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Optimal Data Fusion

For the prior (blue) we have m0 = 20, λ0 = 1 and for the
likelihood (red) mD = 25 and λD = 3.

Precision, λ, is inverse variance.
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Bayes rule for Gaussians

For a Gaussian prior with mean m0 and precision λ0, and
a Gaussian likelihood with mean mD and precision λD the
posterior is Gaussian with

λ = λ0 + λD

m =
λ0

λ
m0 +

λD

λ
mD

So,
I Precisions add
I Means are precision-weighted and added
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Bayes rule for Gaussians
For the prior (blue) m0 = 20, λ0 = 1 and the likelihood
(red) mD = 25 and λD = 3, the posterior (magenta)
shows the posterior distribution with m = 23.75 and
λ = 4.

The posterior is closer to the likelihood because the
likelihood has higher precision.
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Sensory Integration
Ernst and Banks (2002) asked subjects which of two
sequentially presented blocks was the taller. Subjects used
either vision alone, touch alone or a combination of the two.

If vision v and touch t information are independent given

an object x then we have

p(v , t , x) = p(v |x)p(t |x)p(x)

Bayesian fusion of sensory information then produces a
posterior density

p(x |v , t) =
p(v |x)p(t |x)p(x)

p(v , t)
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Sensory Integration

In the abscence of prior information about block size (ie
p(x) is uniform), for Gaussian likelihoods, the posterior
will also be a Gaussian with precision λvt . From Bayes
rule for Gaussians we know that precisions add

λvt = λv + λt

and the posterior mean is a relative-precision weighted
combination

mvt =
λv

λvt
mv +

λt

λvt
mt

mvt = wv mv + wtmt

with weights wv and wt .
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Vision and Touch

Ernst and Banks, Nature,
2002 asked subjects which of
two sequentially presented
blocks was the taller.
Subjects used either vision
alone, touch alone or a
combination of the two.
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Vision and Touch Separately

They recorded the accuracy with which discrimination could be
made and plotted this as a function of difference in block
height. This was first done for each condition alone. One can
then estimate precisions, λv and λt by fitting a cumulative
Gaussian density function.

They manipulated the accuracy of the visual discrimination by
adding noise onto one of the stereo images.
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Vision and Touch Together
Optimal fusion predicts weights from Bayes rule

λvt = λv + λt

mvt =
λv

λvt
mv +

λt

λvt
mt

mvt = wv mv + wtmt

They observed visual capture at low levels of visual noise
and haptic capture at high levels.
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Higher Dimensions

From Wolpert and Ghahramani (2006)

For Gaussian densities we have

Λ = Λ0 + ΛD

m = Λ−1(Λ0m0 + ΛDmD)

with precision matrices Λ.
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Generative Models

For a probabilistic generative model

The joint probability of all variables, x , can be written
down as

p(x) =
5∏

i=1

p(xi |pa[xi ])

where pa[xi ] are the parents of xi .
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Joint Probability
A DAG specifies the joint probability of all variables.

p(x1, x2, x3, x4, x5) = p(x1)p(x2)p(x3|x1)p(x4|x1, x2)p(x5|x4)

All other variables can be gotten from the joint probability
via marginalisation. For later

GibbsEnergy = − log p(x)
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Exact Inference

Exact Bayesian Inference is not possible for interesting
models.

Hidden state xn, Observations yn

For Nonlinear Dynamics or Nonlinear Observation
functions.
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Exact Inference

Exact Bayesian Inference is not possible for interesting
models.

For Nonlinear Dynamics or Nonlinear Observation
functions.
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Exact Inference

Exact Bayesian Inference is not possible for interesting
models.

For Nonlinear Dynamics or Nonlinear Observation
functions.
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Approximate Inference

There is one way implement exact Bayesian inference,
but many methods for approximate inference. How should
we quantify approximate ?

True posterior p(x), approximate posterior q(x).

