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Physiological sources

MEG/EEG signals derive primarily from cortical current sources

Strong, focal subcortical activity can also give rise to MEG/EEG



Action potentials and synapses

« After an action potential 1s

received neurotransmitters are
released

« They bind to the receptors of a
postsynaptic neuron creating Post-
Synaptic Potentials (PSPs)

* These are caused by 10ns flowing
in and out of postsynaptic
membrane (eg Cl)




Postsynaptic potentials

Na ions in,
K ions out

* Depending on whether the
neurotransmitter 1s excitatory or
inhibitory, electrical current

Action
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Puaotential EPSP's

postsynaptic cell becomes
depolarised (more likely to
generate an action potential) or
hyperpolarised (less likely to
generate an action potential) Action potentials not
picked up by EEG/MEG




Primary current

* Negative 1ons flowing out of cell and
positive 1ons into it, make cell +ve
voltage

PSP effects last tens to hundreds of
milliseconds

» Postsynaptic potentials of neighboring
cells can be similar (ensemble
encoding).




Swrface of
cerebral cortex

Dendriteg of
large prvramidal
NeNrons

Interface between
aray matter and
wlute matter

Cortical sheet

Pyramidal neurons of the cortex are
spatially aligned and perpendicular to
the cortical surface

Spatial and temporal alignment of
membrane potential creates dipoles

Action potential are not sufficiently
correlated over space and time to
contribute to dipoles



Dipoles
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* Primary current, J, =dipole

« Secondary current, J, = volume current (Ohmic return current caused by dipole)
* MEG is sensitive to primary and volume currents

» EEG is sensitive to volume currents



Right hand rule

Magnetic field, B, induced by primary current vector
Also, field induced by volume currents
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Volume conduction

When a dipole 1s in a :
conductive medium, electrical !:“-'” o

current spreads through this o006 e’
medium (the ‘volume’ or
‘secondary’ currents). They
reach the scalp to induce the
voltage differences that EEG
1s sensitive to.
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Brain, skull and scalp have o - AN
different conductivities kT \ "

The skull has a higher
electrical resistance than the
brain => the electrical signal
spreads laterally when
reaching the skull

Volume currents for a thalamic dipole source

(see later).

computed using a finite element volume conductor model



Spherical head model

» Approximate the shape and electromagnetic properties of the head
using a three concentric sphere model

 For brain, skull, and scalp

* Assume homogeneous conductivity
in each sphere

» The potential on the scalp (and each surface) can be computed analytically
by solving the quasi-static (freq<1kHz) approximation of Maxwell’s equations.



Forward solution for EEG

Potential at r due to primary current
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Solve following equation for potentials on all surfaces, V(r)
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The latter sums are surface integrals of over brain-skull, skull-scalp
and scalp-air boundaries



Forward solution for MEG

Magnetic field at (vector) position r due to all primary (vector) currents
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Magnetic field at position r due to volume currents
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The latter sums are surface integrals of current over brain-skull, skull-scalp
and scalp-air boundaries, which require voltage distribution over
each surface (ie. EEG forward solution). The total magnetic field is given by

B(r)= B,(r)+B,(r)



Boundary element model

Brain (smoothed)

Skull

Scalp

BEM

Boundaries between brain, skull,
scalp modelled using MRI data

Assumes homogeneous conductivity
in each partition



Finite element head model

Five compartments (scalp, skull, CSF, brain grey and white matter)
Many thousand elements in each with different
conductivity.

Diffusion Tensor Imaging data
used for estimation of
gray/white matter conductivity.

Also use of Electrical Impedance
Tomography (EIT)

Sagittal cut through Finite Element _
volume conductor model of the human head :

Spherical head models are a better
approximation for MEG than EEG because
MEG is also sensitive to primary currents
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Tangential dipole is oriented

parallel to the cortical surface . !‘ L u

Radial dipole is oriented towards
or away from it

MEG is not sensitive to radial
dipoles

Lower amplitude closer to centre of head (bigger reduction for MEG)
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Equivalent Current Dipole (ECD)
Source Reconstruction

Assume a small number of dipoles, typically
less than ten, perhaps bilateral.

For each estimate 6 parameters, a,
(x,y,z location, 2 direction, 1 strength)

# data points= # sensors x # time points

Small number of parameters compared to amount
of data (good)

Optimisation problem is highly nonlinear (bad)

MEG data, y=f(a)+e.

May need prior information to seed optimisation



Distributed Source Reconstruction

A. Cortical Sources

Y=KJ+E

o NN

gain matrix

dipole
amplitudes

noise

From an MRI, create a cortical
mesh with eg. 3000 vertices.

Place a dipole perpendicular to
cortical surface at each vertex

For each dipole, we only need to
estimate the strength, j

The sensor dipolar patterns seen
earlier form columns in a gain or
‘lead field’ matrix K.

MEEG/EEG data in column vector
y. To find sources, need to solve
a linear optimisation problem
(good)

But we have fewer sensors
than sources (bad). Constraints
needed.



ECD vs Distributed

Typically ECD methods are used to estimate early components of ERPs which are
usually highly localised

ECD methods useful for subcortical reconstruction.

Distributed solutions are used for reconstructing later components of ERPs. These
more cognitive components are often highly distributed throughout cortex.

There are also distributed solutions for volumes. Unlike distributed
source solutions for cortical meshes we also need to estimate direction of dipoles
(implemented by estimating current strength in x,y,z directions).



EEG Data: Somatosensory Stimulation

Scalp distribution
21ms post-stimulus

Distributed Source Reconstruction
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EEG Data: Auditory Oddball ECD

Scalp potential  Distributed Source Reconstruction




Bayesian Source Reconstruction
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Bayesian Source Reconstruction

* Formal statistical comparison of constraints
(priors) used in distributed source reconstruction
methods, using model evidence

* Multiple Sparse Priors (MSP)

* Flexible models that can be intermediate
between ECD and distributed solutions



Distributed source solutions with different constraints
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Dynamic Causal Modelling
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Mismatch negativity (MMN)
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with backward connections and without
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Garrido et al., PNAS, 2008



Summary

* Neural activity

Primary dipole currents reflect postsynaptic potentials in cortical
pyramidal cells. Due to ensemble coding and spatial orientation.
These induce volume currents to which EEG is sensitive. MEG
sensitive to primary and volume currents.

 Forward models

Spherical model is computationally simpler but ignores eg.
anisotropy of conductivity. More appropriate for MEG than EEG.
More realistic head models from BEM and FEM methods. MEG not

sensitive to radial dipoles.

e Source reconstruction

ECD methods have few parameters but are nonlinear. Better for
early ERP components. Distributed solutions are linear but due to
large number of parameters require additional constraints. These
constraints can be compared using Bayesian methods. Latest
methods explicitly model neural activity.
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