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In Friston et al. ((2002) Neuroimage 16: 465–483) we
introduced empirical Bayes as a potentially useful
way to estimate and make inferences about effects in
hierarchical models. In this paper we present a series
of models that exemplify the diversity of problems that
can be addressed within this framework. In hierarchi-
cal linear observation models, both classical and em-
pirical Bayesian approaches can be framed in terms of
covariance component estimation (e.g., variance par-
titioning). To illustrate the use of the expectation–
maximization (EM) algorithm in covariance compo-
nent estimation we focus first on two important
problems in fMRI: nonsphericity induced by (i) serial
or temporal correlations among errors and (ii) vari-
ance components caused by the hierarchical nature of
multisubject studies. In hierarchical observation mod-
els, variance components at higher levels can be used
as constraints on the parameter estimates of lower
levels. This enables the use of parametric empirical
Bayesian (PEB) estimators, as distinct from classical
maximum likelihood (ML) estimates. We develop this
distinction to address: (i) The difference between re-
sponse estimates based on ML and the conditional
means from a Bayesian approach and the implications
for estimates of intersubject variability. (ii) The rela-
tionship between fixed- and random-effect analyses.
(iii) The specificity and sensitivity of Bayesian infer-
ence and, finally, (iv) the relative importance of the
number of scans and subjects. The forgoing is con-
cerned with within- and between-subject variability in
multisubject hierarchical fMRI studies. In the second
half of this paper we turn to Bayesian inference at the
first (within-voxel) level, using PET data to show how
priors can be derived from the (between-voxel) distri-
bution of activations over the brain. This application
uses exactly the same ideas and formalism but, in this
instance, the second level is provided by observations
over voxels as opposed to subjects. The ensuing poste-
rior probability maps (PPMs) have enhanced anatom-
ical precision and greater face validity, in relation to
underlying anatomy. Furthermore, in comparison to
conventional SPMs they are not confounded by the
multiple comparison problem that, in a classical con-
text, dictates high thresholds and low sensitivity. We
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conclude with some general comments on Bayesian
approaches to image analysis and on some unresolved
issues. © 2002 Elsevier Science (USA)
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INTRODUCTION

In Friston et al. (2002) we reviewed empirical Bayes-
ian approaches that might find a role in neuroimaging.
Empirical Bayes enables the joint estimation of an
observation model’s parameters (e.g., activations) and
its hyperparameters that specify the observation’s
variance components (e.g., within- and between sub-
ject-variability). The estimation procedures generally
conform to EM, which, considering just the hyperpa-
rameters in linear observation models, is formally
identical to restricted maximum likelihood (ReML). If
there is only one variance component these iterative
schemes simplify to conventional, noniterative sum of
squares variance estimates. However, there are many
situations when a number of hyperparameters have to
be estimated. For example, when the correlations
among errors are unknown but can be parameterized
with a small number of hyperparameters (c.f. serial
correlations in fMRI time-series). Another important
example, in fMRI, is the multisubject design in which
the hierarchical nature of the observation induces dif-
ferent variance components at each level. The aims of
the first sections in this paper are to illustrate how
variance component estimation, with EM, can proceed
in both single-level and hierarchical contexts. Second,
we wanted to show how the variance components in
supraordinate levels can be used to give Bayesian es-
timators of effects at lower levels. In particular, the
examples emphasize that although the mechanisms
inducing non-sphericity can be very different, the vari-
ance component estimation problems they represent,
and the analytic approaches called for, are identical.

The fMRI examples are presented in two sections. In
the first we deal with the issue of variance component
estimation using serial correlations in single-subject



fMRI studies. In the second section we use a multisub-
ject fMRI study to address intersubject variability by
adding a second level to the observation model pre-
sented in the first section. Endowing the model with a
second level affords the opportunity to use empirical
Bayes. This enables a quantitative comparison of clas-
sical and conditional single-subject response estimates.
The notation and terms used in this paper follow Fris-
ton et al. (2002).

1. VARIANCE COMPONENT ESTIMATION
IN fMRI: A SINGLE-LEVEL MODEL

In this section we review serial correlations in fMRI
and use simulated data to compare ReML estimates,
obtained with EM, to estimates of correlations based
simply on the model residuals. The importance of mod-
elling temporal correlations, for classical inference
based on the T statistic, is discussed in terms of cor-
recting for nonsphericity in fMRI time-series. This sec-
tion concludes with a quantitative assessment of serial
correlations within and between subjects.