For densities q(x) and p(x) the Kullback-Liebler (KL)
divergence from q to p is

KL[q||p] =

∫
q(x) log

q(x)

p(x)
dx

See Neal and Hinton, Kluwer, 1993; Dayan et al. Neural
Comp, 1995; Mackay, NIPS, 1995.
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Kullback-Liebler Divergence

For densities q(x) and p(x) the Kullback-Liebler (KL)
divergence from q to p is

KL[q||p] =

∫
q(x) log

q(x)

p(x)
dx

The KL-divergence satisfies Gibbs’ inequality

KL[q||p] ≥ 0

with equality only if q = p.

In general KL[q||p] 6= KL[p||q], so KL is not a distance
measure. See Mackay, Information Theory, 2003.

Which should we use ?
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Univariate Gaussians

For Gaussians

p(x) = N(x ;µp, σ
2
p)

q(x) = N(x ;µq, σ
2
q)

we have

KL(q||p) =
(µq − µp)2

2σ2
p

+
1
2

log

(
σ2

p

σ2
q

)
+

σ2
q

2σ2
p
− 1

2
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Multivariate Gaussians

For Gaussians

p(x) = N(x ;µp,Cp)

q(x) = N(x ;µq,Cq)

we have

KL(q||p) =
1
2

eT C−1
p e +

1
2

log
|Cp|
|Cq|

+
1
2

Tr
(

C−1
p Cq

)
− d

2

where d = dim(x) and

e = µq − µp
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Same Variance - Symmetry
If σq = σp then KL(q||p) = KL(p||q) eg. distributions that
just have a different mean

Here KL(q||p) = KL(p||q) = 0.12.
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Different Variance - Asymmetry

KL[q||p] =

∫
q(x) log

q(x)

p(x)
dx

If σq 6= σp then KL(q||p) 6= KL(p||q)

Here KL(q||p) = 0.32 but KL(p||q) = 0.81.
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Approximating multimodal with unimodal
True posterior p (blue), approximate posterior q (red).
Gaussian approx at mode is a Laplace approximation.

Left Mode Right Mode Moment Matched
KL(q,p) 1.17 0.09 0.07
KL(p,q) 23.2 0.12 0.07

Minimising either KL produces the moment-matched solution.
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Distant Modes
True posterior p (blue), approximate posterior q (red).
Gaussian approx at mode is a Laplace approximation.

Left Mode Right Mode Moment Matched
KL(q,p) 0.69 0.69 3.45
KL(p,q) 43.9 15.4 0.97

Minimising KL(q||p) produces mode-seeking. Minimising
KL(p||q) produces moment-matching.
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Multiple dimensions
In higher dimensional spaces, unless modes are very
close, minimising KL(p||q) produces moment-matching
(a) and minimising KL(q||p) produces mode-seeking (b
and c).

Minimising KL(q||p) therefore seems desirable, but how
do we do it if we don’t know p ?

Figure from Bishop, Pattern Recognition and Machine
Learning, 2006
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Variational Bayes
Given a probabilistic model of some data, the log of the
evidence can be written as

log p(Y ) =

∫
q(θ) log p(Y )dθ

=

∫
q(θ) log

p(Y , θ)

p(θ|Y )
dθ

=

∫
q(θ) log

[
p(Y , θ)q(θ)

q(θ)p(θ|Y )

]
dθ

=

∫
q(θ) log

[
p(Y , θ)

q(θ)

]
dθ

+

∫
q(θ) log

[
q(θ)

p(θ|Y )

]
dθ

where q(θ) is the approximate posterior. Hence

log p(Y ) = −F + KL(q(θ)||p(θ|Y ))
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Free Energy

We have
F = −

∫
q(θ) log

p(Y , θ)

q(θ)
dθ

which in statistical physics is known as the variational free
energy. We can write

F = −
∫

q(θ) log p(Y , θ)dθ −
∫

q(θ) log
1

q(θ)
dθ

This is an energy term, minus an entropy term, hence
‘free energy’.
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Variational Free Energy

Because KL is always positive,

due to the Gibbs inequality, −F

provides a lower bound on the

model evidence. Moreover,

because KL is zero when two

densities are the same, −F will

become equal to the model

evidence when q(θ) is equal to

the true posterior. For this

reason q(θ) can be viewed as

an approximate posterior.

