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RWe introduce a mass-univariate framework for the analysis of whole-brain structural trajectories using longitu-
dinal Voxel-Based Morphometry data and Bayesian inference. Our approach to developmental and aging
longitudinal studies characterizes heterogeneous structural growth/decline between and within groups. In
particular, we propose a probabilistic generative model that parameterizes individual and ensemble average
changes in brain structure using linear mixed-effects models of age and subject-specific covariates. Model inver-
sion uses ExpectationMaximization (EM),while voxelwise (empirical) priors on the size of individual differences
are estimated from the data. Bayesian inference on individual and group trajectories is realized using Posterior
Probability Maps (PPM). In addition to parameter inference, the framework affords comparisons of models
with varying combinations of model order for fixed and random effects using model evidence. We validate the
model in simulations and real MRI data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) project.
We further demonstrate how subject specific characteristics contribute to individual differences in longitudinal
volume changes in healthy subjects, Mild Cognitive Impairment (MCI), and Alzheimer's Disease (AD).

© 2015 Published by Elsevier Inc.
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Magnetic Resonance Imaging (MRI) and computational morphome-
try have become important tools for in-vivo analysis of changes in
healthy and pathological brain development and aging (Frisoni et al.,
2010; Fjell andWalhovd, 2010). One of themost exciting research ques-
tions is the nature of variability in aging brain structure (Raz et al., 2005,
2010; Raz and Rodrigue, 2006) and function (Pudas et al., 2013; Grady,
2012) observed across individuals. Most aging studies apply cross-
sectional designs, providing estimates of population average, age-
related, differences via pooling within cohorts (Ziegler et al., 2012a).
However, exploring the large heterogeneity of true within-subject
brain changes necessarily requires repeated measures and longitudinal
designs (Raz and Lindenberger, 2011).

Longitudinal assessments offer significant advantages over cross-
sectional studies (for an introduction see e.g. Fitzmaurice et al., 2008).
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A longitudinal study is more powerful for a fixed number of subjects.
It permits separation of within- and between-subject variability, and
helps to ameliorate confounds. Another important advantage is that in
addition to providing estimates of population average brain changes it
enables a characterization of systematic differences in longitudinal tra-
jectories among individuals. This allows researchers to identify adverse
aswell as protective factors thatmay influence healthy and pathological
changes in brain anatomy and function over time (see e.g. Taki et al.,
2013; Thambisetty et al., 2012; Smith et al., 2010; Debette et al., 2011;
den Heijer et al., 2012). Moreover, individual subjects' trajectories are
promising biomarkers for early stage diagnosis (Chetelat and Baron,
2003), tracking of disease progression (Fonteijn et al., 2012; Jedynak
et al., 2012; Sabuncu et al., 2014; Donohue et al., 2014; Young et al.,
2014) and monitoring of potential treatments (Douaud et al., 2013).

Crucially, longitudinal MR-based morphometry is prone to artifacts
due to scanner inhomogeneities, registration inconsistency, and subtle
scanner-positioning or hydration-related deformations of the brains
(Schnaudigel et al., 2010; Littmann et al., 2006; Kempton et al., 2009).
Sophisticated within-subject registration pipelines have been intro-
duced recently to parameterize structural changes in an unbiased fash-
ion (Ashburner and Ridgway, 2013; Leung et al., 2012; Lorenzi and
Pennec, 2013; Holland et al., 2011; Reuter et al., 2010, 2012).

An essential difference between longitudinal and cross-sectional
analysis lies in the modeling assumptions about each individual. With
a single observation per subject one has to assume the process of
ies with Bayesianmixed-effects modeling, NeuroImage (2015), http://
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interest is identical across subjects (using fixed-effects assumptions). In
contrast, longitudinal designs allow one to parameterize individual
variations in the process by including random effects (or random
coefficients). Modeling repeated measurements of behavior is well
established in psychology and psychometry (for review see McArdle,
2009). In the last decade, therehas been a growing interest in applications
of mixed-effects models in the context of neuroimaging of development
(Shaw et al., 2006, 2008; Raznahan et al., 2011a,b, 2014; Schumann
et al., 2010) and aging neuroscience (Lerch et al., 2005; Lau et al., 2008;
Carmichael et al., 2010). More articles focus specifically on methods for
analysis of longitudinal MRI (Resnick et al., 2000; Chan et al., 2003;
Frost et al., 2004; Bernal-Rusiel et al., 2012) and voxel-wise or vertex-
wise longitudinal modeling (Guillaume et al., 2014; Li et al., 2013; Skup
et al., 2012; Chen et al., 2013; Bernal-Rusiel et al., 2013).

Bayesian inference has been successfully applied to functional brain
scans in multiple domains, ranging from general linear models, group
analysis, spatial models, analysis of connectivity, to model comparisons
(for extensive review see Woolrich, 2012). Bayesian inference typically
exploits hierarchical observationmodels that take into account different
levels of observations (e.g. scans and subjects), allows for the inclusion
of biologically informed prior-beliefs about parameters, and affords
comparisons among competing (nested or non-nested) models. Bayes-
ian treatment ofwhole-brain neuroimagingdatamight also increase the
sensitivity byfinessing theproblemofmultiple comparison (Friston and
Penny, 2003; Schwartzman et al., 2009). In contrast to classical infer-
ence, it also enables the assessment of evidence in favor of the null hy-
pothesis; i.e., no aging-related change or preservation of structural
integrity. These issues speak to a Bayesian framework for modeling
structural change trajectories. However, there are currently only a few
existing studies that consider longitudinal structural MRI (Schmid
et al., 2009; Chen et al., 2012).

Here, we propose a generic modeling framework for longitudinal
morphometric brain changes in development and aging studies. After
diffeomorphic registration on the within-subject (Ashburner and
Ridgway, 2013) and between-subject (Ashburner and Friston, 2011)
level, we build a generative linear mixed-effects model of repeated ob-
servations. Themodel inversion flexibly accommodates unbalanced and
sparse designswith potentially different numbers of follow up scans per
subject. Using Expectation Maximization (EM) we obtain voxelwise in-
dividual and group level change parameters and compute Posterior
Probability Maps (PPM) (Friston and Penny, 2003) for inference about
regionally specific effects. In other words, we focus onmaking regional-
ly specific inferences about longitudinal changes in anatomy, that
properly account for both within and between subject variability in
neurodevelopmental trajectories.

We validate themodel using simulated data and a large MRI sample
from the ADNI cohort. We then demonstrate a parametric analysis of
subject specific covariates and explore the model space to optimize
explanations of individual trajectory differences.

Methods

In this section, we introduce a generative model of local structural
trajectories using random and fixed effects; i.e., a mixed effect, hierar-
chical or multilevel model. We describe the Bayesian formulation, the
implicit (empirical) prior covariance components and their estimation
using expectation maximization (EM). We extend this framework to
modeling of trajectories over multiple groups and review the use of
probabilistic parametermaps (PPM) for inference onmodel parameters.
We conclude this section with a treatment of Bayesian model selection
of ensemble trajectory models.

A generative model of local structural trajectories

Themodel for age-related changes of local brain structure (per voxel
or region) is based upon the following generative model, which
Please cite this article as: Ziegler, G., et al., Estimating anatomical trajector
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comprises a likelihood and prior. The model is an application of the
Bayesian linear hierarchical observation framework introduced by
Friston et al. (2002a) (for application in the context of fMRI see also
Friston et al., 2002b).

We here consider the special case of a two level model, one for indi-
vidual structural trajectories and a second level for an ensemble of tra-
jectories, denoted by ε. The first level likelihood model is based on the
assumption that the trajectory of underlying volumetric changes is sam-
pled from subject-specific functions of age or time

yi j ¼ g ti j; θ 1ð Þ
i

� �
þ ϵ 1ð Þ

i j ð1Þ

where the measurement yij is the j-th of mi observations (e.g. of gray
matter density at a single voxel) obtained from the i-th of N subjects
at age tij, and ϵij(1) denotes an i.i.d. Gaussianmeasurement errorwith var-
iance σ2. In what follows we use time centered tij in order to develop
trajectories around the reference age, i.e. tr, which typically is chosen
as the mean age of the sample. Individual differences of trajectories
are thus encoded by subject-specific change parameters θi(1) resulting
in an ensemble of age-related trajectories ε= {g(t, θi(1))}i = 1

N for a sam-
ple of individuals. In particular, we parameterize the function describing
the trajectory using a D degree polynomial expansion of age

g t; θ 1ð Þ
i

� �
¼

XDþ1

d¼1

θ 1ð Þ
di t

d−1 ð2Þ

with coefficients θi(1) = [θ1,i
(1), …, θD + 1,i

(1) ]T. For example, for D = 2 we
have 3 coefficients per subject, encoding the intercept, slope and qua-
dratic terms. We can easily write these linear models using compact
matrix notationwith individual designmatrices and change parameters
as gi = Xi

(1)θi(1). Then, the model for all subjects follows

y1
y2
⋮
yN

2
664

3
775 ¼

X 1ð Þ
1

X 1ð Þ
2

⋱
X 1ð Þ
N

2
6664

3
7775

θ 1ð Þ
1θ 1ð Þ
2
⋮θ 1ð Þ
N

2
6664

3
7775þ ϵ 1ð Þ ð3Þ

y ¼ X 1ð Þθ 1ð Þ þ ϵ 1ð Þ ð4Þ

with subject i-th observations yi ¼ ½yi1; yi2;…; yimi
�T , M = ∑ mi

concatenated observations y,first level designmatrixX(1), concatenated
change parameters θ(1), and first level Gaussian errors ϵ(1). Vectorizing
observations yij in ‘person-scan’ format, i.e. the successive scans are
grouped by subjects (all from subject 1, all from subject 2, etc.), is a nat-
ural way to arrange longitudinal data with missing scans and varying
number of follow ups. This additionally simplifies the structure of the
first level design matrix, which then takes a block-diagonal form.
Note, that this first level model explicitly accommodates unbalanced
designs, i.e. Xi

