
Bayesian Inference
for Nonlinear

Models

Will Penny

Nonlinear Models
Likelihood

Priors

Variational Laplace
Posterior

Energies

Gradient Ascent

Adaptive Step Size

Nonlinear regression

Model Comparison
Free Energy

General Linear Model

DCM for fMRI

Bayesian Inference for Nonlinear Models

Will Penny

26th November 2010



Bayesian Inference
for Nonlinear

Models

Will Penny

Nonlinear Models
Likelihood

Priors

Variational Laplace
Posterior

Energies

Gradient Ascent

Adaptive Step Size

Nonlinear regression

Model Comparison
Free Energy

General Linear Model

DCM for fMRI

Likelihood

We consider Bayesian estimation of nonlinear models of
the form

y = g(θ,m) + e

where g(θ) is some nonlinear function, and e is zero
mean additive Gaussian noise with covariance Cy . The
likelihood of the data is therefore

p(y |θ, λ,m) = N(y ; g(θ,m),Cy )

The error covariances are assumed to decompose into
terms of the form

C−1
y =

∑
i

exp(λi)Qi

where Qi are known precision basis functions and λ are
hyperparameters.
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Priors

We allow Gaussian priors over model parameters

p(θ|m) = N(θ;µθ,Cθ)

where the prior mean and covariance are assumed
known.

The hyperparameters are constrained by the prior

p(λ|m) = N(λ;µλ,Cλ)
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VL Posteriors

The Variational Laplace (VL) algorithm assumes an
approximate posterior density of the following factorised
form

q(θ, λ|y ,m) = q(θ|y ,m)q(λ|y ,m) (1)
q(θ|y ,m) = N(θ; mθ,Sθ)

q(λ|y ,m) = N(λ; mλ,Sλ)
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Energies

The above distributions allow one to write down an
expression for the joint log likelihood of the data,
parameters and hyperparameters

L(θ, λ) = log[p(y |θ, λ,m)p(θ|m)p(λ|m)]

The approximate posteriors are estimated by minimising
the Kullback-Liebler (KL) divergence between the true
posterior and these approximate posteriors. This is
implemented by maximising the following variational
energies

I(θ) =

∫
L(θ, λ)q(λ) (2)

I(λ) =

∫
L(θ, λ)q(θ)
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Gradient Ascent

This maximisation is effected by first computing the
gradient and curvature of the variational energies at the
current parameter estimate, mθ(old). For example, for the
parameters we have

jθ(i) =
dI(θ)

dθ(i)
(3)

Hθ(i , j) =
d2I(θ)

dθ(i)dθ(j)

where i and j index the i th and j th parameters, jθ is the
gradient vector and Hθ is the curvature matrix. The
estimate for the posterior mean is then given by

mθ(new) = mθ(old) + ∆mθ
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Adaptive Step Size

The change is given by

∆mθ = [exp(vHθ)− I] H−1
θ jθ

This last expression implements a ‘temporal
regularisation’ with parameter v . In the limit v →∞ the
update reduces to

∆mθ = −H−1
θ jθ

which is equivalent to a Newton update. This implements
a step in the direction of the gradient with a step size
given by the inverse curvature. Big steps are taken in
regions where the gradient changes slowly (low
curvature).
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Likelihood

y(t) = −60 + Va[1− exp(−t/τ)] + e(t)

Va = 30, τ = 8,exp(λ) = 1
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Prior Landscape
A plot of log p(θ)

µθ = [3,1.6]T ,Cθ = diag([1/16,1/16]);

µλ = 0,Cλ = 1/16
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Samples from Prior

The true model parameters are unlikely apriori

Va = 30, τ = 8
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Posterior Landscape

A plot of log[p(y |θ)p(θ)]
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VL optimisation

Path of 6 VL iterations (x marks start)
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Model Evidence

The model evidence is not straightforward to compute,
since this computation involves integrating out the
dependence on model parameters

p(y |m) =

∫
p(y |θ,m)p(θ|m)dθ.

Once computed two models can be compared via the
Bayes factor

B12 =
p(y |m1)

p(y |m2)
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Free Energy
The free energy is composed of sum squared precision
weighted prediction errors and Occam factors

F = −1
2

eT
y C−1

y ey −
1
2

log |Cy | −
Ny

2
log 2π (4)

− 1
2

eT
θ C−1

θ eθ −
1
2

log
|Cθ|
|Sθ|

− 1
2

eT
λC−1

λ eλ −
1
2

log
|Cλ|
|Sλ|

where prediction errors are the difference between what
is expected and what is observed

ey = y − g(mθ) (5)
eθ = mθ − µθ
eλ = mλ − µλ
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Free Energy
This can be rearranged as

F (m) = Accuracy(m)− Complexity(m)

where

Accuracy(m) = −1
2

eT
y C−1

y ey −
1
2

log |Cy | −
Ny

2
log 2π

Complexity(m) =
1
2

eT
θ C−1

θ eθ +
1
2

log
|Cθ|
|Sθ|

(6)

+
1
2

eT
λC−1

λ eλ +
1
2

log
|Cλ|
|Sλ|

Model complexity will tend to increase with the number of
parameters because distances tend to be larger in higher
dimensional spaces.
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AIC and BIC

A simple approximation to the log model evidence is
given by the Bayesian Information Criterion [?]

BIC = log p(y |θ̂, λ̂,m)− p
2

log Ny

where θ̂, ˆlambda, are the estimated parameters and
hyperparameters, p is the number of parameters, and Ny
is the number of data points. The BIC is a special case of
the Free Energy approximation that drops all terms that
do not scale with the number of data points
An alternative approximation is Akaike’s Information
Criterion (or ‘An Information Criterion’)

AIC = log p(y |θ̂, λ̂,m)− p
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Synthetic fMRI example
Design matrix from Henson et al. Regression coefficients
from responsive voxel in occipital cortex. Data was
generated from a 12-regressor model with SNR=0.2. We
then fitted 12-regressor and 9-regressor models. This
was repeated 25 times.
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True Model: Complex GLM
Log Bayes factor of complex versus simple model, Log
Bc,s, versus the signal to noise ratio, SNR, when true
model is the
complex GLM for F (solid), AIC (dashed) and BIC (dotted).
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True Model: Simple GLM
Log Bayes factor of simple versus complex model, Log
Bs,c , versus the signal to noise ratio, SNR, when true
model is the simple GLM for F (solid), AIC (dashed) and
BIC (dotted).
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DCM for fMRI

A simple (left) and complex (right) DCM. The complex
DCM is identical to the simple DCM except for having an
additional modulatory forward connection from region P
to region A.
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True Model: Complex DCM
Log Bayes factor of complex versus simple model, Log
Bc,s, versus the signal to noise ratio, SNR, when true
model is the
complex DCM for F (solid), AIC (dashed) and BIC (dotted).
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True Model: Simple DCM
Log Bayes factor of simple versus complex model, Log
Bs,c , versus the signal to noise ratio, SNR, when true
model is the simple DCM for F (solid), AIC (dashed) and
BIC (dotted).
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