
Bayesian Methods
in Brain Imaging

Will Penny

Bayesian Inference
Bayes rule

Medical Decision Making

Optimal Data Fusion

Linear Models

fMRI analysis
Data smoothing

Multiple effects

Contrasts

Bayesian Linear
Models

Bayesian fMRI
Spatial Prior

Spatio-Temporal Model

Synthetic data

MEG Source
Reconstruction

Empirical Bayes
Model Evidence

Isotropic Covariances

Linear Covariances

Gradient Ascent

MEG Source
Reconstruction

References

Bayesian Methods in Brain Imaging

Will Penny

First Technical Course, European Centre for Soft
Computing, Mieres, Spain.

4th July 2011



Bayesian Methods
in Brain Imaging

Will Penny

Bayesian Inference
Bayes rule

Medical Decision Making

Optimal Data Fusion

Linear Models

fMRI analysis
Data smoothing

Multiple effects

Contrasts

Bayesian Linear
Models

Bayesian fMRI
Spatial Prior

Spatio-Temporal Model

Synthetic data

MEG Source
Reconstruction

Empirical Bayes
Model Evidence

Isotropic Covariances

Linear Covariances

Gradient Ascent

MEG Source
Reconstruction

References

Bayes rule

Given probabilities
p(A), p(B), and the
joint probability
p(A,B), we can write
the conditional
probabilities

p(B|A) =
p(A,B)

p(A)

p(A|B) =
p(A,B)

p(B)

Eliminating p(A,B) gives Bayes rule

p(B|A) = p(A|B)p(B)

p(A)
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Bayes rule
In the context of model fitting, if we have data y and
model parameters w , the terms in Bayes rule

p(w |y) = p(y |w)p(w)

p(y)

are referred to as the prior, p(w), the likelihood, p(y |w),
and the posterior, p(w |y).

The probability p(y) is a normalisation term and can be
found by marginalisation. For continuously valued
parameters

p(y) =
∫

p(y |w)p(w)dw

or for discrete parameters

p(y) =
∑

i

p(y |wi)p(wi)

p(y) is referred to as the marginal likelihood or model
evidence.
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Medical Decision Making
Johnson et al (2001) consider Bayesian inference in for
Magnetic Resonance Angiography (MRA). An Aneurysm is a
localized, blood-filled balloon-like bulge in the wall of a blood
vessel. They commonly occur in arteries at the base of the
brain. There are two tests:

(1) MRA can miss sizable
Intracranial Aneurysms (IA)’s but
is non-invasive (top).

(2) Intra-Arterial Digital
Subtraction Angiography (DSA)
(bottom) is the gold standard
method for detecting IA but is an
invasive procedure requiring
local injection of a contrast
agent via a tube inserted into
the relevant artery.
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Medical Decision Making

Given patient 1’s symptoms (oculomotor palsy), the prior
probability of IA (prior to MRA) is believed to be 90%.

For IAs bigger than 6mm MRA has a sensitivity and
specificity of 95% and 92%.

What then is the probability of IA given a negative MRA
test result ?
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Medical Decision Making

The probability of IA given a negative test can be found
from Bayes rule

p(IA = 1|MRA = 0) =
p(MRA = 0|IA = 1)p(IA = 1)

p(MRA = 0|IA = 1)p(IA = 1) + p(MRA = 0|IA = 0)p(IA = 0)

where p(IA = 1) is the probability of IA prior to the MRA
test. MRA test sensitivity and specificity are

p(MRA = 1|IA = 1)
p(MRA = 0|IA = 0)

We have p(MRA = 0|IA = 1) = 1− p(MRA = 1|IA = 1)
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Medical Decision Making
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Medical Decision Making

A negative MRA cannot therefore be used to exclude a
diagnosis of IA. In both reported cases IA was initially
excluded, until other symptoms developed or other tests
also proved negative.
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Optimal Data Fusion

For the prior (blue) we have m0 = 20, λ0 = 1 and for the
likelihood (red) mD = 25 and λD = 3.

Precision, λ, is inverse variance.
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Bayes rule for Gaussians

For a Gaussian prior with mean m0 and precision λ0, and
a Gaussian likelihood with mean mD and precision λD the
posterior is Gaussian with

λ = λ0 + λD

m =
λ0

λ
m0 +

λD

λ
mD

So, (1) precisions add and (2) the posterior mean is the
sum of the prior and data means, but each weighted by
their relative precision.
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Bayes rule for Gaussians
For the prior (blue) m0 = 20, λ0 = 1 and the likelihood
(red) mD = 25 and λD = 3, the posterior (magenta)
shows the posterior distribution with m = 23.75 and
λ = 4.

