesis. True positives were then deemed to occur for wt≥ tw,
ŵt≥ tw and false positives for wt< tw, ŵt≥ tw. Receiver Operating
Characteristic (ROC) curves were then formed by varying tw and
plotting true positive rate (sensitivity) versus false positive rate
(1-specificity). Fig. 7 compares ROC curves for each method,
showing that RGLM has higher sensitivity over a broad range of
specificities.

Mismatch Negativity fMRI

This data set was acquired simultaneously with EEG, during a
Mismatch Negativity study using a roving paradigm. Stimuli
comprised a sequence of tones, with inter-stimulus interval 650 ms,
whose frequency was changed after between 2 and 32 repetitions.
The frequencies followed a random walk comprising 15 different
tones in the range 200 to 2000 Hz. The tones were therefore either
‘oddballs’, the first of a new frequency, or ‘standards’. In this paper
we model only the oddball responses.

Images were acquired from a 3 T Allegra system (Siemens,
Erlangen, Germany) which produced T2*-weighted transverse
Echo-Planar Images (EPIs) with BOLD contrast. Whole brain EPIs
consisting of 34 transverse slices were acquired every 2.21 s
resulting in a total of N=606 scans. The first 6 scans were
odels, NeuroImage (2007), doi:10.1016/j.neuroimage.2007.01.058
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discarded prior to subsequent analysis. All functional images were
realigned to the first functional image using a six-parameter rigid-
body transformation. This transformation embodies ‘movement
parameters’, three translations and three rotations, which are later
used in the design matrix. Images were then spatially normalized to
a standard EPI template using a nonlinear warping method
(Ashburner and Friston, 2003). Each time series was then high-
pass filtered using a set of discrete cosine basis functions with a
filter cut-off of 128 s.

The data were then analyzed with robust and standard GLMs
using a design matrix comprising eight columns. The first column
Fig. 11. Log Bayes Factor, BF21, showing where Mix-2 GLM is preferred to Mix
(p<0.05, uncorrected).

Please cite this article as: Penny, W.D., et al., Robust Bayesian general linear m
models oddball responses and was formed by convolving a
canonical HRF with delta functions located at times when oddballs
were presented. The following 6 columns contain the movement
parameters, and the final column contains a vector of 1’s to model
the average response at each voxel.

Fig. 8 plots the Log Bayes factor, BF21 (see Appendix E),
overlaid on slices of the subjects structural image. Positive Bayes
factors indicate that the Mix-2 GLM is favored over the Mix-1
GLM. Over the whole volume, Mix-2 is favored at 17,349 of the
68,448 voxels. That is 25.4% of voxels. Of these, 8938 are in gray
matter.
-1 GLM (as in Fig. 8) but restricted to voxels showing an oddball response

odels, NeuroImage (2007), doi:10.1016/j.neuroimage.2007.01.058
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Fig. 13. Z scores for RGLM versus Z scores for GLM at voxels showing an
oddball response (ZRGLM>1.65, p<0.05) and where RGLM is the favored
model. On average the RGLM Z scores are 50% larger.
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To characterize the spatial variability of the outliers we
averaged the outlier probabilities, γ2

n (see Appendix D), within
slices. This averaging was restricted to gray matter voxels. Fig. 9
plots the average outlier probability as a function of slice and scan
number. In different parts of the brain different scans are regarded
as outliers. This spatial dependence is quantified in Fig. 10 which
plots the correlation in average outlier probability as a function of
distance between slices. This provides strong evidence of spatial
heterogeneity.

Fig. 11 shows a map of the log Bayes Factor, BF21, where
Mix-2 is preferred to Mix-1, but restricted to voxels showing an
oddball response (p<0.05, uncorrected). Over the whole volume
this comprises 294 voxels.

Fig. 12 shows a time series at a voxel in auditory cortex (x=60,
y=−27, z=0 mm) showing an oddball response, along with the
outlier probability time series, γ2

n, from the Mix-2 model. For the
Mix-1 GLM the oddball effect size is 0.45, with standard deviation
0.15 giving rise to a Z score of 3.00. For the (favored) Mix-2 GLM
the estimated effect size is 0.54, standard deviation 0.13, giving
rise to a Z score of 4.08.

This improved sensitivity is evident in almost all of the 294
voxels. Fig. 13 compares the Z scores for RGLM and GLM
methods. On average, the RGLM Z scores are 50% larger. This
Fig. 12. Top: Time series at voxel in auditory cortex (x=60, y=−27,
z=0 mm) showing oddball response. Bottom: Outlier probability time series
γn from RGLM model.