(1) ≠ Xj
(1), with varying ages and numbers of scans per

subject.
The sample change parameters of the trajectory functions are deter-

mined by (primarily non-age-dependent) subject specific effects. Note
that these second level regressors can be chosen to model covariates
of interest, e.g. IQ scores, genetic markers, or symptom severity, as
well as purely confounding variables, e.g. global brain parameters.
These measures are summarized in a centered N × R between-subject
covariates matrix Z with entries zir. For example, in the results section
below, we use a genetic risk score as a covariate of interest and test to
see how this predicts first level parameters. Now, we adopt the follow-
ing linear second level model

θ 1ð Þ
1θ 1ð Þ
2
⋮θ 1ð Þ
N

2
6664

3
7775 ¼

I z11I z1RI
I z21I z2RI
⋮ ⋱ ⋮
I zN1I zNRI

2
664

3
775

θ 2ð Þ
1θ 2ð Þ
2
⋮θ 2ð Þ
Rþ1

2
6664

3
7775þ ϵ 2ð Þ ð5Þ
ies with Bayesianmixed-effects modeling, NeuroImage (2015), http://
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θ 1ð Þ ¼ X 2ð Þθ 2ð Þ þ ϵ 2ð Þ ð6Þ

with D + 1 dimensional identity matrix I, second level design matrix
X(2), concatenated parameters θ(2), and zero mean multivariate
Gaussian errors ϵ(2) respectively (for distributions details see also
Covariance component specification section). Note, that we can further
simplify the structure of the design matrix by writing it as a Kronecker
product [[1NZ] ⊗ ID + 1] using N dimensional column vector of ones
1N. Although one could choose a separate set of covariates for each tra-
jectory parameter, we here consider the common exploratory situation
where one is interested in potential effects of a small set of covariates on
all trajectory properties, i.e. intercept, slope, etc.

Due to the particular choice of a column of ones in the second
level design, it follows that θ1

(2) parameterizes the sample average
change in terms of a mean trajectory, which is the expectation for
every subject's trajectory parameters after accounting for covariate
effects. The remaining second level parameters θ2(2), …, θR + 1

(2) be-
come the coefficients of each covariate's contribution to individual
trajectory differences.

Combining fixed and random effects

The above model with degree zero might be referred to as the
random intercept model without slope. Using this model in the context
of longitudinal MRI assumes variability of structure across subjects but
no changes over time. If we chose model degree one, the model now
includes a random slope parameter for every subject. One might
argue that the first (or higher) degree(s) can also enter as fixed
(as opposed to random effects); e.g., assuming the same rate of
change (or quadratic effect) for all subjects. The above framework
naturally extends to modeling these additional fixed effects of de-
gree d by appending column vectors xfd with entries tdimi

to the first

level design matrix ½Xð1Þ;xDþ1
f ;…;xD f

f �. In this case we need to extend

first level parameters accordingly, i.e. θ(1) = [θ1(1),…, θN(1), θf(1)]. In pres-
ence of these fixed effects the second level design follows as

θ 1ð Þθ 1ð Þ
f

" #
¼ X 1ð Þ 0

0 ID f−D

" # θ 2ð Þθ 2ð Þ
f

" #
þ ϵ 2ð Þ

ϵ 2ð Þ
f

" #
: ð7Þ

If we now constrain the second level errors for fixed effects parame-
ters to be zero, we can perform second level group inference for random
and fixed effects parameters in a similar way (as will be shown in the
Bayesian perspective section). In what follows we use D to denote the
degree of random effects and Df for the degree of fixed effects. Please
note that entering fixed effects, in addition to random effects of the
same degree, would result in redundant parameters for the average tra-
jectory. Thus, one might prefer only using additional fixed effects with
higher degrees Df N D. This parametrization of fixed and random effects
is motivated by our hierarchical formulation of the model and might
slightly differ from standard mixed-effects textbooks.

Covariance component specification

In order to estimate the abovemodel, we need to fully specify all co-
variance constraints for first and second level errors, further denoted
with Cϵ(1) and Cϵ(2) respectively. Given an unknown covariance structure
C we use a small set of covariance basis functions Q k and estimate the
corresponding coefficients or hyperparameters λk

C λð Þ ¼
X
k

λkQ k: ð8Þ

More generally, this can be motivated by a first-order Taylor expan-
sion of the covariances with respect to their hyperparameters (for de-
tails see e.g. Friston et al., 2002a). This idea will be now outlined for all
Please cite this article as: Ziegler, G., et al., Estimating anatomical trajector
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covariance components of the above model. We begin with a single
group design, and extend this to modeling of multiple groups in later
sections. It is important to note that the covariance could be specified
being linear in the hyperparameters (as seen in Eq. (8)); however, this
does not preclude negative definite covariances (Harville, 1977). In con-
trast to optimizing linear coefficients λ, in what follows, we optimize
log-covariance parameters, ie. eλ. This forces the hyperparameters to
be positive and at the same time increases the stability of the subse-
quent optimization scheme.

In particular, as mentioned above, we specify the first level error co-
variance using an isotropic noise model

C 1ð Þ
ϵ ¼ elog σ2ð ÞIM ð9Þ

with IM denoting an identity matrix and noise variance σ 2. This models
unstructured errors of measurement, e.g. due to MRI noise and random
errors or minor inaccuracies during preprocessing. Furthermore we re-
call that every subject is fully described by its parameter vector θ i

(1).
Considering the population, however, there is unknown variability
of individual parameters across subjects, which is either explicitly
modeled by covariates (or group structures) in design matrix X(2) or
captured by the second level error covariance Cϵ(2). The unexplained in-
dividual differences might differentially affect all trajectory coefficients
and thus (at least) one further hyperparameter for each of the trajectory
parameters is required. We therefore use λ1, λ2, etc. to describe unex-
plained individual differences of intercept, slope etc. For that purpose
we use Ri to denote the covariance matrix of residual parameter
vectors Cov(ϵi) and we suppose

Ri ¼
eλ1

⋱
eλDþ1

2
4

3
5: ð10Þ

Typically, having only very sparse observations in longitudinal
MRI designs prevents us from estimating Ri on the individual level.
For reasons of identifiability in a wide range of designs, we therefore
assume the same residual covariance across all subjects, i.e. Ri = R.
The full second level error covariance can be therefore specified as
follows

C 2ð Þ
ϵ ¼

R
⋱

R

2
4

3
5 ¼ IN ⊗ R ¼

XDþ1

d¼1

eλdQ d ð11Þ

where covariance basis functions Q d can be efficiently implemented
exploiting the Kronecker product. Taken together [σ2, λ1, …, λD + 1]
fully parameterize the covariance components of the model in its sim-
ples form; resulting, e.g. in three voxelwise hyperparameters for single
ensembles of linear trajectories. Please note that the above framework
nicely extends to more complex models, e.g. with first level covariates
and correlated residuals at the second level.

Finally, we finesse the covariance components to account for any
fixed effects as discussed in the Combining fixed and random effects
section. This means we consider the case when the degree of fixed ef-
fects exceeds the degree of random effects and we apply extended de-
sign matrices and parameters (Eq. (7)). In order to perform similar
inference for second level fixed effects parameters like group average
parameters of random effects we enforce identity of first and second
level fixed effects parameters, i.e. θf(1) = θf(2). This can be easily imple-
mented by choosing a hyperparameter of second level fixed effects

errors with a very small variance, i.e. ϵð2Þf � Nð0;σ2
f ID f−DÞ with e.g.

σf
2 = e−32.
ies with Bayesianmixed-effects modeling, NeuroImage (2015), http://
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Fig. 1. Illustration of the trajectory model using a directed graphical model emphasizing
the Bayesian perspective. Rectangles are used for observed variables, e.g. yij is the j-th ob-
servation of the i-th subject. Ellipsoids are used for latent (or hidden) stochastic variables,
e.g. θi(1) refers to intercept, slope, etc. of the i-th subject. θ(2) denotes all second level pa-
rameters, e.g. all group's average intercept, slope, and covariate effects. All other parame-
ters with arrows denote deterministic variables, e.g. zir is the r-th covariate for the i-th
subject or the timepoint tij of the j-th observation of the i-th subject. For the top level pa-
rameters, we apply flat priors denoted by an infinite prior variance parameter. We have
introduced plates that compactly represent multiple variables (and arrows), for which
only a single example is shown explicitly.
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Bayesian perspective

Wenow explore the Bayesian perspective on the abovemodel for an
ensemble of trajectories (defined by Eqs. (4) and (6)). A key aspect of
this formulation is that we can consider the second level to furnish an
empirical prior for the first level parameters, as follows

P y θ 1ð Þ
���� �

¼ N y;X 1ð Þθ 1ð Þ;C 1ð Þ
ϵ

� �
ð12Þ

P θ 1ð Þ θ 2ð Þ
���� �

¼ N θ 1ð Þ;X 2ð Þθ 2ð Þ;C 2ð Þ
ϵ

� �
ð13Þ

with error covariances Cϵ(k), k=1, 2. The first level error covariance cor-
responds to measurement noise.