The posterior is closer to the likelihood because the
likelihood has higher precision.
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General Linear Model

The General Linear Model (GLM) is given by

y = Xw + e

where y are data, X is a design matrix, and e are zero
mean Gaussian errors with covariance V . The above
equation implicitly defines the likelihood function

p(y |w) = N(y ;Xw ,Cy )

where the Normal density is given by

N(x ;µ,C) =
1

(2π)N/2|C|1/2 exp
(
−1

2
(x − µ)T C−1(x − µ)

)
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Maximum Likelihood

If we know Cy then we can estimate w by maximising the
likelihood or equivalently the log-likelihood

L = −N
2

log 2π − 1
2

log |Cy | −
1
2
(y − Xw)T C−1

y (y − Xw)

We can compute the gradient with help from the Matrix
Reference Manual

dL
dw

= X T C−1
y y − X T C−1

y Xw

to zero. This leads to the solution

ŵML = (X T C−1
y X )−1X T C−1

y y

This is the Maximum Likelihood (ML) solution.
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fMRI time series analysis
In software such as SPM or FSL brain mapping is
implemented with the following method. At the i th voxel
(volume element) we have time series yi
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fMRI time series analysis
In a standard analysis linear models are fitted separately
at each voxel

yi = Xwi + ei

Cy = Cov(ei) is the error covariance and then the
regression coefficients are computed using Maximum
Likelihood (ML) estimation

ŵi = (X T C−1
y X )−1X T C−1

y yi

The fitted responses are then ŷi = Xŵi
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Statistical Parametric Maps

We can then test if effects are significantly non-zero.

The uncertainty in the ML estimates is given by

S = (X T C−1
y X )−1

A t-score is then given by

ti = ŵi(k)/
√

S(k , k)
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Data smoothing
The standard approach in SPM and FSL smooths the data, y ,
before fitting time series models at each voxel. This increases
the SNR.

Top 3 views show original fMRI images, bottom 3 views show
data smoothed by a Gaussian kernel of width 6mm.
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Multiple effects
Generally, we are looking to test for multiple effects at
each point in the brain.

Henson et al. (2002) was looking to find which brain
regions show different responses for repeated and
familiar stimuli in the context of face processing.
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Multiple effects

Generally, we are looking to test for multiple effects at
each point in the brain.
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Multiple effects

Generally, we are looking to test for multiple effects at
each point in the brain. At voxel i

yi = Xwi + ei

where eg. X is as below and wi is a 4-element vector.
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Contrasts
Contrast vectors c can then be used to test for specific
effects

µc = cT ŵi

For example, to look at the average response to faces
(regardless of type) c = [1/4,1/4,1/4,1/4].

The uncertainty in the effect is then

σ2
c = cT Sc

and a t-score is then given by t = µc/σc
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Contrasts
To look at the effect of repetition
c = [1/2,−1/2,1/2,−1/2].
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Bayesian GLM

A Bayesian GLM is defined as

y = Xw + e1

w = µw + e2

where the errors are zero mean Gaussian with
covariances Cov[e1] = Cy and Cov[e2] = Cw .

p(y |w) = N(y ;Xw ,Cy )

p(w) = N(w ;µw ,Cw )
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GLM posterior

The posterior density is (Bishop, 2006)

p(w |y) = N(w ;mw ,Sw )

S−1
w = X T C−1

y X + C−1
w

mw = Sw (X T C−1
y y + C−1

w µw )

The posterior precision is the sum of the prior precision
and the data precision.

The posterior mean is a relative precision weighted
combination of the data mean and the prior mean.
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Bayesian GLM with two parameters

The prior has mean µw = [0,0]T (cross) and precision
C−1

w = diag([1,1]).
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Bayesian GLM with two parameters

The likelihood has mean X T y = [3,2]T (circle) and precision
(X T C−1

y X )−1 = diag([10,1]).
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Bayesian GLM with two parameters

The posterior has mean m = [2.73,1]T (cross) and precision
S−1

w = diag([11,2]).
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Bayesian GLM with two parameters

In this example, the measurements are more informative about
w1 than w2. This is reflected in the posterior distribution.
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Shrinkage Prior

If µw = 0 we have a shrinkage prior.
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Tennis
From Wolpert and Ghahramani (2006)

p(w |y) = N(mw ,Sw )

S−1
w = X T C−1

y X + C−1
w

mw = Sw (X T C−1
y y + C−1

w µw )

There is evidence that humans combine information in
this optimal way (Doya et al 2006).
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Time series models
Usually, we wish to test for multiple experimental effects.
At the i th spatial position

yi = Xwi + ei

where eg X is a T × K design matrix as below and wi is a
K = 4 element vector and yi is a T = 351 element time
series
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Time series model for images
We can write the model over all spatial positions i = 1..V
as

Y = XW + E

where Y is an T × V fMRI data matrix, X is a V × K
design matrix, W is a K × V matrix of regression
coefficients, and E is an T × V matrix of errors.

