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ABSTRACT

This paper proposes an algorithm for the solution of the Si-
multaneous Localisation and Planning problem. The solution
is based on statistical inference in a Hidden Markov Model
which proceeds in separate phases of localisation and plan-
ning. Each requires access to the same contextual model op-
erationalised via the ‘prior dynamics’, and is implemented
using forward (localisation) and forward and backward (plan-
ning) message passing. I propose that this formalism pro-
vides a useful computational-level description of aspects of
Hippocampal function.

Index Terms— Navigation, Simultaneous Localisation
and Mapping, Planning as Inference, KL Control, Hidden
Markov Models, Hippocampus, Pattern Replay.

1. INTRODUCTION

An established paradigm in robotics is that of Simultaneous
Localisation and Mapping (SLAM) [1] in which an agent ex-
plores and maps novel environments. This paper addresses a
related problem. Assuming that an environment has already
been mapped, what algorithm would allow an agent to lo-
calise itself and compute optimal routes to arbitrary goals ?
We refer to this as the Simultaneous Localisation and Plan-
ning (SLAP) problem.

We address this problem using state-space models and
probabilistic inference, which allows us to specify both task
goals and an agent’s location in probabilistic terms. This
builds on a ‘planning as inference’ perspective in which se-
quential decision making problems that have previously been
the domain of Reinforcement Learning (RL), have been recast
as problems of statistical inference [2, 3].

More specifically, our approach closely follows the work
of Kappen [4] and Todorov [5] who have shown that, if ac-
tions are penalised using a Kullback-Leibler (KL) criterion
then the associated Bellman equation is linearly solvable.
Moreover, this solution corresponds to backward inference
in a Hidden Markov Model (HMM) [6]. This formalism,
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known as KL control, has been developed for Markov De-
cision Processes (MDPs) in which the state of the agent is
directly observed.

In this paper, we work directly with HMMs and consider
two types of observations; goals and sensory inputs. The use
of sensory inputs, allows the state of the agent to be inferred,
and provides a natural way in which uncertainty from locali-
sation can be incorporated into planning. We view this HMM
approach as providing a computational-level description of
aspects of Hippocampal function.

Fig. 1. The agent’s generative model. This corresponds to an
HMM with two sets of observations; goals, gn, and sensory
inputs, sn.

2. METHODS

We consider a dynamical system evolving over time points
n = 1..N with discrete latent states xn, goals gn and sensory
states sn. The overall generative model is shown in Figure 1
and is fully specified via the definition of three probability
distributions (i) the state transition density p(xn+1|xn), (ii)
the sensory observation density p(sn|xn) and (iii) the goal
observation density p(gn|xn).

Inference is implemented in two separate phases (i) plan-
ning and (ii) localisation. In the planning phase, goals are
provided and the posterior distribution over latent states is
computed. At this time sensory states are either not provided
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or their influence on planning is eliminated, for example, by
reducing sensory precision.

In the localisation phase, sensory observations are pro-
vided and the posterior distribution over latent states is com-
puted. In this phase goals are either not provided or their
influence on localisation is eliminated, for example, by re-
ducing goal precision.

In what follows each of the k = 1..K discrete latent states
is associated with a location in a 2D environment, lk, and
N(x;µ,Λ) denotes a multivariate Gaussian distribution over
x with mean µ and precision Λ.

2.1. Planning from a Known Location

2.1.1. Prior Dynamics

In the planning phase the agent is given information about
task goals. Prior to observing these goals the hidden states
evolve according to Markovian dynamics

p(xn+1 = i|xn = j) = Aij (1)

where A is a K ×K state transition matrix. Although high-
dimensional this matrix is sparse, reflecting the spatial struc-
ture of an environment and allowed transitions within it. We
refer to the above equation as describing the ‘Prior Dynam-
ics’.