Finally, we assume second level priors on the ensemble change pa-
rameters. At the end of this section we will briefly discuss promising
choices of priors which might be relevant for potential applications:

P θ 2ð Þ
� �

¼ N θ 2ð Þ;η 2ð Þ
θ ;C 2ð Þ

θ

� �
: ð14Þ

The hierarchical structure of the trajectory model implies that the
joint probability factorizes as

P y; θ 1ð Þ; θ 2ð Þ
� �

¼ P y θ 1ð Þ
���� �

P θ 1ð Þ θ 2ð Þ
���� �

P θ 2ð Þ
� �

ð15Þ

rendering the data conditionally independent of the second level pa-
rameters given the first level parameters (Bishop, 2006).

In this framework, hierarchical model inversion corresponds to esti-
mating covariance components Cϵ(1), Cϵ(2) and C θ

(2) respectively. For this
purpose, the model can be further rearranged in a non-hierarchical
form (see also Friston et al., 2002a)

y ¼ X 1ð Þ X 1ð ÞX 2ð Þ� � ϵ 2ð Þθ 2ð Þ

� �
þ ϵ 1ð Þ: ð16Þ

Exploiting the Bayesian perspective, we treat the second level errors
as additional model parameters, which will be estimated in subsequent
steps.

To ensure all covariance components are evaluated simultaneously,
we further augment the model by adding rows that correspond to the
prior expectation E[ϵ(2)] = 0 and E[θ(2)] = η θ

(2) respectively

y
0η 2ð Þ
θ

2
4

3
5 ¼

X 1ð Þ X 1ð ÞX 2ð Þ

I 0
0 I

2
4

3
5 ϵ 2ð Þθ 2ð Þ

� �
þ

ϵ 1ð Þ

−ϵ 2ð Þη 2ð Þ
θ −θ 2ð Þ

2
4

3
5 ð17Þ

y ¼ Xθþ ϵ ð18Þ

with augmented datay, augmented designX and parameters θ and aug-
mented errors ϵ. Note that in contrast to the models considered above
the augmented error contains all covariance components of the two-
levelmodel. One further benefit of augmentation is that it allows formu-
lating the Gaussian likelihood and prior of the ensemble trajectories in a
pleasingly compact form

p y θjð Þ ¼ N y;Xθ;Cϵ
	 
 ð19Þ

p θð Þ ¼ N θ;ηθ;Cθð Þ ð20Þ

with expectation and covariance components

ηθ ¼
0η 2ð Þ
θ

� �
;Cϵ ¼ C 1ð Þ

ϵ 0
0 Cθ

� �
;Cθ ¼ C 2ð Þ

ϵ 0
0 C 2ð Þ

θ

" #
: ð21Þ

Longitudinal MRI studies of healthy and pathological development
rest on inferences about first or second level parameters of the above
Please cite this article as: Ziegler, G., et al., Estimating anatomical trajector
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model. The posterior density over parameters, given a particular sample
of observations, is also Gaussian and can be written using the compact
Gauss–Markov form

P θ yjð Þ ¼ N θ;ηθjy;Cθjy
� �

with ð22Þ

Cθjy ¼ X
T
C−1
ϵ X

� �−1
and ð23Þ

ηθjy ¼ Cθjy X
T
C−1
ϵ y

� �
: ð24Þ

The ensuing model inversion can be performed in a fully Bayesian
way, i.e. using an informative prior on top level parameters; i.e., with
given η θ

(2) and Cϵ(2). These prior distributions can be specified based on
expectations from the literature or as suggested in Friston and Penny
(2003) one might apply empirically derived prior distributions using
the data at hand, e.g. obtained froma pooled covariance estimate.More-
over, if one does not have explicit prior assumptions about the local pat-
terns of change, one can treat these parameters as unknown, thus using
uninformative priors.

In this particular study we apply uninformative or flat priors with
Cθ
(2) = ∞ (or equivalently (Cθ

(2))−1 = 0), with the prior expectationηθ
(2) set to zero. In order to obtain the posterior over all trajectory pa-

rameters, we estimate the covariance components using an EM scheme.
As described above, the top level prior covariance is unknown, realized
by setting it to an arbitrarily high value, in particular we choose Cθ

(2) =
e32I. A simple illustration of the applied model is shown in Fig. 1.

Model estimation using Expectation Maximization (EM)

As proposed by Friston et al. (2002a) we adapt an Expectation Max-
imization (EM) algorithm (Dempster et al., 1977) to obtain all covari-
ance components and the posterior of the change parameters. EM
iteratively refines a lower bound F on the log-likelihood of the data
given the hyperparameters, i.e. ln p(y|λ) ≥ F(q(θ), λ), where q(θ) is
any distribution of the change parameters. Using iterative alternation
between E and M steps (see later), one performs a coordinate ascent
on F, and thus implicitly increases the log-likelihood.

E-Step
Under the above Gaussian assumptions, each E-step maximizes

F(q(θ), λ) with respect to the distribution q(θ). Here, this simply corre-
sponds to obtaining sufficient statistics for the posterior of the parame-
ters, i.e. F is maximized by q(θ) = p(θ|y, λ). Using the covariance
ies with Bayesianmixed-effects modeling, NeuroImage (2015), http://
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parametrization of the augmented model and Eqs. (23) and (24) the
posterior is given by

ηθ yj ¼ Cθ yj X
T
C−1
ε

�y with ð25Þ

Cθ yj ¼ X
T
C−1
ϵ X

� �−1
and ð26Þ

Cϵ ¼ Cθ þ
X
k

eλkQ k: ð27Þ

M-Step
Here, we optimize F(q(θ), λ) with respect to the covariance

hyperparameters, in a maximum likelihood sense, using the posterior
distribution obtained during the preceding E-step. In particular, Fduring
the M-step is given by

F ¼ 1
2

ln C−1
ϵ

��� ���−1
2
rTC−1

ϵ r−
1
2
tr CθjyXC

−1
ϵ X

� �
þ 1
2

ln Cθ yj
�� ��þ const ð28Þ

with residuals r ¼ y−Xηθjy (for an exact derivation see Friston et al.,
2002a). The first term decreases F with a larger number and size of
hyperparameters, while the second term increases Fwith smaller preci-
sion weighted residuals corresponding to a better model fit.

Note also, that during the M-step the posterior covariance Cθ|y is a
fixed result from the preceding E-step, while Cϵ = Cϵ(λ) depends on
the hyperparameters and will be optimized. Thus in general the
third term of F is not the trace of an identity matrix. The last term,
which stems from the entropy of the distribution over change parame-
ters q(θ), can be neglected, because it does not depend on the
hyperparameters.

To update the hyper parameters we adopt a Fisher scoring algo-
rithm, using the first derivative (or gradient) g and the expected second
partial derivatives (or Fisher's Information matrix) H:

λ ¼ λþH−1g with ð29Þ

gk ¼
∂F
∂λk

¼ −
1
2
eλk tr PQ kð Þ−yTPTQ kPy

� �
; ð30Þ

Hkl ¼ E ∂2 F
∂λk∂λl

" #
¼ 1

2
eλkþλl tr PQ kPQ lð Þ; and ð31Þ

P ¼ C−1
ϵ −C−1

ϵ XCθ yj X
T
C−1
ϵ : ð32Þ

The updated hyperparameters re-enter into the estimation of the
posterior in the next E-step.2 Finally, after appropriate initialization of
the hyperparameters λ, the full algorithm alternates between the E-
and M-steps until convergence.

Multiple groups

Longitudinal studies of development and aging often aim at infer-
ence about differences among average population trajectories. Typical-
ly, this involves comparing change rates (or slope differences) in
healthy vs. pathological development, specific treatment conditions, or
groups following specific lifestyle patterns. Although the ongoing struc-
tural change is well characterized by the slope parameters, the current
framework also supports inference about other aspects of trajectory
shape; e.g., intercepts or higher order non-linearities.
478

479

480

481

482

2 Please note that the actual implementation uses Δλ ¼ H
−1

g with Hkl ¼ Hkl−Ph and
hyperpriors Ph = 1/32. The treatment of hyperparameters using a probabilistic perspec-
tive is motivated within the variational Bayes framework (Friston et al., 2007) and in-
creases numerical stability of the optimization scheme.
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We therefore generalize the above model to situations where one
observesM scans of N= N1 + N2 +…+ NG subjects, who are individ-
uals from G different populations with (mainly non-age dependent)
subject-specific covariates Z1, …, ZG. For example, we might consider
three groups of subjects in the ADNI dataset, including controls, MCI
and AD, with Mini Mental State Examination scores as covariates. The
subsamples are further used to estimate independent ensembles of tra-
jectories ε1, …, εG using the same trajectory parametrization (Eq. (4)),
e.g. quadratic curves. The assumptions about the group structure of tra-
jectories can be realized bymodifying the second level designmatrix (in
Eq. (6)) appropriately

X 2ð Þ ¼
1N1 Z1

1N2 Z2
⋱

1NG ZG

2
664

3
775⊗IDþ1: ð33Þ

In addition to allowing for different average trajectories in
different groups, the amount of individual differences within each
ensemble εg might also differ across populations. This is easily
achieved by adapting the model of the second level covariance
components to include independent hyperparameters for each
group.

We suppose the covariance structure of second level residuals to be
Cov(ϵ i(2)) = Rg for subject i from group g. We again exploit diagonal co-
variance basis functions Q d (see Covariance component specification
section) to parameterize the variability of all change parameters in all
groups resulting in G(D + 1) hyperparameters for the second level
model

C 2ð Þ
ϵ ¼

IN1⊗R1
IN2⊗R2

⋱
ING⊗RG

2
664

3
775 ¼

XG Dþ1ð Þ

d¼1

eλdQ d: ð34Þ

Note that one could include fixed effects of time or age. In many
practical applications these would enter as group specific fixed ef-
fects for each group and trajectory parameter. Finally, having speci-
fied a single or multi-group trajectory model, the estimation of
parameters and covariance components proceeds using EM as
described above.

