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Figure 1: Fixed Effects Model Inference Two models, twenty subjects.
log p(Y |m) =

∑N
n=1 log p(yn|m)



Bayesian inference at the model level can then be implemented using Bayes

rule

p(m|Y ) =
p(Y |m)p(m)∑M

m=1 p(Y |m)p(m)

Under uniform model priors, p(m), the comparison of a pair of models, m = i

and m = j, can be implemented using the Bayes Factor which is defined as the

ratio of model evidences

BFij =
p(Y |m = i)
p(Y |m = j)

This is known as the Group Bayes Factor (GBF). For the example, BF12 = 1014,

p(m = 1|Y ) ≈ 1.



Family related to model level by

p(fk) =
∑

m∈fk

p(m)

To avoid any unwanted bias in our inference we wish to have a uniform prior at

the family level

p(fk) =
1
K

Can be implemented by setting

p(m) =
1

KNk
∀m ∈ fk

The posterior distribution over families is then given by summing up the relevant

posterior model probabilities

p(fk|Y ) =
∑

m∈fk

p(m|Y )



Figure 2: Fixed Effects Family Inference Are hemodynamics linear or non-
linear ? (not interested in whether parameters should be ’revised or classic’ or
whether ε - ratio of intra-to-extra vascular signal changes - should be fixed or
estimated). So integrate these factors out ie. add up evidences for family, fk.
Sum of log model evidences for linear ≈ 50 + 50 + 0 = 70. Sum of log model ev-
idence for nonlinear ≈ 60 + 50 + 10 + 75 = 195. So, logBFfnonlinear,flinear

= 25,
p(fnonlinear|Y ) ≈ 1.



Figure 3: Random Effects Model Inference ? First 11/12 = 0.92 subjects
favour model 1. Subject 12 data favours model 2 (by 10 a factor of 10 more
than the others favour model 1). Make inference about proportion of subjects,
rm, that use model m.



Figure 4: Random Effects Model Inference Make inference about propor-
tion of subjects, rm, that use model m.



Figure 5: Random Effects Model Inference



Figure 6: Random Effects Family Inference



The family probabilities are given by

sk =
∑

m∈fk

rm

where sk is the frequency of the family of models in the population. We define

a prior distribution over this probability using a Dirichlet density

p(s) = Dir(γ)

A uniform prior over family probabilities can be obtained by setting γk = 1 for

all k. This can be achieved by setting

αprior(m) =
1
Nk
∀m ∈ fk



Figure 7: Random Effects Family Inference



Figure 8: Bayesian Model Averaging over Input Family P (and sub-
jects) p(θn|Y,m ∈ fk) =

∑
m∈fk

q(θn|yn,m)p(mn|Y ) where q(θn|Y,m) ≈
p(θn|Y,m) is our variational approximation to the model specific posterior and
p(mn|Y ) is the posterior probability that subject n uses model m. We could
take this to be p(mn|Y ) = p(m|Y ) under the FFX assumption that all subjects
use the same model, or p(mn|Y ) = gnm under the RFX assumption that each
subject uses their own model.



Occam’s window

Models with low probability contribute little to the estimate of the marginal

density. This property can be made use of to speed up the implementation of

BMA by excluding low probability models from the summation. This can be

implemented by including only models for which

p(mMAP |Y )
p(m|Y )

≤ πOCC

where πOCC is the maximal posterior odds ratio. Models satisfying this criterion

are said to be in Occam’s window. The number of models in the window, NOCC ,

is a useful indicator as smaller values correspond to peakier posteriors. In this

paper we use πOCC = 20. We emphasise that the use of Occam’s window is for

computational expedience only.



Figure 9: Model Posteriors