The i th column of Y is the time series at the i th voxel.
The i th column of W , wi , is the vector of regression
coefficients at the i th voxel.

The k th row of W , wk , is a V -element vector. It contains
the image of regression coefficients for the k th effect we
are testing for.
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Spatial Prior
We can define a spatial prior over each of the k = 1..K
regression coefficient images

p(wk |α) = N(wk ;0, αQw )

to capture our prior information that regression
coefficients will be similar at nearby voxels, where the
larger α produces smoother images.

The matrix Qw can be set to reflect different assumptions
abouth the types of smoothness.
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Laplacian Prior
If we define a spatial kernel S with elements

Then zk = Swk will be a vector of local discrepancies
between neighbouring voxels. The quantity

zT
k zk = wT

k ST Swk

is then the sum of squared discrepancies. A shrinkage
prior on zk , that is one that encourages minimal
discrepancy, is given by

p(wk |αk ) = N(wk ;0, αkQw )

where Q−1
w = ST S.
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Spatio-Temporal Model
We define a spatio-temporal model

p(Y ,W ) = p(Y |W )p(W |α)
where

p(W |α) =
K∏

k=1

p(wk |αk )

Different effects (eg first versus second presentation) can have
different smoothnesses. For full generative model see Penny et
al (2005).



Bayesian Methods
in Brain Imaging

Will Penny

Bayesian Inference
Bayes rule

Medical Decision Making

Optimal Data Fusion

Linear Models

fMRI analysis
Data smoothing

Multiple effects

Contrasts

Bayesian Linear
Models

Bayesian fMRI
Spatial Prior

Spatio-Temporal Model

Synthetic data

MEG Source
Reconstruction

Empirical Bayes
Model Evidence

Isotropic Covariances

Linear Covariances

Gradient Ascent

MEG Source
Reconstruction

References

Variational Bayes

Given fMRI data, the posterior distibution for the
spatio-temporal model is Gaussian but the posterior
covariance is of dimension VK × VK which is too large to
handle.

Instead we use an approximate posterior that factorises
over voxels

q(W |Y ) =
∏

i

q(wi |Y )

This approximate posterior can be fitted using the
Variational Bayes (VB) framework (Bishop 2006, Penny et
al. 2005).

The VB method can also be used to estimate the prior
precisions α. This is a special case of Empirical Bayes
(see MEG example later).
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Results
I (a) Structural image (MRI)
I (b) ML applied to smooth data Y
I (c) Bayesian inference with Global shrinkage prior

(Qw = I)
I (d) Bayesian inference with Laplacian prior (Qw = ST S)

.

For (c) a Gaussian smoothing kernel of 8mm FWHM was used.



Bayesian Methods
in Brain Imaging

Will Penny

Bayesian Inference
Bayes rule

Medical Decision Making

Optimal Data Fusion

Linear Models

fMRI analysis
Data smoothing

Multiple effects

Contrasts

Bayesian Linear
Models

Bayesian fMRI
Spatial Prior

Spatio-Temporal Model

Synthetic data

MEG Source
Reconstruction

Empirical Bayes
Model Evidence

Isotropic Covariances

Linear Covariances

Gradient Ascent

MEG Source
Reconstruction

References

Synthetic data

I (a) True activations

I (b) ML applied to smooth data

I (c) Bayesian inference with Global shrinkage prior
(Qw = I)

I (d) Bayesian inference with Laplacian prior (Qw = ST S)

.
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Receiver Operating Characteristic
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MEG Source Reconstruction

MEG Source Reconstruction is achieved through
inversion of the linear model

y = Xw + e

(d × 1) = (d × p)(p × 1) + (d × 1)

for MEG data, y with d sensors and p potential sources,
w , lying perpendicular to the cortical surface. The lead
field matrix is specified by X . For our example we have
d = 274 and p = 8192.

The above equation is for a single time point.
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Generative Models

Likelihood
p(y |w) = N(y ;Xw ,Cy )

Prior
p(w) = N(w ;0,Cw )

We let

Cy = λyQ1

Cw = λwQ2

For shrinkage priors Q2 = Ip, MAP estimation results in
the minimum norm method of source reconstruction. This
is implemented in SPM as the ‘IID’ option
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Smoothness Priors

For smoothness priors Q2 = KK T corresponding to the
operation of a Gaussian smoothing kernel, MAP
estimation results something similar to the Low
Resolution Tomography (LORETA) method.

This is implemented in SPM as the ‘COH’ option. Note,
these are not location priors.