Inference about group differences and analysis of individual differences of
change

To facilitate practical applications to longitudinal MRI studies, we
also need to consider Bayesian inference about population differences
and subject specific covariate effects on individual trajectories. These ef-
fects can be characterized using the usual approach of defining contrasts
for linear models as commonly used in Statistical Parametric Mapping
(SPM) (Friston et al., 1995). In particular, single contrast vectors are
used to specify a single hypothesis about first or second level change pa-
rameters. For example, let us suppose a design with linear trajectories
(first level) and two groups and no covariates (second level). If we use
contrast vector c = [0, 1, 0, − 1]T, then cTθ(2) = 0 tests the (null) hy-
pothesis that the rate of change (slope) in group one is equal to the
slope in group two. Moreover, multiple contrast vectors can be used to
specify compound hypotheses. If c1 = [1, 0, − 1, 0]T, and c2 =
[0, 1, 0, − 1]T then [c1, c2]Tθ(2) = 0 assumes both intercepts and slopes
to be same across groups.

Posterior Probability Maps (PPM) were introduced for Bayesian in-
ference onmass-univariate general linearmodels used in neuroimaging
(Friston and Penny, 2003).When applying PPMs, one is often interested
in the probability of linear contrasts c = cTθ(2) exceeding a certain
threshold, e.g. γ=0. One can additionally specify a nonzero probability
threshold, typically pt = 0.95. We are now in a position to construct
ies with Bayesianmixed-effects modeling, NeuroImage (2015), http://
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PPMs for Bayesian inference on arbitrary trajectory parameter contrasts
by voxelwise evaluation of the posterior

p c N γjyð Þ ¼ 1−ϕ
γ−cTηθ yjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cTCθ yj c
q

0
B@

1
CAN pt ð35Þ

with the cumulative density function of the unit normal distribution ϕ.
Similarly, this framework affords comparison of structural change of
single individuals using thefirst level individual change parameters θ(1).
Comparison of different trajectory models

The above framework for individual trajectory estimation requires
an a-priori assumption about the polynomial order of random or fixed
effects. Generally, comparing various trajectory models corresponds to
the evaluation of competing hypotheses about trajectories in develop-
ment, aging and pathology or about nonlinear changes during the
lifespan. One can also use model comparison to test for differences
among groups, e.g. H0: all subjects in same group vs. H1: subjects in
control, MCI and AD groups. Crucially, one can use Bayesianmodel com-
parison to optimize aspects of the models about which ones uncertain
such as the degree order of the polynomial is above. Practically, Bayes-
ian model comparison rests uponmodel evidence that is approximated
by the free energy obtained from EM. This (lower bound) approxima-
tion to log model evidence is used to monitor convergence during pa-
rameter estimation of any particular model and optimize the model
per se.

Bayesian model comparison has been suggested as a principled ap-
proach for inference about nested and non-nested models of neuroim-
aging data (Penny et al., 2004; Penny, 2012). Assuming the same prior
probability for both model orders, different orders can compared
using the difference in free energy or log evidence. This corresponds
to the log Bayes factor (Kass and Raftery, 1995). Local voxelwise evalu-
ation of this probability ratio comparesmodel evidences ofmodels with
different degrees

BF ¼ P y D ¼ ijð Þ
P y D ¼ jjð Þ ð36Þ

or models with and without some additional fixed effects. Observing
BF N 1 in the above example indicates that it is more likely that individ-
ual differences of change are better captured by order i compared to j.

Questions about model order can be addressed flexibly using nested
model comparisons. Two models are nested when the smaller (e.g. lin-
ear) model is obtained by setting some parameters of the larger (e.g.
quadratic) model to zero. Note however, that this comparison of
model evidence naturally extends to non-nestedmodels, e.g. comparing
two models with two different sets of covariates.

Summary of methods

In summary, we propose a hierarchical generative model to infer
families of (nonlinear) trajectories reported by longitudinal changes in
local brain volumes (or tissue densities). The key aspect of this model
is its hierarchical structure, wherein the first (within-subject) level ac-
commodates longitudinal effects whose trajectory depends upon
group average parameters at the second (between-subject) level. Cru-
cially, this level includes differences in subjects that may be of interest;
for example, group differences or diagnosis, behavior or genetic vari-
ables (see later). Alternatively, second level effects may be considered
as confounds; for example, the age of a subject (e.g., at baseline), their
gender, or brain/head size (Barnes et al., 2010). By modeling nonlinear
trajectories in this fashion, one can easily accommodate unbalanced
designs, while exploiting the efficiency of mixed-effects inference and
associated parameter estimates.
Please cite this article as: Ziegler, G., et al., Estimating anatomical trajector
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Results

Validation using simulated structural trajectories

In what follows, we address the face validity of the above approach
using simulated data generated by the model with linear trajectories
drawn from the range of design and (hyper-) parameter specifications
typical of longitudinal MRI and VBM preprocessing. The simulated
data were entered into EM to compare parameter estimates with the
ground truth. This basically establishes themodel inversion can recover
veridical parameter estimates. This validation procedure followed two
steps.

Firstly, simulation of an ensemble of trajectories corresponding to a
set of parameters θ(1) with specified average and individual trajectory
differences. In the above generative model, this corresponds to the
case of having only a column of ones in the second level design. Second
level average change parameters were fixed to θ(2) = [1.2,− 5 ⋅ 10−3]T,
i.e. the mean intercept is 1.2 and mean slope is − 5 ⋅ 10−3. No subject
covariates were included in these simulations. To evaluate model per-
formance in different contexts, the individual differences of the inter-
cept and the slope, i.e. [λ1, λ2], were either assumed to be large
[10−2, 10−4] or small [10−4, 10−6] respectively. Illustrations of simulat-
ed trajectories are shown in Fig. 2A.

Secondly, performing longitudinal MRI acquisition is equivalent to
sparse temporal sampling of the unknown ground truth trajectories.
The sampling process is specified by the first level design matrix. How-
ever, longitudinal MRI studies might vary substantially with respect to
two main design characteristics. Designs can be more or less balanced
with respect to age and differ with respect to the number of follow up
measures per subject, i.e. more or less sparse. The simulation of MRI
sampling and other design factors are illustrated in Fig. 2B.

Fig. 3 shows the rootmean squared error of thefirst and second level
intercept and slope parameters comparing the ground truth and the
model estimations.

In general the change parameter estimates obtained from EM were
found to be highly accurate, supporting the validity of the proposed
method for different designs. As expected for a hierarchical model, the
second level (group) parameter estimates were generally closer to the
ground truth thanfirst level (individual) change parameters. In our sim-
ulations, higher noise levels (or first level errors) primarily impaired
first level parameter estimation accuracy.

To a minor extent, the first level noise also significantly affected the
second level slope estimates, especially in sparse balanced designs. Sim-
ilarly, larger individual differences (or second level errors) were found
to increase estimation errors of the second level. Interestingly, larger in-
dividual differences also resulted in increased first level parameter er-
rors, especially for less balanced designs.

We further found that having fewer follow up scans (or higher spar-
sity) in longitudinal designs broadly compromises individual and group
level parameter estimates. Sparsity particularly affected all first level pa-
rameters in balanced and less balanced designs and the second level
slope estimates; especially in balanced designswithmore observational
noise. In contrast, using more or less balanced designs had differential
effects on estimation accuracy. Trajectory intercept errors were in-
creased by more balanced designs, while slope estimates seemed at
least in part to be improved.

As our model is based on assumptions about Gaussian distributions,
the model inversion and inference might be affected by any violation of
this assumption. A second row of simulations was conducted to test the
validity of our model inversion in the presence of non-Gaussian error
distributions (Fig. 4). We explicitly manipulated skewness and kurtosis
of the first and second level errors and assessed the stability and accura-
cy of group trajectory rate of change (slope) and the corresponding var-
iability hyperparameter, i.e. λ2. Interestingly, we observed that rates of
change in terms of group slope parameters were highly accurately re-
constructed over a wide range of non-Gaussian distributions. Therefore,
ies with Bayesianmixed-effects modeling, NeuroImage (2015), http://
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Fig. 2. Illustration of ground truth simulation for structural trajectories. (A) 5 random re-
alizations of an ensemble of linear trajectories are plotted over the adult lifespan. Individ-
ual trajectories are shown in blue and the average trajectory is shown in red.
(B) Illustration of simulated MRI acquisition. Ages of measurement tij are depicted by
red crosses and red lines. Balanced designs (2 and 3 from left) vs. unbalanced (4 and 5
from left) and low (2nd from left) vs. high (3rd from left) sparsity of observations. Unbal-
anced sampling is illustrated using the age interval [20, 70] but see text for exact specifi-
cation of the simulation.