Fig. 2. The environment contains 15 × 15 = 225 discrete
states, with black squares denoting forbidden locations. At
each time step agents may move to cardinal neighbours or
remain in the same position but cannot transit across edges of
the domain (eg top to bottom). The coloured squares indicate
the location of olfactory sources - see Localisation section.

2.1.2. Probabilistic Goals

The probability of observing goal gn given state xn is given
by the density p(gn|xn). This formulation has many interest-
ing properties. First, goals are inherently probabilistic; one
specifies the likelihood of obtaining a goal at a given loca-
tion. Second, the goal signal gn can be multivariate, allowing
an agent to have multiple goals. Third, the current relevance

Fig. 3. The prior dynamices are embodied in a state transi-
tion matrix A of dimension 225× 225 having a highly sparse
structure reflecting the allowed transitions in an environment.

of each goal is readily modified (by changing, for example,
a precision parameter). Fourth, the observed goal signal can
be used to specify set points and thereby implement a system
for instantiating homeostatic or autoregulatory control. For
example if we have

p(gn|xn = k) = N(gn;µk, diag(λn)) (2)

then µk(i) is the numerical value of goal type i that can be
realised at state k, gn(i) can be set to the desired fixed point
for that goal type, and λn(i) signifies its current relevance.

2.1.3. Posterior Dynamics

We now consider an agent being in receipt of a goal signal g.
In order to specify to the agent that this goal is to be reached
within a ‘time horizon’ of N steps we set the sequence of
observation variables gn = g for n = 1..N . We denote this
sequence as GN = {g1, g2, ..., gN}.

The dynamics of the agent after receiving the goal signal,
or the ‘Posterior Dynamics’, are defined as

Qij ≡ p(xn+1 = i|xn = j,GN ) (3)

=
p(xn+1 = i|xn = j)p(xn = j|GN )∑K

i′=1 p(xn+1 = i′|xn = j)p(xn = j|GN )

An agent following the posterior dynamics implements goal-
directed navigation, whilst one following the prior dynamics
merely obeys the physics of a given environment.

2.1.4. State Posterior

The posterior dynamics constitute a reweighting of the prior
dynamics by the density p(xn = j|GN ). This density can
be computed using standard inference algorithms such as the
alpha-beta recursions [7]. This requires a forward sweep to



compute

α(xn) = p(gn|xn)
∑
xn−1

p(xn|xn−1)α(xn−1) (4)

with α(x1 = k) = p(x1 = k)p(g1|x1 = k), and a backward
sweep to compute

β(xn) =
∑
xn+1

p(gn+1|xn+1)p(xn+1|xn)β(xn+1) (5)

with β(xN = k) = 1. We then have

p(xn|GN ) =
α(xn)β(xn)∑

k α(xn = k)β(xn = k)
(6)

To avoid numerical underflow [7] we scale the forward and
backward messages by

∑
k α(xn = k). The forward ‘alpha’

recursions embody the prior distribution and provide a nor-
malisation factor for the backward ‘beta’ recursions.

2.1.5. Trajectories from a Known Location

A known state at time n is equivalent to a probability distri-
bution p(xn) with unit mass at xn = k and zero elsewhere.
A probabilistic planning trajectory can then be found by in-
tegrating the posterior dynamics from this initial distribution.
The probability mass at time point n+ 1 is

p(xn+1 = i) =

K∑
k=1

q(xn+1 = i|xn = k)p(xn = k) (7)

The state density at subsequent time points can be computed
as

p(xn+m = i) =

K∑
k=1

q(xn+m = i|xn+m−1 = k)p(xn+m−1)

(8)
or in matrix form as

p(xn+m+1) = Qmp(xn+1) (9)

This is the discrete form of the Chapman-Kolmogorov equa-
tion. Iteration of this equation produces ‘goal-directed flows’
and individual paths to goal are produced by sampling from
these flows.