1.1 Serial Correlations in fMRI

In this section we restrict ourselves to a single-level
model and focus on the covariance component estima-
tion offered by the EM algorithm. We have elected to
use an important covariance estimation problem to
illustrate one of the potential uses of the scheme de-
scribed in Friston et al. (2002). Namely serial correla-
tions in fMRI embodied in the error covariance matrix
for the first (and only) level of this observation model
C�

(1) (as in the previous paper the superscript signifies
the hierarchical level in question). Serial correlations
have a long history in the analysis of fMRI time-series
and are still the subject of current work: fMRI time-
series can be viewed as a linear admixture of signal
and noise. Signal corresponds to neuronally mediated
hemodynamic changes that can be modeled as a [non-]
linear convolution of some underlying neuronal or syn-
aptic process, responding to changes in experimental
factors, by a hemodynamic response functions (HRF).
Noise has many contributions that render it rather
complicated in relation to other neurophysiological
measurements. These include neuronal and nonneuro-
nal sources. Neuronal noise refers to neurogenic signal
not modeled by the explanatory variables and has the
same frequency structure as the signal itself. Nonneu-
ronal components have both white (e.g., R.F. noise) and
colored components (e.g., pulsatile motion of the brain
caused by cardiac cycles and local modulation of the
static magnetic field B0 by respiratory movement).
These effects are typically low frequency or wide-band
(e.g., aliased cardiac-locked pulsatile motion) and in-
duce long range correlations in the errors over time.
Currently there are two approaches to serial correla-

tions of this sort: (i) The data are filtered with a spec-
ified filter to impose a known correlation structure on
the errors and are then entered into a generalized least
squares scheme as described in Worsley and Friston
(1995). (ii) The correlations are estimated, in some
fashion, and these estimates are used to give minimum
variance or Gauss-Markov estimators (see Eq. (15) in
Friston et al., 2002) (e.g., Purdon and Weisskoff, 1998).
These are equivalent to ordinary least squares (OLS)
estimators based on pre-whitened data (Bullmore et
al., 1996). The second approach, in principle, is more
efficient but depends upon an accurate estimation of
the serial correlations and inversion of the estimated
correlation matrix. The first approach eschews this
inversion and, more importantly, bias in the estimate
of the standard error that ensues from a mismatch
between the true and estimated correlations. However,
it does so at the expense of efficiency (see Friston et al.,
2000, for details). It would be nice to be estimate the
serial correlations directly from the data and use the
Gauss–Markov estimators but there is a fundamental
problem. In order to estimate correlations among the
errors C(�)�, in terms of some hyperparameters �, one
needs both the residuals of the model r and the covari-
ance of the parameter estimates that produced those
residuals. These combine to give the required error
covariance (c.f. Eq. (A.4) in Friston et al., 2002).

C���� � rr T � XC��yX T (1)

XC��yX
T represents the conditional covariance of the

parameter estimates C��y “projected” onto the measure-
ment space, by the design matrix X. The problem is
that the covariance of the parameter estimates is itself
a function of the error covariance. This circular prob-
lem is solved by the recursive parameter reestimation
implicit in the EM algorithm. It is worth noting that
estimators of serial correlations based solely on the
residuals (produced by any estimator) will be biased.
This bias results from ignoring the second term in (1),
which accounts for the component of error covariance
due to the inherent variability of the parameter esti-
mates themselves. It is likely that any valid recursive
scheme for estimating serial correlations in fMRI time-
series will conform to EM (or ReML) even if the con-
nection is not made explicit. See Worsley et al. (2002)
for a clever noniterative approach to AR(p) models.

In summary, the covariance estimation afforded by
EM can be harnessed to estimate serial correlations in
fMRI time series that coincidentally provide the most
efficient (i.e., Gauss-Markov) estimators of the effect
one is interested in. In this section we apply the EM
algorithm described in Friston et al. (2002) to simu-
lated fMRI data sequences and take the opportunity to
establish the connections among some commonly em-
ployed inference procedures based upon the T statistic.
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This section concludes with an application of EM to
empirical data to demonstrate quantitatively the rela-
tive variability in serial correlations over voxels and
subjects.

1.2 Estimating Serial Correlations

For each fMRI session we have a single-level obser-
vation model that is specified by the design matrix X(1)

and constraints on the observation’s covariance struc-
ture Qi

(1), in this case serial correlations among the
errors.

y � X �1�� �1� � � �1�

Q 1
�1� � I (2)

Q 2
�1� � KK T, kij � �e j�i i � j

0 i � j

y is the measured response with errors �(1) � N{0, C�
(1)}.