3 Data used in the preparation of this article were obtained from the Alzheimer's Dis-
easeNeuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNIwas launched
in 2003 by the National Institute on Aging (NIA), the National Institute of Biomedical Im-
aging and Bioengineering (NIBIB), the Food and Drug Administration (FDA), private phar-
maceutical companies and non-profit organizations, as a $60 million, 5-year public–
private partnership. The primary goal of ADNI has been to test whether serial magnetic
resonance imaging (MRI), positron emission tomography (PET), other biological markers,
and clinical and neuropsychological assessment can be combined tomeasure the progres-
sion of mild cognitive impairment (MCI) and early Alzheimer's disease (AD). Determina-
tion of sensitive and specific markers of very early AD progression is intended to aid
researchers and clinicians to develop new treatments and monitor their effectiveness, as
well as lessen the time and cost of clinical trials. The Principal Investigator of this initiative
isMichaelW.Weiner, MD, VAMedical Center and University of California – San Francisco.
ADNI is the result of efforts of many co-investigators from a broad range of academic insti-
tutions and private corporations, and subjects have been recruited from over 50 sites
across the U.S. and Canada. The initial goal of ADNI was to recruit 800 subjects but ADNI
has been followed by ADNI-GO and ADNI-2. To date these three protocols have recruited
over 1500 adults, ages 55 to 90, to participate in the research, consisting of cognitively nor-
mal older individuals, people with early or late MCI and people with early AD. The follow
up duration of each group is specified in the protocols for ADNI-1, ADNI-2 and ADNI-GO.
Subjects originally recruited for ADNI-1 and ADNI-GO had the option to be followed in
ADNI-2. For up-to-date information, see http://www.adni-info.org.
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Furthermore, our results show a slightly biased estimation of the
hyperparameters under higher values of skewness and especially large
values of kurtosis, i.e. peaked or super-Gaussian distributions. However,
in our experience, strongly super-Gaussian data is rather unlikely in de-
formation based morphometric features, while more often slightly
skewed data due to modulations from jacobian determinants is ob-
served. Additionally, given the empirical results, the posterior uncer-
tainty was stronger affected by the total variance differences of first
and second level errors than by presence of significant higher central
moments.

Finally, another possibility for evaluation and validation of our ap-
proach was used. We compared the linear Bayesian mixed-effects
model to a simple summary statistic approach. The latter is generally
valid if the design is balanced across subjects. That means that in this
case the summary statistic approach should perform optimal, so we
tested if our approach provides comparable results in this ideal scenario.
As illustrated in Fig. 5, this ideawas confirmed using a simulation frame-
work with balanced and not age-balanced designs additionally varying
the error variances. Our approach performed similar to summary
Please cite this article as: Ziegler, G., et al., Estimating anatomical trajector
dx.doi.org/10.1016/j.neuroimage.2015.06.094
statistics for balanced designs over wide variety of first and second
level error variances. We also observed that Bayesian mixed-effects
models appeared more powerful than summary statistics when the lat-
ter is expected to be sub-optimal, i.e. in unbalanced designs. A similar
result was obtained comparing balanced designs and varying timing of
observations on the within-subject level (not shown).
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Validation using real MRI data

Sample
In a second validation analysis, we provide a provisional assessment

in terms of predictive validity by seeing if we could detect group differ-
ences (that we assume to be present). In this instance, we analyzed em-
pirical data: The Bayesian mixed-effects models were applied and
validated with a large longitudinal sample of healthy and pathological
aging from the Alzheimer's Disease Neuroimaging Initiative (ADNI,
http://www.adni-info.org)3 (see also Mueller et al., 2005).

We analyzed a subsample of the ADNI1 stage of the study, focusing
on T1-weighted images acquired on 1.5 T scanners. After downloading
and preprocessing 2397 scans of 474 participants, we excluded 39 sub-
jects with 127 scans (due to substantial artifacts appearing in quality
checks and errors during preprocessing). Apart from image sequence
and preprocessing parameters (see also image preprocessing section),
we did not apply any additional inclusion criteria.

The analyzed sample contained 2146 scans of 435 subjects, 181/254
female/male, ages 56.5–91.1,mean 76.4, std 6.7 years). The sample con-
tains 10, 16, 31, 126, 113, 94, 43 and 2 subjects with ages 56–60, 60–65,
65–70, 70–75, 75–80, 80–85, 85–90 and 90–92 years respectively.

According to ADNI diagnostic criteria, the sample contained 688
scans of 140 healthy elderly subjects (further denoted as NO), 552
scans of 108 subjects with stable diagnosis of MCI during the whole
ADNI study (denoted as sMCI), 530 scans of 92 subjects converting
from original MCI diagnosis at baseline to AD during the ADNI study
(pMCI), and 376 scans of 95 patients of patients diagnosed with AD.

The sample is less balanced with respect to age and the number of
MRI acquisitions per subjects varies from 1 to 9with 4.93 scans per sub-
ject on average. Therewere 34, 131, 122, 119 and 28 subjects having ≤ 3,
4, 5, 6 and ≥ 7 scans respectively.MostMRI acquisitionswere performed
at baseline or 6, 12, 18, 24, 36, 48, and 60 months of the within subject
study time. The sample maps within subject healthy and pathological
aging from 17, 32, 126, 218, 40 and 2 elderly subjects over 0–1, 1–2,
2–3, 3–4, 4–5 and 5–6 years respectively. A more detailed description
of the ADNI study design and sample selection procedures can be
found at http://adni.loni.usc.edu/data-samples/.
ies with Bayesianmixed-effects modeling, NeuroImage (2015), http://
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Fig. 3. Effects of design sparsity and having more or less balanced designs for first and second level model parameter estimation accuracy. All plots show log root mean squared errors
(RMSQE) comparing ground truth vs. Bayesian model parameter estimates of intercept and slope for first (individual) and second (group) level. We manipulated the noise variance to
follow σ2 = 0.01/(1 + 25 × (p − 1)2), with p = 1, …, 10 indicating the noise level. Red vs. blue lines indicate errors for large vs. small individual differences as a function of the first
level noise parameter. Stronger noise mainly increases first level model errors. The log RMSQE is depicted for different designs with independent variation of loss of balance and sparsity.
These results were obtained from averaging over 200 independent random realizations of the ensembles.
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RSymmetric diffeomorphic registration and image preprocessing
ADNI provides preprocessed T1-weighted images that have under-

gone specific correction steps to reduce scanner induced biases. To re-
duce these influences and minimize effects due to heterogeneity of
protocols, all included images were chosen to match the MPRAGE
with Gradwarp, B1 correction and N3 specification (see http://adni.
loni.usc.edu/methods/mri-analysis/mri-pre-processing/). For further
details about the applied ADNI MRI protocols please see http://adni.
loni.usc.edu/methods/documents/mri-protocols/.

All further preprocessing steps were performed in SPM12b r6080
(Wellcome Trust Centre for Neuroimaging, London, UK, http://www.
fil.ion.ucl.ac.uk/spm). Because longitudinal MR-based morphometry is
particularly prone to artifacts due to scanner inhomogeneities, registra-
tion inconsistency, and subtle age-related deformations of the brains, it
requires sophisticated preprocessing pipelines in order to detect the
changes of interest and achieve unbiased results (Ashburner and
Ridgway, 2013; Reuter and Fischl, 2011).

Thus, at first we applied the symmetric diffeomorphic registration
for longitudinal MRI (Ashburner and Ridgway, 2013). In particular,
this rests on a intra-subject modeling framework that combines non-
linear diffeomorphic and rigid-body registration and further corrects
for intensity inhomogeneity artifacts. The optimization is realized in a
single generative model and is provides internally consistent estimates
of within-subject brain deformations during the study period. The
Please cite this article as: Ziegler, G., et al., Estimating anatomical trajector
dx.doi.org/10.1016/j.neuroimage.2015.06.094
registration model creates an average T1-image for each subject and
the corresponding deformation fields for every individual scan.

Second, we applied SPM12b's unified segmentation to each subject's
average T1-image, which assumes every voxel to be drawn from an un-
known mixture of six distinct tissue classes: gray matter (GM), white
matter (WM), and cerebrospinal fluid (CSF), bone, other tissue and air
(see also Ashburner and Friston, 2005).

Third, all voxels within-subject average tissuemapsweremultiplied
by the Jacobian determinants from the above longitudinal registration.
Note, that this within-subject modulation is expected to encode all
local individual volume changes during the study period.

Fourthly, nonlinear template generation and image registration was
performed on the individual average GM and WM tissue maps using a
geodesic shooting procedure (Ashburner and Friston, 2011). This de-
fined the template space for all subsequent mixed-modeling steps.

Fifthly, the within-subject modulated (native space) segment im-
ages were subsequently deformed to this study template space. Note
that only within- but no between-subject modulation was applied. We
further quality checked the ensuing images manually and using
covariance-based inhomogeneity measures as implemented in the
VBM8 toolbox for SPM.

Finally, images were smoothed using Gaussian kernels of 4 mm full
width at half maximum. Subsequent modeling and analysis was per-
formed for all tissue classes within corresponding binary masks. The
ies with Bayesianmixed-effects modeling, NeuroImage (2015), http://
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Fig. 4. Effects of non-gaussianity for second level slope parameter and hyperparameter estimation accuracy. Generalized normal distribution (type I and II) were used for generation of
trajectory data with non-Gaussian first and second level errors. We simulated ensembles of 64 subjects with 5 annual scans per person. These were sampled under balanced/unbalanced
designs and linear Bayesian mixed-effects model inversion was performed. Skewness (top row) and kurtosis (bottom row) were independently manipulated from mean and variance.
Estimated slope parameter and hyperparameter were compared to ground truth values computing the mean absolute error (MAE) over 200 independent realizations. Brighter to darker
shading of MAE in plots depicts increasing first level errors std of 0.01, 0.02, 0.04, 0.08, and 0.16 respectively.
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masks were defined by a voxelwise sample mean of GM, WM and CSF
tissue maps exceeding an absolute threshold of 0.1, 0.4, and 0.2
respectively.