log p(Y ) = −F + KL[q(θ)||p(θ|Y )]
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Factorised Approximations

To obtain a practical learning algorithm we must also
ensure that the integrals in F are tractable. One generic
procedure for attaining this goal is to assume that the
approximating density factorizes over groups of
parameters. In physics, this is known as the mean field
approximation. Thus, we consider:

q(θ) =
∏

i

q(θi)

where θi is the i th group of parameters. We can also write
this as

q(θ) = q(θi)q(θ\i)

where θ\i denotes all parameters not in the i th group.
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Approximate Posteriors

We define the variational energy for the i th partition as

I(θi) = −
∫

q(θ\i) log p(Y , θ)dθ\i

It is the Gibbs Energy (from earlier) averaged over other
ensembles. Then the free energy is minimised when

q(θi) =
exp[I(θi)]

Z

where Z is the normalisation factor needed to make q(θi)
a valid probability distribution.
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Factorised Approximations
For

q(z) = q(z1)q(z2)

minimising KL(q,p) where p is green and q is red
produces left plot, where minimising KL(p,q) produces
right plot.

Hence minimising free energy tends to produce approximations
on left rather than right. That is, uncertainty can be
underestimated in some directions. Implications for FEP ?
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Group Model Inference
Log Bayes Factor in favour of model 2

log
p(yi |mi = 2)

p(yi |mi = 1)
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Group Model Inference
Model frequencies rk , model assignments mi , subject
data yi .

Approximate posterior

q(r ,m|Y ) = q(r |Y )q(m|Y )

Stephan, Neuroimage, 2009.
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Group Model Inference
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Applications

Variational Inference has been applied to
I Hidden Markov Models (Mackay, Cambridge, 1997)
I Graphical Models (Jordan, Machine Learning, 1999)
I Logistic Regression (Jaakola and Jordan, Stats and

Computing, 2000)
I Gaussian Mixture Models, (Attias, UAI, 1999)
I Independent Component Analysis, (Attias, UAI,

1999)
I Dynamic Trees, (Storkey, UAI, 2000)
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Applications

I Relevance Vector Machines, (Bishop and Tipping,
2000)

I Linear Dynamical Systems (Ghahramani and Beal,
NIPS, 2001)

I Nonlinear Autoregressive Models (Roberts and
Penny, IEEE SP, 2002)

I Canonical Correlation Analysis (Wang, IEEE TNN,
2007)

I Dynamic Causal Models (Friston, Neuroimage, 2007)
I Nonlinear Dynamic Systems (Daunizeau, PRL, 2009)
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Penalised Model Fitting
We can write

F = −
∫

q(θ) log p(Y |θ)dθ +

∫
q(θ) log

q(θ)

p(θ)
dθ

Replace point estimate θ with an ensemble q(θ). Keep
parameters θ imprecise by penalizing distance from a
prior p(θ), as measured by KL-divergence.

See Hinton and van Camp, COLT, 1993
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Model comparison

The (negative) free energy, being an approximation to the
model evidence, can also be used for model comparison.
See for example

I Graphical models (Beal, PhD Gatsby, 2003)
I Linear dynamical systems (Ghahramani and Beal,

NIPS, 2001)
I Nonlinear autoregressive models (Roberts and

Penny, IEEE SP, 2002)
I Hidden Markov Models (Valente and Wellekens,

ICSLP 2004)
I Dynamic Causal Models (Penny, Neuroimage, 2011)
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Generic Approaches

VB for generic models
I Winn and Bishop, Variational Message Passing,

JLMR, 2005
I Wainwright and Jordan, A Variational Principle for

Graphical Models, 2005
I Friston et al. Dynamic Expectation Maximisation,

Neuroimage, 2008
For more see

I http://en.wikipedia.org/wiki/Variational-Bayesian-
methods

I http://www.variational-bayes.org/
I http://www.cs.berkeley.edu/jordan/variational.html
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