2.2. Localisation

Given sensory input Sn−1 = {s1, s2, ..., sn−1}, the distribu-
tion over hidden states prior to a subsequent observation is

p(xn = k|Sn−1) =
∑
i

p(xn = k|xn−1 = i)p(xn−1 = i|Sn−1)

(10)
After observing sn, the posterior distribution is

p(xn = k|Sn) =
p(sn|xn = k)p(xn = k|Sn−1)

p(sn|Sn−1)
(11)

with predictive density

p(sn|Sn−1) =

K∑
j=1

p(sn|xn = j)p(xn = j|Sn−1) (12)

A neurobiological perspective on the above equations at-
tributes ak = p(xn = k|Sn) to activity of the kth place cell
in the CA3/CA1 hippocampal region. Here, lk is the centre of
the kth place field, and the location encoded by the population
of cells is given by the mean of the predictive density

lpop,n =

K∑
k=1

lkak (13)

An alternative decoding scheme would be to simply take the
location of the Maximum A Posteriori (MAP) most active
cell.

2.3. Planning from an Uncertain Location

Planning under location uncertainty can be implemented by
marginalising the active dynamics over that uncertainty

p(xn+1 = i) =

K∑
k=1

q(xn+1 = i|xn = k)p(xn = k|Sn)

(14)
This is identical to equation 7 but instead of having a delta
function over hidden states on the RHS (corresponding to the
known location) we have the posterior state density from lo-
calisation. The probability distributions at subsequent time
points are then given by the iterations in equation 9.

2.4. KL Control

The state posterior can alternately be expressed as

p(xn = j|GN ) =
p(GN |xn = j)p(xn = j)∑K

j′=1 p(GN |xn = j′)p(xn = j′)
(15)

Given a uniform prior p(xn = j) the equation for the Poste-
rior Dynamics reduces to

Qij =
p(xn+1 = i|xn = j)p(GN |xn = j)∑K

i′=1 p(xn+1 = i′|xn = j)p(GN |xn = j)
(16)

Equation 16 corresponds to the ‘Active Dynamics’ of KL con-
trol, and log p(GN |xn = j) to the ‘Optimal Value’ function
[6]. The ‘Passive Dynamics’ of KL control correspond to our
‘Prior Dynamics’. The scaling of the beta recursions in the
HMM implementation (see above) is analagous to the normal-
isation used in the power method for computing the Optimal
Value function [6].

3. RESULTS

This section refers to videos showing goal directed flows that
are available from
http://www.fil.ion.ucl.ac.uk/˜wpenny/cip14_movies/.



Fig. 4. Time to Goal The figure shows the state posterior,
p(x1|GN ), for four different times to goal (a) N = 1, (b)
N = 16, (c) N = 64 and (d) N = 1024. The goal location is
[10, 8]. Under a uniform prior, p(x1), these plots correspond
to the exponent of the Optimal Value function of KL control.

3.1. Planning from a Known Location

Figure 2 shows an example 2D environment and Figure 3 the
state transition matrix, A, corresponding to the prior dynam-
ics associated with it. Here Aij has been set to 1/Nj if a
transition is allowed from j to i, with Nj being the number
of allowable transitions from j (fewer next to boundaries and
corners). This includes transitions from a state to itself. Tran-
sitions are not allowed to or from wall or edge locations (we
set 0/0 = 0, as per usual).

Figure 4 (a) now superimposes a goal onto this environ-
ment. The goal observation density p(gn|xn) was set to a uni-
variate normal N(gn;µk, λg) with parameters and goal sig-
nals set so that the probability density is 1 at the goal and zero
elsewhere. We then computed the state posterior for three dif-
ferent values for the time to goal N . This computation is im-
plemented using the alpha-beta recursions in equations 4 to 6.
ForN = 1 the state posterior has a single peak at the goal. For
small values of N the posterior has similarly small values at
locations remote from the goal. As we increaseN , the ‘spatial
gradient’ of the posterior at these remote locations increases.
This gradient informs the posterior dynamics via equation 3,
allowing a path to be found from remote sites to the goal. In
what follows the posterior dynamics, Q, were computed from
equation 3 using N = 1024 with the goal at [10, 8]. Note that
for large N , we have p(x1|GN ) ≈ p(x2|GN ) ≈ p(x3|GN )
etc., so we can simply use p(x1|GN ) in equation 3.