I is the identity matrix.1 Here Q1
(1) and Q2

(1) represent
covariance components of C�

(1) that model a white noise
and an autoregressive AR(1) process with an AR coef-
ficient of 1/e � 0.3679. Notice that this is a very simple
model of autocorrelations; by fixing the AR coefficient
there are just two hyperparameters that allow for dif-
ferent mixtures of an AR(1) process and white noise
(c.f. the 3 hyperparameters needed for a full AR(1) plus
white noise model). The AR(1) component is modeled
as an exponential decay of correlations over nonzero
lag.

These bases were chosen given the popularity of AR
plus white noise models in fMRI (Purdon and Weiss-
koff, 1998). Clearly this basis set can be extended in
any fashion using Taylor expansions to model devia-
tions of the AR coefficient from 1/e or indeed model any
other form of serial correlations. Nonstationary auto-
correlations are modeled by using non-Toeplitz forms
for the bases that allow the elements in the diagonals
of Qi

(1) to vary over observations. This might be useful,
for example, in the analysis of event-related potentials,
where the temporal frequency structure of errors may
change with peristimulus time.

In the examples below the covariance constraints
were scaled to a maximum of one. This means that the
second hyperparameter can be interpreted directly as
the covariance between one scan and the next. The
basis set enters, along with the data, into the EM
algorithm to provide ML estimates of the parameters
�(1) and ReML estimates of the hyperparameters �(1).

An example, based on simulated data, is shown in
Fig. 1. In this example the design matrix comprised a

boxcar regressor and the first 16 components of a dis-
crete cosine set. The simulated data corresponded to a
compound of this design matrix (see Fig. 1 legend) plus
noise, coloured using hyperparameters of 1 and 0.5 for
the white and AR(1) components respectively. The top
panel shows the data (dots), the true and fitted effects
(broken and solid lines). For comparison, fitted re-
sponses based on both ML and OLS (ordinary least
squares) are provided. The insert in the upper panel
shows these estimators are very similar but not iden-
tical. The lower panel shows the true (dashed) and
estimated (solid) autocorrelation function based on C�

(1)

� �1
(1)Q1

(1) � �2
(1)Q2

(1). They are nearly identical. For com-
parison the sample autocorrelation function (dotted
line) and an estimate based directly on the residuals
[i.e., ignoring the second term of (1)] (dot-dash line) are
provided. The underestimation, that ensues using the
residuals, is evident in the insert that shows the true
hyperparameters (black), those estimated properly us-
ing ReML (white) and those based on the residuals
alone (grey). By failing to account for the variability of
the parameter estimates, the hyperparameters based
only on the residuals are severe underestimates. The
sample autocorrelation function even shows negative
correlations. This is a result of fitting the low frequency
components of the design matrix. One way of under-
standing this is to note that the autocorrelations
among the residuals are not unbiased estimators of C�

(1)

but RC�
(1)RT, where R is the residual-forming matrix

(see Eq. (5)). In other words, the residuals are not the
true errors but what is left after projecting them onto
the null space of the design matrix.

The full details of this simulated single-session, box-
car design fMRI study are provided in Fig. 1 legend.

1.3 Inference in the Context of Nonsphericity2

This subsection explains why covariance component
estimation is so important for inference. In short, al-
though the parameter estimates may not depend on
sphericity, the standard error, and ensuing statistics
do. Because this is a single-level model, classical and
empirical Bayes are the same and the standardized
conditional mean reduces to a classical T statistic
based on the Gauss-Markov estimator (GM/scm in Fig.
2) (see Section 2.6 in Friston et al., 2002). This T
statistic can be compared to that which would have
been obtained if we had ignored the serial correlations
(i.e., had not included the second covariance constraint
modeling the AR process above). In this instance the
conditional covariance reduces to the standard error of
the OLS estimate because there are no priors and the
errors are assumed to be i.i.d. In the context of serial

1 In this and the subsequent paper Im will represent the identity
matrix of size m � m. Similarly we will denote a m � 1 vector of zeros
by 0m and a vector of ones by 1m.