Please cite this article as: Penny, W.D., et al., Robust Bayesian general linear m
improved sensitivity is also shared by the Bisquare robust
estimation method. The corresponding Z scores are shown in
Fig. 14. On average the RGLM Z scores are 2% larger.
Discussion

We have described a Bayesian learning algorithm for Robust
General Linear Models (RGLMs), based on Roberts and Penny
(2002), in which the noise is modeled as a Mixture of Gaussians.
This allows different data points to be associated with different
noise levels and effectively provides a robust estimation of
regression coefficients.

A Bayesian inference framework is used to prevent overfitting
and provides a model selection criterion for noise model order, e.g.
to select noise mixtures with one, two or more components. This
allows the RGLM to automatically default to the usual GLM when
robustness is not required.

Our simulations, based on statistical characteristics of
artefactual fMRI time series, suggest that the RGLM approach
Fig. 14. Z scores for RGLM versus Z scores for Bisquare robust estimation
at voxels showing an oddball response (ZRGLM>1.65, p<0.05) and where
RGLM is the favored model. On average the RGLM Z scores are 2% larger.
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can be more sensitive to underlying signal than the Bisquare
robust estimation procedure (Wager et al., 2005). This is the case
if the weighting scheme implied by the mixture error process is
a better description of fMRI errors than is the Bisquare process.
This includes the case where errors are purely Gaussian as
RGLM defaults to a non-robust approach in the absence of
outliers.

The advantage of the method over the Restricted Maximum
Likelihood (ReML) approach described in Diedrichsen and
Shadmehr (2005) is that the outlier profile is allowed to vary
across space. That is, scans which are ‘corrupted’ in one part of the
brain are not assumed to be corrupted in another. The fMRI data
presented in this paper provide evidence that this is indeed a good
assumption.

The statistical model employed in RGLM renders it particularly
robust to impulsive noise. The model could be extended in a
number of ways, primarily to account for temporally correlated
noise sources. First, if the heteroscedasticity were autoregressive
then a Generalized Autoregressive Conditional Heteroscedastic
(GARCH) process would be appropriate. Alternatively, one could
replace the mixture process with a Markov process.

A second area for further work is to embed RGLM into
previous algorithms developed for fMRI. Incorporation of a
spatial prior, for example, should improve ROC performance yet
further (Penny et al., 2005). Standard robust estimation proce-
dures, such as Bisquare, cannot be readily improved in such a
manner.

A third area is to apply the method to group data, as in Wager
et al. (2005). Before this is possible, however, the approach would
need to be modified such that inferences would be based on t
rather than Gaussian distributions. The use of Gaussian posteriors
is a good approximation for first-level fMRI data, where the
number of data points equals the number of scans, a typically large
number. But this is a poor approximation at the second (group)
level, where the number of data points is given by the number of
subjects and is typically small. This modification to RGLM can be
made by removing the factorization (in the prior and posterior)
between regression coefficients and noise precisions (Box and
Tiao, 1977).

We have applied RGLMs to fMRI data and concluded that our
data contain artefacts but have made no claims about the origin of
these artefacts. This ‘phenomenological’ approach to modeling is
in the spirit of modeling fMRI errors using autoregressive
processes. Neither of these approaches claim to model artefacts
in any causal or mechanistic way. The approach is rather general in
nature and we hope it can find application beyond fMRI.
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Appendix A. Likelihood

The likelihood of a data point is given by the mixture model

pðynjqÞ ¼
Xm
s¼1

pðynj; sn ¼ s;bs;ms;wÞpðsn ¼ sjpÞ ð3Þ
Please cite this article as: Penny, W.D., et al., Robust Bayesian general linear m
where sn is a variable indicating which component is selected for
which data point. A-priori these are chosen probabilistically
according to

pðsn ¼ sjpÞ ¼ ps ð4Þ
Each component is a Gaussian with

p ynjsn¼s;bs;ms;wð Þ ¼ ð2pÞ�1=2b1=2
s exp

�bs

2
ðyn � xnwÞ2

� �
ð5Þ

The joint likelihood of a data point and indicator variable is

pðyn; snjqÞ ¼ pðsnjpÞpðynjsn;bs;wÞ ð6Þ
which, given that the data are Independent and Identically
Distributed (IID), gives

pðY ; SjqÞ ¼ j
N

n¼1
pðsnjpÞpðynjsn;bs;wÞ ð7Þ

over the whole date set, where Y=[y1, y2, …, yN]
T and S=[s1, s2,

…, sN]
T.

Appendix B. Priors

We specify prior distributions over model parameters to
incorporate appropriate domain specific knowledge if available
(e.g. approximate proportion of outliers).

