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2 Kullback-Liebler divergence

For densities q(H) and p(H) the Relative Entropy or
Kullback-Liebler (KL) divergence from q to p is

KL[q||p] =
∫

q(H) log
q(H)

p(H)
dH (1)

The KL-divergence satisfies the Gibb’s inequality

KL[q||p] ≥ 0 (2)

with equality only if q = p. In general KL[q||p] 6=
KL[p||q], so KL is not a distance measure.
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Figure 1: Probability densities p(H) (solid lines) and q(H) (dashed lines) for a
Gaussian mixture p(H) = 0.2×N(m1, σ

2
1) + 0.8×N(m2, σ

2
2) with m1 = 3,m2 =

5,σ1 = 0.3, σ2 = 1.3, and a single Gaussian q(H) = N(µ, σ2) with (a) µ =
µ1, σ = σ1 which fits the first mode, (b) µ = µ2, σ = σ2 which fits the second
mode and (c) µ = 4.6, σ = 1.4 which is moment-matched to p(H).
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Figure 2: KL-divergence, KL(q||p) for p as defined in Figure 1 and q being a
Gaussian with mean µ and standard deviation σ. The KL-divergences of the
approximations in Figure 1 are (a) 11.73 for the first mode (yellow ball), (b)
0.93 for the second mode (green ball) and (c) 0.71 for the moment-matched
solution (red ball).
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3 Variational Bayes

Given a probabilistic model of some data, the log of the
‘evidence’ or ‘marginal likelihood’ can be written as

log p(Y ) =
∫

q(H) log p(Y )dH

=
∫

q(H) log
p(Y,H)

p(H|Y )
dH

=
∫

q(H) log

p(Y,H)q(H)

q(H)p(H|Y )

 dH

= F + KL(q(H)||p(H|Y )) (3)

where q(H) is considered, for the moment, as an arbi-
trary density. We have

F =
∫

q(H) log
p(Y, H)

q(H)
dH, (4)

which in statistical physics is known as the negative vari-
ational free energy. The second term in equation 3 is the
KL-divergence between the density q(H) and the true
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posterior p(H|Y ). Equation 3 is the fundamental equa-
tion of the VB-framework and is shown graphically in
Figure 3. Because KL is always positive, due to the
Gibbs inequality, F provides a lower bound on the model
evidence. Moreover, because KL is zero when two den-
sities are the same, F will become equal to the model
evidence when q(H) is equal to the true posterior. For
this reason q(H) can be viewed as an approximate pos-
terior.
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Figure 3: The negative variational free energy, F , provides a lower bound on
the log-evidence of the model with equality when the approximate posterior equals
the true posterior.
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4 Mixture models

4.1 EM for mixture models

In this context EM is a maximum-likelihood algorithm
for models with observed variables Y and hidden vari-
ables H. Hidden variable denotes which Gaussian is used
to generate a data point. Select Gaussian k with proba-
bility k. That Gaussian has parameters µk and Σk.

Now, repeat ‘VB derivation’ but with eveything con-
ditioned on parameters β = {µk, Σk, πk}. This gives

log p(Y |β) = FEM + KL[q(H)||p(H|Y, β)] (5)

where

FEM =
∫

q(H) log
p(H, Y |β)

q(H)
dH (6)

This gives rise to the following algorithm.

• E-Step: Set q(H) = p(H|Y, β). This sets the KL
term to zero. This can be done by letting

q(hn) = p(hn|yn, β) (7)
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=
p(yn|hn, β)p(hn|β)

p(yn|β)
(8)

for all data points n. This is just Bayes rule. Write
γk

n = q(hn = k), the responsibilies ie. the proba-
bility that data point n was generated from the kth
Gaussian.

• M-step: Now, as KL = 0, FEM = log p(Y |β), so we
can maximise the likelihood wrt. β by maximising
FEM wrt. β. We have

FEM =
∑
k

∑
n

γn
k log p(yn|hn = k)p(hn = k) (9)

=
∑
k

∑
n

γn
k log p(yn|hn = k) +

∑
k

∑
n

γn
k p(hn = k)

Setting the derivatives dFEM/dβ to zero gives the
following updates

µk =

∑
n γk

nyn∑
n γk

n

(10)
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Σk =

∑
n γk

n(yn − µk)(yn − µk)
T∑

n γk
n

πk =

∑
n γk

n

N

See netlab demo demgmm1.m.

5 Bayes rule for Gaussians

’Precision’ is inverse variance eg. variance of 0.1 is pre-
cision of 10.

