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Likelihood

We consider Bayesian estimation of nonlinear models of
the form

y = g(θ,m) + e

where g(θ) is some nonlinear function, and e is zero
mean additive Gaussian noise with covariance Cy . The
likelihood of the data is therefore

p(y |θ, λ,m) = N(y ; g(θ,m),Cy )

The error covariances are assumed to decompose into
terms of the form

C−1
y =

∑
i

exp(λi)Qi

where Qi are known precision basis functions and λ are
hyperparameters.
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Priors

We allow Gaussian priors over model parameters

p(θ|m) = N(θ;µθ,Cθ)

where the prior mean and covariance are assumed
known.

The hyperparameters are constrained by the prior

p(λ|m) = N(λ;µλ,Cλ)
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VL Posteriors

The Variational Laplace (VL) algorithm assumes an
approximate posterior density of the following factorised
form

q(θ, λ|y ,m) = q(θ|y ,m)q(λ|y ,m) (1)
q(θ|y ,m) = N(θ; mθ,Sθ)

q(λ|y ,m) = N(λ; mλ,Sλ)
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Energies

The above distributions allow one to write down an
expression for the joint log likelihood of the data,
parameters and hyperparameters

L(θ, λ) = log[p(y |θ, λ,m)p(θ|m)p(λ|m)]

The approximate posteriors are estimated by minimising
the Kullback-Liebler (KL) divergence between the true
posterior and these approximate posteriors. This is
implemented by maximising the following variational
energies

I(θ) =

∫
L(θ, λ)q(λ) (2)

I(λ) =

∫
L(θ, λ)q(θ)
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Gradient Ascent

This maximisation is effected by first computing the
gradient and curvature of the variational energies at the
current parameter estimate, mθ(old). For example, for the
parameters we have

jθ(i) =
dI(θ)

dθ(i)
(3)

Hθ(i , j) =
d2I(θ)

dθ(i)dθ(j)

where i and j index the i th and j th parameters, jθ is the
gradient vector and Hθ is the curvature matrix. The
estimate for the posterior mean is then given by

mθ(new) = mθ(old) + ∆mθ
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Adaptive Step Size

The change is given by

∆mθ = [exp(vHθ)− I] H−1
θ jθ

This last expression implements a ‘temporal
regularisation’ with parameter v . In the limit v →∞ the
update reduces to

∆mθ = −H−1
θ jθ

which is equivalent to a Newton update. This implements
a step in the direction of the gradient with a step size
given by the inverse curvature. Big steps are taken in
regions where the gradient changes slowly (low
curvature).
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Likelihood

y(t) = −60 + Va[1− exp(−t/τ)] + e(t)

Va = 30, τ = 8,exp(λ) = 1
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Prior Landscape
A plot of log p(θ)

µθ = [3,1.6]T ,Cθ = diag([1/16,1/16]);

µλ = 0,Cλ = 1/16



Bayesian Inference
for DCMs

Will Penny

Nonlinear Models
Likelihood

Priors

Variational Laplace
Posterior

Energies

Gradient Ascent

Adaptive Step Size

Nonlinear regression

Sampling
Metropolis-Hasting

Proposal density

Nonlinear regression

Nonlinear oscillator

Model Comparison
Free Energy

Sampling

Prior Arithmetic Mean

Posterior Harmonic Mean

Savage-Dickey

Thermodynamic Integration

General Linear Model

DCM for fMRI

Conclusions

Samples from Prior

The true model parameters are unlikely apriori

Va = 30, τ = 8
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Posterior Landscape

A plot of log[p(y |θ)p(θ)]
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VL optimisation

Path of 6 VL iterations (x marks start)



Bayesian Inference
for DCMs

Will Penny

Nonlinear Models
Likelihood

Priors

Variational Laplace
Posterior

Energies

Gradient Ascent

Adaptive Step Size

Nonlinear regression

Sampling
Metropolis-Hasting

Proposal density

Nonlinear regression

Nonlinear oscillator

Model Comparison
Free Energy

Sampling

Prior Arithmetic Mean

Posterior Harmonic Mean

Savage-Dickey

Thermodynamic Integration

General Linear Model

DCM for fMRI

Conclusions

Metropolis-Hastings

MH creates as series of random points (θ(1), θ(2), ...)
whose distribution converges to the target distribution of
interest. For us, this is the posterior density p(θ|y). Each
sequence can be considered a random walk whose
stationary distribution is p(θ|y).