The prior on the model parameters is

pðqÞ ¼ pðpÞpðwjaÞj
s
pðbsÞ ð8Þ

where the mixing prior is a symmetric Dirichlet

p pð Þ ¼ Gðmk0Þ
Gðk0Þm j

m

s¼1
pk0�1
s ð9Þ

and Γ(x) is the Gamma function (Press et al., 1992). This means that
we assign λ0 pseudo-counts to each component. This is readily
extended to allow asymmetric distributions if, for example, we had
prior information that there were typically fewer samples in the
outlier class.

The prior over the precisions is a Gamma

pðbsÞ ¼ Gðbs; b0; c0Þ ð10Þ

where the Gamma density is defined as

C x; b; cð Þ ¼ 1
GðcÞ

xc�1

bc
exp

�x
b

� �
ð11Þ

The prior over regression coefficients is a zero-mean Gaussian
with an isotropic covariance having precision α

p wjað Þ ¼ a
2p

� �p=2
exp � a

2
wTw

� �
ð12Þ

To obtain a practical algorithm we must choose parameters for
the prior distributions. For the experiments in this paper, we used
vague priors so that inferences are largely unaffected by
information external to the current data, although in future work
(see Discussion) we envisage the use of informative priors based,
odels, NeuroImage (2007), doi:10.1016/j.neuroimage.2007.01.058
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e.g. on spatial models. To this end, we set b0=10
3, c0=10

−3 for p
(βs) (giving a prior mean of 1 and prior variance of 1000), λ0=5
for p(π) to give a uniform distribution and set α=0.001 (i.e. a very
low prior precision on the regression coefficients).

Appendix C. Variational Bayes

We estimate model parameters using Variational Bayesian (VB)
learning. The aim of VB is to maximize the negative free energy

F mð Þ ¼ log
pðY ; SjqÞ
qðSÞ

� �
S;q

� KL q qð Þtp qð Þð Þ ð13Þ

where q(S) and q(θ) are approximate posterior distributions over
hidden states and parameters.1

The first term corresponds to an average likelihood Lav, where
the expectation is taken wrt. q(S) and q(θ), and the second term is
the Kullback–Liebler (KL) divergence between the approximate
posteriors q(θ) and the prior p(θ). This objective function can be
maximized via a two-step process (Attias, 2000). In the first step,
q(S) is updated according to

qðSÞ~exp½IðSÞ� ð14Þ

where

IðSÞ ¼ logpðY ; SjqÞh iq ð15Þ

and the expectation is taken wrt. q(θ). In the second step q(θ) is
updated according to

qðqÞ~exp½IðqÞ�pðqÞ ð16Þ

where

IðqÞ ¼ log logpðY ; SjqÞh iS ð17Þ

and the expectation is taken wrt. q(S). The negative free energy, F
(m), is also a lower bound on the model evidence and can be used
for model selection (see below).
C.1. Factorization

To apply VB to RGLMs we approximate the posterior
distribution over parameters with the factorized density

qðqÞ ¼ qðpÞqðbÞqðwÞ ð18Þ

and the posterior distribution over hidden variables by q(S). We then
set each distribution so as to maximize F (m).We omit the derivations
due to lack of space but the procedure is similar to that used in (Penny
et al., 2003). The optimal posteriors factorize into the parametric
forms described in the following appendices. Each section describes
how to update the sufficient statistics for each component of the
approximate posterior. These updates may depend on parameters
derived from sufficient statistics of other components. These
quantities will then be defined in the relevant subsection below.
1 In this nomenclature ‘hidden states’ are differentiated from ‘parameters’
by having as many instantiations as there are data points.
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Appendix D. Approximate posteriors

D.1. Updating noise precisions

For the precisions we have

qðbÞ ¼ j
s
qðbsÞ

qðbsÞ ¼ Gðbs; bs; csÞ

1
bs

¼ N
2

r̃2
s þ

1
b0

cs ¼ N̄s

2
þ c0

r̃2
s ðnÞ ¼ ðyn � ̂ynÞ2 þ xTn Ĉxn

r̃2
s ¼

1
N

XN
n¼1

gns r̃
2
s nð Þ

N̄s ¼
XN
n¼1

gns

b̄s ¼ bscs ð19Þ

where ŷn=xnŵ is the RGLM prediction for the nth data point. The
quantity N̄s is the number of data points attributed to component s
and σ̃s

2 is the expected variance of component s. The quantities b0
and c0 are parameters of the prior distribution and bs and cs of the
posterior distribution. The quantity Ĉ is the posterior covariance
matrix over regression coefficients (see Appendix D.3) and γs

n is
the posterior probability that sample n belongs to mixture
component s (see Appendix D.4).