The movie known_15_1.avi shows the state density
evolving according to the posterior dynamics. The initial state

Fig. 5. Localisation with Ambiguous Olfactory Cues The
figures plot the posterior state density, p(xn|Sn), computed
using equation 11 at four different time points.

density is a delta function with unit probability mass at loca-
tion [15, 1] and zero elsewhere. The state density at subse-
quent time points has been computed using equation 9. We
now keep the goal at the same location, hence do not change
the posterior dynamics Q, but move the initial position to
[2, 8]. The evolution of the state density is shown in the movie
known_2_8.avi.

Finally, we keep the goal at the same location but update
the prior dynamics, A, to account for a small change to the
environment. This is a hole in a wall appearing at location
[6, 8]. The posterior dynamics were recomputed based on this
new prior and the movie hole.avi shows the goal-directed
flow from position [2, 8].

The above results show that changes in goal location are
accommodated by recomputing the posterior dynamics, Q.
Small changes in the environment are readily accommodated
by small changes in the prior dynamics (and updating Q).
These nonstationarities are less gracefully accommodated in
RL which requires complete relearning of state-action map-
pings.

3.2. Localisation with Ambiguous Olfactory Cues

In this simulation we provide an agent with sensory input
from olfactory cues. Olfaction is known to be important in
mammalian navigation [8] and here we consider a case where
the cues are ambiguous. We provide three olfactory cues at
locations m1 = [8, 7], m2 = [3, 7] and m3 = [13, 7], shown
in Figure 2, where the flanking cues are of the same type (ie



Fig. 6. Localisation with Ambiguous Olfactory Cues. The
posterior state density, p(xn|Sn), as a function of time step,
n, shows initial multimodality that is later resolved.

same smell). The agent receives two olfactory inputs

on(1) = fo(ln,m1) + zn(1) (17)
on(2) = fo(ln,m2) + fo(ln,m3) + zn(2)

fo(ln,mi) = A exp

(
−||ln −mi||

2σ2
o

)
whereA = 100, σo = 2, ln is the location of the agent at time
step n, and zn(i) is zero-mean Gaussian noise with standard
deviation 3. The sensory observation density is set to

p(sn|xn = k) = N(on;mk,Λo) (18)
mk = [fo(lk,m1), fo(lk,m2) + fo(lk,m3)]

We simulate an agent taking a path from a central to a lateral
location as shown in Figure 5 (top left), and compute the state
posterior using equation 11. Localisation is initially ambigu-
ous, because the same olfactory input can be produced from
two locations. This is reflected in the initially bimodal state
posterior in Figures 5 and 6. However, as time proceeds all
but one of the modes are eliminated as they are not supported
by the prior dynamics; because probability mass cannot enter
boundaries it is reassigned to other modes.

3.3. Localisation using Olfaction and Path Integration

In this simulation we additionally provide the agent with spa-
tial location cues from a path integration system. Path inte-
gration, the estimation of location based on speed, direction
of heading, and elapsed time, is an important complementary
signal in the mammalian navigation system [9]. Whilst use-
ful, its accuracy tends to decrease over time, which we sim-
ulate here by setting the path integral input as rnn = ln + en
such that the variance of the additive noise is a linear func-
tion of time step. Specifically, the initial standard deviation

Fig. 7. Localisation via Olfaction and Path Integration.
The figure plots localisation error using various strategies:
Path Integration only (PathInt), Maximum Posterior estima-
tion based on current observation only (MAP1) and sequence
(MAP) of observations, Population Decoding based on cur-
rent observation only (Pop1) and sequence (Pop) of observa-
tions.