Bayesian Methods
in Brain Imaging

Will Penny

Bayesian Inference
Bayes rule

Medical Decision Making

Optimal Data Fusion

Linear Models

fMRI analysis
Data smoothing

Multiple effects

Contrasts

Bayesian Linear
Models

Bayesian fMRI
Spatial Prior

Spatio-Temporal Model

Synthetic data

MEG Source
Reconstruction

Empirical Bayes
Model Evidence

Isotropic Covariances

Linear Covariances

Gradient Ascent

MEG Source
Reconstruction

References

Posterior Density

From earlier we have

p(w |y) = N(w ;mw ,Sw )

where

S−1
w = X T C−1

y X + C−1
w

mw = SwX T C−1
y y

However, Sw is p× p with p = 8192 so cannot be inverted
easily. But we can use the matrix inversion lemma, also
known as the Woodbury identity (Bishop, 2006)

(A + BCD)−1 = A−1 − A−1B(C−1 + DA−1B)−1DA−1

to ensure that only d × d matrices need inverting.
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Simulation

Two sinusoidal sources were placed in bilateral auditory
cortex and produced this MEG data (Barnes, 2010),
comprising d = 274 time series (butterfly plot)
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LORETA
We fix λy = 1. Here we set λw = 0.01.

This shows the posterior mean activity for the 500 dipoles
with the greatest power (over peristimulus time)
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LORETA

We fix λy = 1. Here we set λw = 0.1.
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LORETA

We fix λy = 1. Here we set λw = 1.
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Empirical Bayes
Hyperparameters, λ, can be estimated so as to maximise
the model evidence. This forms the basis of Empirical
Bayes.

The marginal likelihood or model evidence is given by

p(y |λ) =

∫
p(y ,w , λ)dw

=

∫
p(y |w , λ)p(w |λ)dw

The log model evidence is

L(λ) = log p(y |λ)

For linear models this can be derived as in Bishop (2006)
or as in my Maths for Brain Imaging notes.

In this formulation λ are not treated as random variables.
There is no prior on them.
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Empirical Bayes

We iterate between finding the parameters w and
hyperparameters λ. For linear Gaussian models this
corresponds to computing the posterior over w

S−1
w = X T C−1

y X + C−1
w

mw = Sw (X T C−1
y y + C−1

w µw )

and then setting λ to maximise the model evidence.

λ̂ = arg max
λ

L(λ)

These two steps are then iterated and can be thought of
as E and M steps in an EM optimisation algorithm.
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Model Evidence

The model evidence is composed of sum squared
precision weighted prediction errors and Occam factors

L(λ) = −1
2

eT
y C−1

y ey −
1
2

log |Cy | −
d
2

log 2π

− 1
2

eT
wC−1

w ew −
1
2

log
|Cw |
|Sw |

where λ is a vector of hyperparameters that parameterise
the covariances Cw = λwQw and Cy = λyQy . The
prediction errors are the difference between what is
expected and what is observed

ey = y − Xmw

ew = mw − µw
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Isotropic Covariances

For a Bayesian GLM

y = Xw + e1

w = µw + e2

with isotropic covariances (eg minimum norm source
reconstruction)

Cy = λy IN
Cw = λw Ip

and d data points and p parameters. The equations for
updating λ can be derived as shown in Chapter 10 of
Bishop (2005).
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Well-determined parameters
Define

γ =

p∑
j=1

αj

αj + λ̂w

where αj are eigenvalues of the data precision term
X T C−1

y X . If αj >> λ̂w for all j then γ = p. Parameters
have all been determined by the data. So γ is equivalent
to number of well-determined parameters.
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M-Step
Then

1
λ̂w

=
eT

w ew

γ

1
λ̂y

=
eT

y ey

d − γ

where the prediction errors are

ey = y − Xmw

ew = mw − µw

This effectively partitions the degrees of freedom in the
data into those for estimating the prior and the likelihood.

Setting λ to maximise the marginal likelihood produces
unbiased estimates of variances whereas ML estimation
produces biased estimates.
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Linear Covariances

For a Bayesian GLM

y = Xw + e1

w = µw + e2

with covariances

Cy =
∑

i

λiQi

Cw =
∑

i ′
λi ′Qi ′

where Q are known covariance basis functions. The
M-step is

λ̂ = arg max
λ

L(λ)
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Gradient Ascent

This maximisation is effected by first computing the
gradient and curvature of L(λ) at the current parameter
estimate, λold

jλ(i) =
dL(λ)
dλ(i)

Hλ(i , j) =
d2L(λ)

dλ(i)dλ(j)

where i and j index the i th and j th parameters, jλ is the
gradient vector and Hλ is the curvature matrix. The new
estimate is then given by

λnew = λold − H−1
λ jλ
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MEG Source Reconstruction

Hyperparameters set using Empirical Bayes.

The minimum norm method, also implemented in SPM as
the IID option.
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Smoothness Priors

Hyperparameters set using Empirical Bayes.

This is similar to the LORETA method, implemented in
SPM as the COH option.
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