We can understand these equations by looking at the
corresponding mean variance (the inverse of the mean precision)
which is given by 1 / (bscs). If we ignore terms involving the prior
this comes out to be

XN
n¼1

cns r̃
2
s ðnÞ

PN
n¼1

cns

ð20Þ

which is the expected variance of that component re-weighted
according to the number of examples that the component is
responsible for.
D.2. Updating mixing coefficients

For the mixing coefficients we have a Dirichlet

q pð Þ ¼ G
Xm
s V¼1

ks V

 !
j
m

s¼1

pks�1
s

GðksÞ

ks ¼ N̄s þ k0 ð21Þ

The mixing hyperparameters, λ̄s, are updated by adding the data
counts, N̄s, to the prior counts, λ0.
odels, NeuroImage (2007), doi:10.1016/j.neuroimage.2007.01.058

http://dx.doi.org/10.1016/j.neuroimage.2007.01.058


10 W.D. Penny et al. / NeuroImage xx (2007) xxx–xxx

ARTICLE IN PRESS
D.3. Updating regression coefficients

For the regression coefficients we have

qðwÞ ¼ Nðw; ŵ; ĈÞ

V�1 ¼
Xm
s¼1

b̄sGs

Ĉ ¼ XTV�1X þ a
	 
�1

ŵ ¼ ĈXTV�1y ð22Þ
where V is our estimate of the error covariance matrix and Γs=diag
([γs

1, γs
2, …, γs

N]).
Without a prior, α=0, the above equation reduces to weighted

least squares, and with a single noise component, m=1, this
reduces to the least-squares estimate

ŵLS ¼ ðXTX Þ�1XTy ð23Þ

D.4. Updating indicators

For the indicator posteriors we have

qðSÞ ¼ j
n
qðsnÞ

gnsuqðsnÞ ð24Þ

The (approximate) posterior probability that component s is
responsible for data point yn is then updated using

g̃n
s ¼ p̃sb1=2

s exp � 1
2
b̄s r̃

2
s nð Þ

� �

gns ¼
g̃n
sP

s V g̃
n
s V

b̃s ¼ exp WðcsÞ þ logbsð Þ

p̃s ¼ exp WðksÞ �W

�X
s V

ks V

� !
ð25Þ

where Ψ() is the digamma function (Press et al., 1992). If s=2
corresponds to the outlier class, then γs

n is the probability that
sample n is an outlier.

D.5. Initialization

The posterior distributions q(π), q(βs), and q(w) have the
parameters λs, bs, cs, ŵ and Ĉ which are initialized as follows. The
posterior for the regression coefficients (with sufficient statistics ŵ
and Ĉ ) is initialized using the Maximum Likelihood (ML)
solution. The remaining posteriors are set as follows.

We first calculate the errors e(n) from the ML model and then
define a new variable z(n)= |e(n)− ē| which is the absolute
deviation of each error from the mean error ē. We then apply
k-means clustering (Bishop, 1995) to z(n) which results in mixing
coefficients λz (s) and means mz (s). We then set λs=100λz (s). The
Please cite this article as: Penny, W.D., et al., Robust Bayesian general linear m
parameters bs and cs are then set so as to achieve means of (1 /mz)
(s)2 and variances of Var(1 /mz) (the mean and variance of a
Gamma density are bc and b2c respectively).

Appendix E. Free energy and model comparison

The negative free energy is computed as

FðmÞ ¼ Lav � KLðwÞ � KLðpÞ � KLðbÞ ð26Þ
where

Lav ¼ HðqðSÞÞ þ
Xm
s¼1

N̄sðlog p̃s þ 0:5log b̃sÞ

� 0:5N
Xm
s¼1

b̄s r̃
2
s � 0:5N log2p ð27Þ

The entropy over the hidden variables is

HðqðSÞÞ ¼ �
XN
n¼1

Xm
s¼1

gns logg
n
s ð28Þ

The KL terms for Normal and Gamma densities can be
computed from the equations given in Penny et al. (2003). The first
term in F(m), the average likelihood, can be thought of as the
accuracy of the model. The second term, composed of Kullback–
Liebler (KL) divergences, describes the complexity of the model.
This is because KL increases as, e.g. the dimension of π increases.
Thus, good models have to both fit the data well and be as simple
as possible.

Models i and j can then be compared using the Bayes factor

BFij ¼ pðyjm ¼ iÞ
pðyjm ¼ jÞ ð29Þ

As the negative free energy can be used as a surrogate for the
log evidence, i.e. F (m)≈ log p(y|m), we can write the log Bayes
factor as

logBFij ¼ FðiÞ � FðjÞ ð30Þ

This will be used to select how many mixture components to
use in the RGLM.
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