was set to 1, and increased by 1 each time step. The agent’s
sensory observation model is augmented as

p(sn|xn = k) = N(on;mk,Λo)N(rn; lk,Λr) (19)

We then assessed the localisation accuracy of various strate-
gies using 100 simulated trials. In each trial the initial loca-
tion (and direction - see below) of the agent was drawn ran-
domly from a uniform distribution over allowed states. Sub-
sequent states were then sampled using a strategy designed to
produced directed paths. Specifically, a proposed next state
was generated such that, with probability 0.9, the direction of
the move was the same as the last. Proposals were accepted if
the move was allowed, otherwise a new proposal was made.
For each time step, on each trial, the agent’s location was es-
timated using a variety of strategies. Figure 7 plots the root
mean square localisation error averaged over trials.

3.4. Planning from an Uncertain Location

Planning given uncertainty in localisation, can be imple-
mented by marginalising the posterior dynamics over that
uncertainty according to equation 14. We illustrate this with
the following example. The initial state distributions are
given by the density in Figure 5 with n = 12. That is, the
agent thinks it is located in a small region in the north east
corner of the maze. The goal is set to the location [2, 5]. We
then apply equation 14 to get the state distribution at the next
time step, under the posterior dynamics. The resulting goal-
directed flow is then given by the iterations in equation 9, and
shown in the movie uncertain.avi.



4. DISCUSSION

This paper proposes an algorithm for the solution of the Si-
multaneous Localisation and Planning problem based on in-
ference in an HMM. The HMM approach provides a useful
computational-level description of aspects of Hippocampal
function. There are several appealing features.

First, the use of a discrete rather than a continuous la-
tent space allows multimodal posteriors to be supported using
simple, exact inference, as shown in the results. This is to be
contrasted with the approximate inference procedures (par-
ticle filtering etc.) required for nonlinear continuous latent
space models [9].

Second, discretisation of an otherwise continuous state
space is generally unworkable for generic control problems
because of the curse of dimensionality. However, spatial nav-
igation problems are inherently two dimensional so discreti-
sation is tenable. Trajectories computed by algorithms such as
discrete KL control are, in our experience, more robust than
those computed by eg. local linear Gaussian approximations
in an equivalent continuous space. Thus, from a computa-
tional perspective, if the dimension of continuous state space
is sufficiently small, it is preferably discretised.

Third, this work builds on earlier proposals that the hip-
pocampus itself is suited to solving shortest path problems
[10]. It has been proposed that CA3 encodes path distances in
its connections and may implement a heuristic planning ap-
proach such as Dijkstra’s algorithm. A similar proposal could
be based on the Prior Dynamics where the connection from
unit j to i encodes Aij . Our approach shares the advantages
of earlier proposals [10] in that the inevitable local changes
in an environment can be reflected in a small number of mod-
ified connections, but has the additional advantage of being
probabilistic, allowing uncertainty in localisation to be incor-
porated into planning.

Fourth, previous work has proposed that the hippocampus
replays goal-directed state sequences so that the striatum can
learn the appropriate state-action mappings [11]. However,
it may be the case that these ‘replays’ are not memories of
successful episodes but sample trajectories from the Posterior
Dynamics.

Fifth, previous work has proposed that a succinct com-
putational description of the hippocampus is that it provides
contextual information. The computation of such a contextual
signal has previously been operationalised using model selec-
tion in an HMM [12]. This is an interesting area for future
work eg. using model selection [9] to decide which environ-
mental model is currently appropriate.

Finally, the two phases of inference we have proposed
may map onto two distinct modes of hippocampal function,
differentiated by the degree of theta activity. Mammalian lo-
calisation is accompanied by a high theta state [13], whereas
planning related replay activity [14] is accompanied by high
frequency ripples in a low theta state. Future work will exam-

ine how, for example, acetylcholine might increase sensory
precision and so switch HMM inference from planning to lo-
calisation.
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