All mixed-effectsmodeling stepswere performed on 1.5mm resolu-
tion images of ADNI subsamples using the above steps. The resulting im-
ages are assumed to reflect age-related effects, as well as healthy and
pathological individual variability in terms of fine-grained maps of
local gray matter (GMV), white matter (WMV) and cerebrospinal fluid
volume (CSFV) content.
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Computation time
Mass-univariate EM for Bayesian mixed-effects model inversion is

computationally expensive. Single voxel computation time was found
to depend on number of subjects, scans, groups, polynomial model de-
gree and number of covariates. Subgroup models using linear trajecto-
ries (N = 60, M = 300, G = 1, D = 1, R = 1) took 4 h for local
estimation in whole brain gray matter regions (0.05 s per voxel) on a
desktop machine (6.5 CentOS Linux, Intel Xeon CPU, 3.20GHz, 12GB,
Matlab R2013b). Using large sample data like ADNI with many
hyperparameters, a single voxel inversion can take up to 30 s. However,
mass-univariate estimation lends itself nicely to parallel computation.
Please cite this article as: Ziegler, G., et al., Estimating anatomical trajector
dx.doi.org/10.1016/j.neuroimage.2015.06.094
Using cluster computing facilities most model estimations were
achieved within 1–3 days.

Normal aging and comparison of clinical groups trajectories
First, we characterized trajectories in normal aging subjects. Fig. 6

shows PPMs of linear (i.e. slope) coefficients of the ensemble average
trajectory in our normal aging group. In particular the PPMs indicated
widespread decline of local volumes in GM and WM regions and sub-
stantial growth of CSF volume in the ventricles and sulcal regions.
Using this sensitive longitudinal design, almost all regions were found
to be affected by aging. Although the presented framework exploits lin-
ear mixed-effects models, one can explore nonlinear age-related effects
by inclusion of quadratic terms andmodel. Assuming a quadratic model
for every subject, we observe accelerated volume loss within many re-
gions from all lobes. Most prominent accelerations were found in tem-
poral GM and even more evident in the expansion of the lateral
ventricle.

To further validate ourmodel,we next compared local structural tra-
jectories in clinical groups of the ADNI sample. Fig. 7 shows the PPMs of
slope comparisons of the sMCI, pMCI and AD groups against the slope in
the group of normal aging subjects (NO). The comparisons of clinical
and normal aging groups clearly indicate a region specific, temporo-
ies with Bayesianmixed-effects modeling, NeuroImage (2015), http://
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Fig. 5. Comparison of Bayesianmixed-effects model with summary statistics for detection of changes on the group level, i.e. finding a negative slope for different ground truth effect sizes.
Posterior probabilities (upper part) and p-values from summary statistics (lower part) are shown under variations of first (left) and second (middle) level error variances and design types
(right). Summary statistics heremeans using independent linearmodels for every subject and calculating p-values from a one-sample t-test of obtained slope parameters. Realizations of
ensembles of 64 subjects with 5 annual scans per person. Thesewere sampled under balanced/unbalanceddesigns and subsequentlymodeled. Balanced heremeans that every subject has
the same average age atmeasurementswhile unbalancedmeans a uniformdistribution of each subject's average age across thewhole study interval [20, 80]. All probabilities are shown as
a function of (from left to right increasing) ground truth effect size, i.e. increasing steepness of decline. Results are obtained from averaging across 200 realization of ensembles for each
parameter configuration. Color shading indicates the manipulation of the variable of interest, i.e. error sizes (left and middle) and balanced design property (right). Here, p-values and
posterior probabilities show similar dependence on effect sizes in balanced designs (see black curves right plot). Posterior probabilities show a gain of sensitivity when designs become
unbalanced (see ochre curves right plot) while summary statistics perform similar for both designs. Probabilities in left and middle plot are average across multiple design types.
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parietal pattern of increased rates of atrophy in GM and WM volumes.
This pattern is complemented by an increased rate of ventricle expan-
sion in the disease groups. Groups that develop a full AD pathology
(pMCI and AD) also show more negative rates of atrophy in frontal,
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Fig. 6. Posterior probability maps of group trajectories in 140 normal aging subjects (denoted a
nents in a second ordermodel withD=2. The PPM enables regionally specific inferences about
the posterior probability p(cTθ N 0|y) exceeds the probability 0.95 (with contrast vector c definin
one (or minus one) for the corresponding linear (top row) and quadratic (bottom row) sec
quadratic) b 0 denotes tests for linear (quadratic) components being smaller than zero. Color
White or gray colored regions have posterior probabilities b 0.95. The sign of the contrast is ada
PPMs of GM, WM and CSF tissue segments respectively.

Please cite this article as: Ziegler, G., et al., Estimating anatomical trajector
dx.doi.org/10.1016/j.neuroimage.2015.06.094
E
Doccipital and cerebellar regions. Additionally to the more widespread

spatial extent of the pathology in pMCI and AD compared to sMCI
groups, the average rate of volume loss in terms of slope differences in-
dicates a faster decline of regional temporo-parietal volume.
s NO). Posterior probability maps (PPMs) are shown for the slopes and quadratic compo-
parameter contrasts cTθ and are shown after thresholding: showing only voxels for which
g the effect of interest). For this particular comparison, the contrasts c contained an entry of
ond level normal aging group parameters and zero elsewhere. That means slope (and
bar scaling denotes parameter contrast values cTθ, i.e. the slope or quadratic coefficients.
pted to detect either decline in GM or growth in CSF volumes respectively. Columns depict

ies with Bayesianmixed-effects modeling, NeuroImage (2015), http://
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Fig. 7. PPMs of clinical group trajectories compared to normal aging. PPMs are shown for differences of trajectory slopes in groups of 108 sMCI (top row), 92 pMCI (middle row) and 95AD
(bottom row) subjects compared to slopes in the NO group with 140 subjects. As with directed comparisons using one-sided t-tests in GLM, here we only depict the contrast for steeper
slopes in the clinical groups. This contrast addresses the hypothesis that AD and MCI pathology produces faster volume loss for GM and WM volumes and faster volume increase in CSF
volumes compared to normal aging. Columns depict PPMs of GM,WM and CSF tissue maps respectively. Colors bars denote parameter contrast values cTθ, i.e. slope in NOminus slope in
sMCI, pMCI and AD respectively. Because CSF shows growth, the sign of the contrast was reversed.
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RThis conversion effect can be seen by evaluation of slope differences

in pMCI and sMCI groups (Fig. 8). According to our sample, the conver-
sion from MCI to AD at some point during the study also seems to be
reflected in differential rates of local brain volume changes. Due to lim-
itations of space, we restrict our presentation of comparisons to second
level slope parameters. It is worth mentioning that the model supports
U
N
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Fig. 8. PPMs of stableMCI compared to progressiveMCI group trajectories. PPMs are shown for
we focus on the contrast for steeper slopes in pMCI compared to sMCI. Columns depict PPMs of
contrast values cTθ, i.e. slope in sMCI minus slope in pMCI. Because CSF shows growth, the sign

Please cite this article as: Ziegler, G., et al., Estimating anatomical trajector
dx.doi.org/10.1016/j.neuroimage.2015.06.094
similar comparisons for the trajectory intercepts, which mainly reflect
existing differences before the study, as opposed to ongoing changes
of brain structure during the study. Three examples of individual struc-
tural trajectories are shown in Fig. (9).

Examples of subject level and group level trajectories in NO, sMCI,
and pMCI groups are displayed in Fig. 10. As expected for a hierarchical
differences of trajectory slopes in a group of 108 sMCI compared to 92 pMCI subjects. Here,
gray matter, white matter and CSF tissuemaps respectively. Colors bars denote parameter
of the contrast was reversed.

ies with Bayesianmixed-effects modeling, NeuroImage (2015), http://
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Fig. 9. Individual structural trajectories using a linear model. Three random subjects (1 NO, 1 sMCI, 1 pMCI) were chosen and we demonstrate local trajectories in three example voxels
from the anterior lateral temporal lobe GM (upper row), temporal lobeWM(middle row), and lateral ventricle (bottom row). The observed data is shown in blue, the individual predicted
trajectory g(t, θi(1)) is shown in green including the±2 standard deviation of its posterior uncertainty (gray area) and the contour plot of the uncertainty pdf outside the±2 std area. The
uncertainty is mainly driven by the parametrization around the center of mass of age rt in the whole group.
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model, the posterior trajectory precision (or inverse variance) is found
to be much smaller for the group level compared to the individual
level. Ensemble trajectory estimates in groups are more precise and
inference therefore more sensitive for detecting developmental
differences.
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Fig. 10. Individual and group level structural trajectories using a linear model. Three single vox
temporal lobe GM(upper row), temporal lobeWM(middle row), and lateral ventricle (bottom
shown in green. The group average trajectories are shown in red attached with the ±2 standar
vidual trajectories (without uncertainty) are shown.

Please cite this article as: Ziegler, G., et al., Estimating anatomical trajector
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EAnalysis of individual differences of trajectories
In contrast to typical cross-sectional MRI studies of brain develop-

ment and aging, individual trajectory models, based on repeated mea-
sures MRI, also afford analysis of within-subject change variability. A
strength of our approach is that we can explore effects of risk or
els (same as in 7) were chosen to demonstrate our local trajectory model: anterior lateral
row). The observed data is shown in blue, the individual predicted trajectories g(t, θi(1)) are
d deviation of its posterior uncertainty (gray area). To improve visualization, only 30 indi-

ies with Bayesianmixed-effects modeling, NeuroImage (2015), http://
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protective factors on ongoing structural decline. This could involve life-
style parameters, genetic profiles, cognitive test scores etc. or any stable
between-subject variable of interest.