MH makes use of a proposal density q(θ′; θ) which is
dependent on the current state vector θ. For symmetric q
(such as a Gaussian) samples from the posterior density
can be generated as follows.
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MH update

First, start at some point θ(0) in parameter space. Then
generate a proposal θ′ using the density q. This proposal
is then accepted according to the standard
Metropolis-Hastings procedure.

That is, with probability min(1, r) where

r =
p(y |θ′)p(θ

′
)

p(y |θ)p(θ)

If the step is accepted we set θ(n + 1) = θ′. If it is
rejected we set θ(n + 1) = θ(n).
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Adaptive proposal density

We use a zero mean Gaussian proposal density with
covariance Cs. This covariance is initialised to

Cs = σCθ (4)

where Cθ is the prior covariance and σ = 1.

We then use a three stage procedure comprising (i)
scaling, (ii) tuning and (iii) sampling steps in which the
scaling and tuning stages are used to optimize the
proposal covariance Cs.

The first two stages are regarded as a burn-in phase and
samples from this period are later discarded. At the end
of this Cs is fixed and sampling proper begins.
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Scaling

The proposal covariance is given by

Cs = σCθ (5)

In the scaling step σ is adjusted as follows.

If the acceptance rate, as measured over the last
ns = 100 proposals, is less than 20 per cent then σ is
halved.

If the acceptance rate is greater than 40 per cent σ is
doubled.

Otherwise, σ remains unchanged.
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Tuning

The tuning step makes use of adaptive estimation of a
covariance matrix Ctune based on a Robbins-Monro
update.

At the beginning of the tuning stage we set Ctune = Cs.
We then update according to

µt = µt−1 +
1
nt

(xt − µt ) (6)

∆Ctune =
1
nt

[(xt − µt )(xt − µt )
T − Ctune(t − 1)]

where nt is the number of elapsed iterations in the tuning
period. At the end of tuning set Cs = Ctune.
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MH Samples

64,000 samples from MH posterior
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VL Samples

64,000 samples from VL posterior
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Likelihood
Nonlinear oscillator with a = 0.2, b = 0.2, c = 3.

v̇ = c[v − 1
3

v3 + r ] (7)

ṙ = −1
c

[v − a + br ]

We have noise level exp(λ) = 10.
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Priors
A plot of log p(θ)

µθ = [−0.69,−0.69]T ,Cθ = diag([1/8,1/8]);

µλ = 0,Cλ = 1
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Priors

True value a = 0.2, b = 0.2 is apriori unlikely
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Posterior

A plot of log[p(y |θ)p(θ)]



Bayesian Inference
for DCMs

Will Penny

Nonlinear Models
Likelihood

Priors

Variational Laplace
Posterior

Energies

Gradient Ascent

Adaptive Step Size

Nonlinear regression

Sampling
Metropolis-Hasting

Proposal density

Nonlinear regression

Nonlinear oscillator

Model Comparison
Free Energy

Sampling

Prior Arithmetic Mean

Posterior Harmonic Mean

Savage-Dickey

Thermodynamic Integration

General Linear Model

DCM for fMRI

Conclusions

Posterior

A plot of log[p(y |θ)p(θ)]
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VL optimisation I

Global maxima
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VL optimisation II

Local maxima
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MH - Scaling

Init: [−0.2,−0.2]. Then 1000 samples
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MH - Tuning

1000 samples



Bayesian Inference
for DCMs

Will Penny

Nonlinear Models
Likelihood

Priors

Variational Laplace
Posterior

Energies

Gradient Ascent

Adaptive Step Size

Nonlinear regression

Sampling
Metropolis-Hasting

Proposal density

Nonlinear regression

Nonlinear oscillator

Model Comparison
Free Energy

Sampling

Prior Arithmetic Mean

Posterior Harmonic Mean

Savage-Dickey

Thermodynamic Integration

General Linear Model

DCM for fMRI

Conclusions

MH - Sampling

2000 samples
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Pat Benatar Interlude
Happy Birthday Jean !
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Model Evidence

The model evidence is not straightforward to compute,
since this computation involves integrating out the
dependence on model parameters

p(y |m) =

∫
p(y |θ,m)p(θ|m)dθ.