For a Gaussian prior with mean m0 and precision p0,
and a Gaussian likelihood with mean mD and precision
pD the posterior is Gaussian with

p = p0 + pD

m =
p0

p
m0 +

pD

p
mD

So, (1) precisions add and (2) the posterior mean is the
sum of the prior and data means, but each weighted by
their relative precision.
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Figure 4: Bayes rule for univariate Gaussians. The two solid curves show the
probability densities for the prior m0 = 20, p0 = 1 and the likelihood mD = 25
and pD = 3. The dotted curve shows the posterior distribution with m = 23.75
and p = 4. The posterior is closer to the likelihood because the likelihood has
higher precision.
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6 Bayesian GLM

A Bayesian GLM is defined as

y = Xβ + e1 (11)

β = µ + e2

where the errors are zero mean Gaussian with covari-
ances Cov[e1] = C1 and Cov[e2] = C2.

p(y|β) ∝ exp
(
−1

2(y −Xβ)TC−1
1 (y −Xβ)

)
(12)

p(β) ∝ exp
(
−1

2(β − µ)TC−1
2 (β − µ)

)
The posterior distribution is then

p(β|y) = N(m, Σ) (13)

Σ−1 = XTC−1
1 X + C−1

2

m = Σ(XTC−1
1 y + C−1

2 µ)
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Figure 5: GLMs with two parameters. The prior (dashed line) has mean µ =
[0, 0]T (cross) and precision C−1

1 = diag([1, 1]). The likelihood (dotted line)
has mean XT y = [3, 2]T (circle) and precision (XT C−1

1 X)−1 = diag([10, 1]).
The posterior (solid line) has mean m = [2.73, 1]T (cross) and precision Σ−1 =
diag([11, 2]). In this example, the measurements are more informative about
β(1) than β(2). This is reflected in the posterior distribution.
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6.1 Augmented Form

From before

p(β|y) = N(m, Σ) (14)

Σ−1 = XTC−1
1 X + C−1

2

m = Σ(XTC−1
1 y + C−1

2 µ)

This can also be written as

Σ−1 = X̄TV −1X̄ (15)

m = Σ(X̄TV −1ȳ)

where

X̄ =

 X

I

 (16)

V =

 C1 0
0 C2


ȳ =

 y
µ
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where we’ve augmented the data matrix with prior ex-
pectations. Estimation in a Bayesian GLM is there-
fore equivalent to Maximum Likelihood estimation (ie.
for IID covariances this is the same as Weighted Least
Squares) with augmented data. Our prior beliefs can be
thought of as extra data points.

7 Parametric Empirical Bayes

For a Bayesian GLM

y = Xβ + e1 (17)

β = µ + e2

with linear covariance constraints

C1 =
∑
i

λiQi (18)

C2 =
∑
j

λjQj

PEB is a special case of an Expectation-Maximisation
(EM) algorithm where (i) E-Step: estimate posterior dis-
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tribution over β’s (ii) M-Step: update λ’s. PEB is spe-
cific to linear Gaussian models but EM is generic, ie.
there is an EM algorithm for mixture models, hidden
Markov models etc.
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For hierarchical linear models the PEB/EM algorithm
is

• E-Step: Update distribution over parameters β

Σ−1 = X̄TV −1X̄ (19)

m = Σ(X̄TV −1ȳ)

• M-Step: Update hyperparameters λi (and therefore
V ) by following gradient gi

r = ȳ − X̄m (20)

gi = −1

2
Tr(V −1Qi) +

1

2
Tr(ΣX̄TV −1QiV

−1X̄)

+
1

2
rTV −1QiV

−1r
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Figure 6: EM and ReML estimate hyperparameters λi by following the gradient
to the (local) maximum.
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7.1 EEG Source Reconstruction

To ‘reconstruct’ EEG data at a single time point use the
model

y = Xβ + e1 (21)

β = µ + e2

where X is a lead-field matrix transforming Current Source
Density (CSD) β at V voxels in brain space into EEG
voltages y at S electrodes.

C1 =
∑
i

λiQi (22)

C2 =
∑
j

λjQj

(23)

where Qi defines structure of sensor noise, and Qj source
noise ie. uncertainty in sources. In the application that
follows we use Qi = I and Qj = L, a ‘Laplacian’ matrix
set up so that we expect the squared difference between
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neighboring voxels to be λj ie. this enforces a smoothness
constraint.

The data in this analysis is from Rik Henson.
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Figure 7: Subjects are presented images of faces and scrambled faces and are
asked to make symmetry judgements.
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Figure 8: Electrode voltages at 160ms post-stimulus, y. This is an Event-Related
Potential (ERP), the result of averaging the responses to many (86) trials.
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Figure 9: Voltages at two different electrodes for faces (blue) and scrambled faces
(red). These are Event-Related Potentials (ERPs), the result of averaging the
responses to many (86) trials.
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Figure 10: Estimate of CSD, β. Computed as the CSD difference for faces minus
scrambled faces.
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