To demonstrate the potential of this method, we focused on
explaining variability of local rates of atrophy based on the E4 allele of
the Apolipoprotein gene (further denoted as ApoE4), an established
risk factor for increased lifetime prevalence of AD. We define this
score as the number of ApoE4 allele of an individual, which can have ei-
ther zero, one or two copies. This risk score was entered as a predictor Z
(in Eq. (6)) for slope variability. Fig. 11 shows the PPMs for voxels show-
ing steeper decline of GMV (or growth of CSFV) with higher ApoE4 risk
in the group of NO and sMCI.

We observed localized effects indicating faster volume loss in anteri-
or medial temporal lobe regions and lateral ventricle growth in normal
subjects with higher ApoE4 risk scores. More widespread effects were
found in temporo-parieto-frontal GM regions of stable MCI subjects. In
addition to the above between groups differences of change, these re-
sults demonstrate the sensitivity of ourmethod for analysis of addition-
al within-group heterogeneity of change.
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Comparing models of different degrees
Here we demonstrate examples for evidence-based model compar-

ison within our generative trajectory modeling framework. There are
many questions in the context of longitudinalMRI studies that can be el-
egantly framed in terms of model comparisons.

Firstly, one might aim at inference about different parametrizations,
particularly the choice of a certain polynomial model degree of random
and fixed effects of the trajectory models, i.e. the choice of [D,Df]. This is
crucial in light of evidence for nonlinearities in brain maturation (Shaw
et al., 2008), accelerated gray matter loss in healthy aging (Fjell et al.,
2013) and other nonlinearities in clinical groups (Leung et al., 2013).
U
N
C
O

R
R
E
C
T

Fig. 11. Parametric analysis of trajectory slope variability using a ApoE4 risk score in NO (top r
ApoE4 allele, 0, 1, or 2 respectively. PPMswith contrasts for a steeper local GMV decline (left co
parameter contrast values Cθ, with C containing a (minus) one for the ApoE4 regressor and ze
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Secondly, one might also be interested in comparing generative
models using different sets of covariates, e.g. by including informative
predictors for individual differences of change. Fig. 12 gives an example
of log Bayes factors for linear and second order models obtained from
independent EM optimization for each model. Bayes factors in our nor-
mal aging group clearly favor a linear random effects model over alter-
native models in most gray matter regions. Introducing age as a fixed
effect increasedmodel evidence. Model evidence was further improved
by allowing for random slope variability inmost graymatter regions, es-
pecially in medial temporal lobe regions. According to the same com-
parison, individual differences among structural brain changes are
most pronounced in the lateral ventricle regions.

Interestingly, parts of the ventricles exhibited further increased
model evidence by additional inclusion of random quadratic growth ef-
fects. This was found to be emphasized for the lateral ventricle which in
parts borders on the hippocampus. We further evaluated models with
all combinations of fixed and random effects up to second order.

The overall winningmodel in most gray matter includes random ef-
fects for intercepts and slopes. Exceptionswere found in right temporo-
parietal and postcentral gray matter regions, and in left inferior frontal
gyrus. Here and within parts of the lateral ventricle a quadratic random
effects model was more sufficiently for capturing individual differences
of change in normal aging.

Permutation testing for empirical false positive rate
Finally, to ensure our voxelwise estimation scheme does not pro-

duce spurious or misleading conclusions we repeated a similar analysis
under random permutations.We focussed on a subsample of 60 normal
subjectswith 300MRI scans. Similar effectmaps as shown for thewhole
group of normals were obtained. Then The data was randomly permut-
ed 100 times and we reran the Bayesian model inversion outlined
above. Posterior probability maps were calculated exactly as outlined
ow) and sMCI (bottom row) subjects. The applied ApoE4 risk score counts the number of
lumn) and CSFV growth (right column) with increased risk are shown. Colors bars denote
ro elsewhere.
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Fig. 12. Bayesianmodel comparison about polynomial degree within the normal aging group with N= 140. Top row shows log Bayes factors comparing a model with random intercepts
and random slopes to a model with only random intercepts (D= 1 vs. D= 0). Middle row shows the comparison of a random intercept and random slope model to a random intercept
model with fixed effects slope (D = 1 vs. D = 0, Df = 1). Bottom row shows log Bayes factors comparing a full second order random effects model compared to a linear random effects
model with random slopes and intercepts (D=2 vs. D=2). Columns showmodel comparisons separate for graymatter, white matter and CSF maps. Higher mixed-effect degrees were
estimated but are not shown because of lower model evidence and limitations of space.
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Rin the full ADNImodel.Wehoped to see that the number of voxels in the
ensuing PPMs (thresholded at 95%)was 5% of the search volume or less.
Themean false positive ratewas found to be 2.85%. The distribution of %
suprathreshold voxels over 100 presentations (with replacement) is
shown in Fig. 13 (right). More generally, no indication for increased
false positive rates was found for other probability thresholds as well
(see Fig. 13 left). 13 (left).
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Discussion

We have described, validated and applied a powerful framework for
analysis of brain morphometry in longitudinal MRI data using Bayesian
inference. The emphasis is on the analysis of individual differences of
brain changes in one or more samples and subsequent inference about
the contribution of subject specific covariates such as cognitive abilities,
behavior, psychopathology, health, and lifestyle factors.

In particular, the approach exploits algorithms forwithin- (Ashburner
and Ridgway, 2013) and between- (Ashburner and Friston, 2011) subject
diffeomorphic registration in order to generate non-linearly registered
tissue volume images of subjects and scans using Jacobian determinants
of deformations. The resulting (modulated) tissue segment maps are
subjected to mass-univariate generative mixed-effects modeling.
Please cite this article as: Ziegler, G., et al., Estimating anatomical trajector
dx.doi.org/10.1016/j.neuroimage.2015.06.094
EM is used for Bayesian inversion of the generative model by
estimating variance components and empirical Gaussian priors on indi-
vidual differences of change. The model is hierarchical and provides
estimates of local individual change trajectories over the whole study
period, even for variable numbers of scans per subject or for less bal-
anced designs.

Our approach is similar to recently proposed iterative schemes for
surface-based cortical thickness analysis in longitudinal MRI data
(Bernal-Rusiel et al., 2012, 2013) and fMRI group analysis (Chen et al.,
2013). We also briefly compared our EM algorithm to the openly
available mass-univariate mixed-effects algorithms from Freesurfer
(https://surfer.nmr.mgh.harvard.edu/fswiki/LinearMixedEffectsModels)
(Bernal-Rusiel et al., 2012) (not shown in results) using synthetic longitu-
dinal data (from Validation using simulated structural trajectories sec-
tion) with linear models and balanced data with Gaussian errors. We
found convergence to the same group trajectory parameter estimates
suggesting the validity of the applied iterative mixed-model schemes.
However, a detailed evaluation of multiple approaches in multiple
settings (a) including non-Gaussian error distributions (b) with both
balanced and unbalanced designs (c) with linear and non-linear ground
truth trajectories, is left for future work.

In contrast to the abovemethods, ourmodel focuses on Bayesian in-
ference on fixed- and random-effect parameters for individual and
ies with Bayesianmixed-effects modeling, NeuroImage (2015), http://
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Fig. 13. Empirical false positive rate (red) obtained frompermutation testing.We used 100
random permutations of a subset of 60 normal subjects with the original design and sub-
sequently inverting the model including 300000 gray matter voxels. Posterior probabili-
ties were threshold using various thresholds (e.g. 0.95) and false positive rate was
estimated as the number of above threshold voxels per volume averaged over the all per-
mutations. The histogram of obtained false positive rate is shown right.
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group trajectories, as well as Bayesian model selection. Our focus on
Bayesian inference and random effects models overcomes some limita-
tions of classical inference (for discussion see Friston et al., 2002a) and
the proposed evidence based comparison of models allows one to nav-
igate a rich model space.

Other Bayesian approaches for longitudinalMRI have been proposed
with emphasis on either classification, evaluation of treatment effects,
and dynamical networks (Elliott et al., 2010; Schmid et al., 2009; Chen
et al., 2012). Our approach complements these methods by providing
single subject trajectories and a model of their heterogeneity in aging
samples. Notably, our iterative EM based random effects estimation
also substantially differs from non-iterative marginal modeling using
generalized estimation equations (for introduction see eg. Fitzmaurice
et al., 2008)with recent application to longitudinal data using sandwich
estimators (Guillaume et al., 2014) and adaptive multiscale methods
(Skup et al., 2012).

We extensively validated our method using ground truth com-
parison with simulated longitudinal data. The model consistently
reproduced veridical estimates across study designs with different
characteristics. A design with fewer scans per subject was found to
substantially reduce parameter accuracy, especially for the rates of
change (or slopes). This result favors less sparse designs for efficient
analysis of individual differences of change. Less balanced designs
were also found to increase deviations from ground truthwith some ex-
ceptions, especially for second level slope estimates and higher noise
levels.