Once computed two models can be compared via the
Bayes factor

B12 =
p(y |m1)

p(y |m2)
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Free Energy
The free energy is composed of sum squared precision
weighted prediction errors and Occam factors

F = −1
2

eT
y C−1

y ey −
1
2

log |Cy | −
Ny

2
log 2π (8)

= −1
2

eT
θ C−1

θ eθ −
1
2

log
|Cθ|
|Sθ|

= −1
2

eT
λ C−1

λ eλ −
1
2

log
|Cλ|
|Sλ|

where prediction errors are the difference between what
is expected and what is observed

ey = y − g(mθ) (9)
eθ = mθ − µθ
eλ = mλ − µλ
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Prior Arithmetic Mean

The simplest approximation to the model evidence

p(y |m) =

∫
p(y |θ,m)p(θ|m)dθ.

is the Prior Arithmetic Mean

pPAM(y |m) =
1
S

S∑
s=1

p(y |θs,m)

where the samples θs are drawn from the prior density.

A problem with this estimate is that most samples from
the prior will have low likelihood. A large number of
samples will therefore be required to ensure that high
likelihood regions of parameter space will be included in
the average.
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Posterior Harmonic Mean

A second option is the Posterior Harmonic Mean

pPHM(y |m) =

[
1
S

S∑
s=1

1
p(y |θs,m)

]−1

where samples are drawn from the posterior (eg. through
MH sampling).

A problem with the PHM is that the largest contributions
come from low likelihood samples which results in a
high-variance estimator.

Both PAM and PHM can be motivated from the
perspective of importance sampling.
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Savage-Dickey
For models 1 and 2 having common parameters θ1 and
model 2 having additional parameters θ2, then if

p(θ1|m2) = p(θ1|m1)

the Bayes factor is given by

B12 =
p(θ2 = 0|y ,m2)

p(θ2 = 0|m2)

Here B12 = 0.9.
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Thermodynamic Integration

We define inverse ‘temperatures’ βk such that

0 = β0 < β1 < .. < βk−1 < βK = 1

For example

βk =

(
k
K

)5

We also define

fk (θ) = p(y |θ,m)βk p(θ|m)

Sample from k th chain using MH with prob

r =
fk (θ

′

k )

fk (θk )
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Thermodynamic Integration

We can define the normalising constants

zk =

∫
fk (θ)dθ

where z0 = 1 and zK = p(y |m). Now

log p(y |m) = log zK − log z0

We can write this as

log p(y |m) =

∫ 1

0

d log z(β)

dβ
dβ
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Thermodynamic Integration

The log evidence can therefore be approximated as

log pTI(y |m) =
K−1∑
k=1

(βk+1 − βk )

(
Ek+1 + Ek

2

)
where

Ek =
1

Nk

Nk∑
s=1

log p(y |θks)

where θks is the sth sample from the k th chain.
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Synthetic fMRI example
Design matrix from Henson et al. Regression coefficients
from responsive voxel in occipital cortex. Data was
generated from a 12-regressor model with SNR=0.2. We
then fitted 12-regressor and 9-regressor models. This
was repeated 25 times.
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Log Bayes factors
For these linear Gaussian models the free energy
defaults to the exact model evidence. Bayes factors are
therefore exact. This also holds for Savage-Dickey. The
average true logBF was 3.45 in favour of the 12-regressor
model.
The boxplots show estimated minus true logBF for each
approach:
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Auditory DCMs
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DCM for fMRI

Chumbley et al (2007) 175,000 burn samples +...
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What Bayes factor results might look like !

Estimated logBF - Fdiff for each approach:
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Conclusions

VL is good. Care with p(θ),p(λ).

Bottleneck for sampling methods is speed of function
evaluation. For DCMs we can generate 2-20
samples/second per core. This equates to 7200 to 72000
samples per hour.

May be worth looking at Metropolis Adjusted Langevin
Algorithms (MALA) - basically a stochastic VL with MH
step.
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