Notably, by construction, the design variability is part of the
likelihoodmodel and these effects are fully accounted for in the posteri-
or parameter uncertainty (or credible intervals). Thus, using PPMs is
expected to provide valid inference about individual, group and covari-
ate parameters across a wide variety of study designs. Moreover, using
non-Gaussian distributions, we have revealed some evidence for the
robustness of themethod under potential violations of the normality as-
sumption.Mean parameter estimates were found to be unaffected from
non-Gaussianity, hyperparameter were rather mildly affected by skew-
ness and more biased by very large values of kurtosis. Comparison to
valid summary statistics showed that posterior probabilities perform
similarly in balanced designs and are likely to improve inference in
typical unbalanced observational designs.
Please cite this article as: Ziegler, G., et al., Estimating anatomical trajector
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We further validated our approach using real MRI data from a large
subsample of the available ADNI dataset. The spatio-temporal pattern of
structural trajectories in subsamples for Normal Aging, stable MCI, pro-
gressive MCI and ADwas found to be consistent with existing neuroim-
aging evidence (Driscoll et al., 2009; Misra et al., 2009; Anderson et al.,
2012; Barnes et al., 2008; Vemuri et al., 2010b). Applying linear models
of trajectories, PPMs of clinical groups indicated substantially increased
rates of local brain atrophy and ventricle growth. The spatial pattern
clearly emphasizes temporo-parietal regions in stable MCIs compared
to normal aging, while higher rates of atrophy in pMCI and AD were
also found in frontal gray matter regions. The sensitivity of this longitu-
dinal mixed-modeling method was further demonstrated by observing
differential rates of atrophy in progressiveMCI compared to stable MCI.
In line with recent evidence in healthy aging (Fjell et al., 2012), we also
found additional accelerated decline (i.e. reverse U-shaped trajectories)
of cortical and subcortical gray matter regions and accelerated growth
(i.e. U-shaped trajectories) of lateral ventricle using quadratic models.
As suggested by the study of (Holland et al., 2012), different patterns
of change of rates of atrophy might apply to pathological compared to
healthy aging groups.Wewill focus on the volumedynamics during dis-
ease progression in a separate paper.

Using ADNI data we also aimed to explore the strength of mixed-
effects models to identify the effects of covariates of interest. For that
particular purpose, we chose to analyze the effects of a genetic risk
score based on the number of ApoE4 alleles, i.e. 0, 1, or 2, a well
known and established risk factor for development of AD and corre-
sponding signs of atrophy in MRI (Vemuri et al., 2010a; Risacher et al.,
2010; Morgen et al., 2013; Taylor et al., 2014; Tosun et al., 2010;
Moffat et al., 2000; Hostage et al., 2014). Although one could have alter-
natively used group comparisons based on number of ApoE4 alleles, we
preferred to include this risk score as an example for an additional pre-
dictor of within group variability around the mean changes in normal
aging and stable MCI groups.

The PPMs of ApoE4 risk's second level contrast indicated effects on
variability of ventricle growth in normal aging and widespread effects
on gray matter rate of atrophy in stable MCI. This emphasizes the risk
score as an important contributing factor to local structural aging. Sim-
ilarly, this technique could be used for parametric analysis of other risk
scores or continuous behavioral variables thought to be involved in de-
velopment and aging.

Candidate hypotheses about brain development and aging can be
framed in terms of specific trajectory models. These hypotheses might
involve (A) the inclusion of certain degrees of fixed or random effects
of time, nonlinearities etc. and (B) explicitly modeling brain–behavior
relationships by inclusion of behavioral covariates. Scientists can then
use Bayesian inference to update their beliefs about the respective hy-
potheses, in light of new (neuroimaging) data.

Bayesian model selection has been introduced to identify the most
likely of a set of hypotheses e.g. using log model evidence ratios or
Bayes factors (Kass and Raftery, 1995). Evidence comparisons of nested
models are analogous to the F-tests commonly used in Statistical Para-
metric Mapping (SPM) (Friston et al., 1995). However, a major advan-
tage of applying Bayesian instead of frequentist inference to trajectory
models is that evidence based comparison extends to non-nested
models. This is useful because different combinations of random and
fixed effects or covariates are not necessarily nested. For instance first
order random effects models cannot be reduced to a zero order random
effects model with first order fixed effects by setting some variables to
zero.

Voxelwise model evidence maps were previously introduced for ef-
ficient group level inference in fMRI using random effects (Rosa et al.,
2010). Ourmodels extend this idea tomixed-effects models for longitu-
dinal MRI. Using a normal aging sample, we here demonstrate that
Bayesianmodel selection can be also used for particular choices of com-
binations of random and fixed effects in normal aging-related structural
changes. We explored a model space with all combinations of fixed and
ies with Bayesianmixed-effects modeling, NeuroImage (2015), http://
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random effects up to order three. Pairwise comparisons of models were
illustrated using Bayes factor maps.

The model with the most evidence was found to vary over regions
and tissue classes. For most gray matter regions a random intercept
and slope model was found to be most likely, with exceptions of a left
prefrontal and a postcentral region, and regions adjacent to the ventri-
cles. These were found to show second order random effects with indi-
vidual differences of accelerations.

The second order random effects model was also more likely for the
lateral ventricle adjacent to the hippocampus and its posterior parts. Al-
though we only found accelerated lateral ventricle volume increases,
this is in linewith recent observations of late accelerated aging in hippo-
campal gray matter in normal aging (Ziegler et al., 2012b; Fjell et al.,
2012). Disregarding potential segmentation difficulties of hippocampal
gray matter, one also might expect that the spatial regularization of the
within-subject deformations is slightly biased towards the adjacent
ventricle growth. This might have reduced the sensitivity for detection
of second order individual decline differences in hippocampal regions.

At the same time, our results extend existing fixed effects findings.
Similar to a recent study using ROIs from manual volumetry (Raz
et al., 2010), mixed-effects models go beyond testing for (nonlinear)
fixed effects of aging because they explicitly model heterogeneity of
structural changes.

In contrast to findings of Raz et al. (2010), where some regions did
exhibit age-related change, but without any sign of individual differ-
ences, here Bayesian model selection showed the highest model
evidence for linear or even quadratic random effects. In fact, in our
voxelwise whole brain search we did not observe any brain region in
all three analyzed tissue classes that exhibited most evidence for a
model with random intercepts and linear fixed effects, i.e. showing uni-
form aging across subjects. These deviations of semi-automated and
manual longitudinal volumetry might be further addressed.

Our ADNI sample findings suggest substantial heterogeneity among
local structural brain changes in normal aging subjectswithout (or prior
to) signs of dementia. Similar questions might be addressed about the
heterogeneity of trajectories in disease states and during treatment
processes.

It is alsoworthmentioning that the optimal degree of randomeffects
(from evidence based comparison) specifies the dimensionality of indi-
vidual differences in aging brain structure. This degree determines the
complexity of a sufficient individual model of change rather than only
quantifying the smoothness of the temporal dynamic on the group
level. This idea nicely connects to themultivariate perspective on cogni-
tive ability differences (see e.g. Ziegler et al., 2013).

Future studies might focus on Bayesian model selection in larger
random effectsmodel spaces using additional sets of genetic, physiolog-
ical, and behavioral predictors. After sufficiently capturing the complex-
ity of individual differences of aging-related brain changes as random
effects (or hidden variables), one might aim to explain latent variables
based on other observations, such as behavior, genes, and other MRI
modalities.

Herewe applied uninformative priors in the presented results. How-
ever, the proposed framework enables flexible specification of prior
structures at the top-level of parameters, which can be used to imple-
ment prior knowledge about the process of interest, e.g. in terms of ex-
pected growth or decline rates in development or aging. The framework
(and the corresponding implementation in SPM)will provide the choice
of top-level priors being either uninformative (i.e. flat) or informative.
Uninformative priors can be used for exploratory research similar to
other standard mixed-effects models, while otherwise, informative
priors can be chosen to be either fixed (for fully Bayesian inference) or
estimated from the data using empirical Bayes. In particular, further ex-
tensions aim to include examples of empirical priors, e.g. global shrink-
age or atlas-based regional shrinkage priors which regularize all
voxelwise trajectory estimates after estimating a top level prior on the
whole brain or regional ROI level respectively. The use of empirical
Please cite this article as: Ziegler, G., et al., Estimating anatomical trajector
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priors in context of neuroimaging data was recently motivated by ma-
chine learning applications showing the potential for probabilistic sin-
gle case inference given the ‘prior-knowledge’ of a large MRI database
(Ziegler et al., 2014). Although we did not observe any evidence for in-
creased rates of false positives during permutation testing, it is worth
mentioning that empirical priors have also been discussed in the con-
text of control of false discovery rate (FDR) (Schwartzman et al., 2009).

We finally like to mention some limitations and possible extensions
of this work. Firstly, Bayesian model reduction has been recently pro-
posed for efficient inference on general linear models and dynamical
systems models of neuroimaging data (Friston and Penny, 2011;
Penny and Ridgway, 2013). Using model reduction, posterior estimates
andmodel evidencesmight be accurately approximated for largemodel
spaces using only the optimized full model (instead of inverting every
reduced model). Future studies might therefore work on efficient
approximation techniques to improve the efficiency of Bayesian model
comparison across wider spaces of mixed-effects models.

Secondly, our presentedmodel applied group specific priors with in-
dependent estimation of multiple ensembles of trajectories. However,
the hierarchicalmodeling framework naturally extends to higher levels.
These could be extended to model individual differences of changes in
multiple clinical groups of a joint population, the inclusion of multi-
center scanner levels, and the variance across birth cohorts.

Thirdly, the mass-univariate Bayesian model inversion is compu-
tationally very expensive and does not account for spatial correla-
tions among the voxels. As in recent work, the model might be
extended to combine priors on heterogeneity and image space
using full spatio-temporal-models or adaptive smoothing tech-
niques (see e.g. Bernal-Rusiel et al., 2013; Skup et al., 2012).

Finally, recently developed techniques in quantitative imaging pro-
vide biologically relevant properties, e.g. about brain myelination and
iron levels (Draganski et al., 2011; Callaghan et al., 2014; Lambert
et al., 2013). Following quantitative biomarkers in healthy and patho-
logical development might be expected to provide biologically mean-
ingful models of developmental heterogeneity while reducing the
potential influence of anatomical shape variability.
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