2 A Gaussian i.i.d. process is identically and independently distrib-
uted and has a probability distribution whose isocontours conform to
a sphere. Any departure from this is referred to as nonsphericity.
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correlation’s the OLS standard error is biased, leading
to an underestimate and an inflated T value (i.i.d. in
Fig. 2). The difference between the two T values is due
to a departure from i.i.d. assumptions that is not ac-
commodated by the OLS scheme. This departure is

referred to as nonsphericity in analysis of variance and
usually calls for some nonsphericity correction.

The impact of serial correlations on inference was
noted early in the fMRI analysis literature (Friston et
al., 1994) and led to the generalized least squares

FIG. 1. Top panel: True response (an activation plus random low frequency components) and that based on the OLS and ML estimators
for a simulated fMRI experiment. The insert shows the similarity between the OLS and ML predictions. Lower panel: True (dashed) and
estimated (solid) autocorrelation functions. The sample autocorrelation function of the residuals (dotted line) and the best fit in terms of the
covariance constraints (dot-dashed) are also shown. The insert shows the true covariance hyperparameters (black), those obtained just using
the residuals (grey) and those estimated by the EM algorithm (white). Note, in relation to the EM estimates, those based directly on the
residuals severely underestimate the actual correlations. The simulated data comprised 128 observations with an interscan interval of 2 s.
The activations were modeled with a box-car (duty cycle 64 s) convolved with a canonical hemodynamic response function and scaled to a peak
height of 2. The constant terms and low frequency components were simulated with a linear combination of the first 16 components of a
discrete cosine set, each scaled by a random unit Gaussian variate. Serially correlated noise was formed by filtering unit Gaussian noise with
a convolution kernel based on covariance hyperparameters of 1.0 [uncorrelated or white component] and 0.5 [AR(1) component].
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(GLS) scheme described in Worsley and Friston (1995).
In this scheme one starts with any observation model
that is premultiplied by some weighting or convolution
matrix S to give

Sy � SX �1�� �1� � S� �1� (3)

The GLS parameter estimates and their covariance are

�LS � Ly

Cov��LS	 � LC �
�1�L T (4)

L � �X �1�TVX �1�� �1X �1�V,

where V � STS represents the correlations induced by
S. These estimators minimize the generalized least
square index (y � X(1)�LS)TV(y � X(1)�LS). This family of
estimators are unbiased but not necessarily ML esti-
mates. The Gauss–Markov estimator is the minimum
variance and ML estimator that obtains when V �
C�

(1)�1. From Eq. (3) it can be seen that this special case
is the same as whitening the data with a decorrelating
convolution matrix and then using an OLS estimator.
Usually one would use the ML estimator. However,
there are some situations where a GLS estimator is
more practical. For example, when using the same
design matrix and filtering for every voxel, the ensuing
estimators are GLS if the serial correlations at each

voxel are slightly different precluding an exact ML
estimate at any single voxel.3

The T statistic corresponding to the GLS estimator is
distributed with v degrees of freedom where (Worsley
and Friston, 1995)

T �
c T�LS

�c TCov��LS	c

v �
tr�RSC �

�1�S	 2

tr�RSC �
�1�SRSC �

�1�S	
(5)

R � 1 	 X �1�L.

The effective degrees of freedom are based on an ap-
proximation due to Satterthwaite (1941). This formu-
lation is formally identical to the nonsphericity correc-
tion elaborated by Box (1954), which is commonly
known as the Geisser–Greenhouse correction in classi-
cal analysis of variance, ANOVA (Geisser and Green-
house, 1958). Note that in Fig. 2 the T statistic based
on the GLS estimator (WF) is slightly bigger than the
standardized conditional mean, but has a null distri-
bution with fewer degrees of freedom.

The key point here is that EM can be employed to
give ReML estimates of correlations among the errors
that enter into (5) to enable classical inference, prop-
erly adjusted for nonsphericity, about any GLS estima-
tor. The inference is exact, to the extent that the Sat-
terthwaite approximation holds, and is the basis of the
Geisser–Greenhouse correction in ANOVA and v the
effective degrees of freedom in Worsley and Friston
(1995). The ensuing T statistic for the simulated fMRI
data, for S � 1 (i.e., no temporal filtering), is shown in
Fig. 2.

EM finds a special role in enabling inferences about
GLS estimators in statistical parametric mapping.
When the relative values of hyperparameters can be
assumed to be stationary over voxels, ReML estimates
can be obtained using the sample covariance of the
data over voxels, in a single EM (see Eq. (A.7) in

3 As discussed in Friston et al. (2000) the GLS scheme was origi-
nally introduced to ensure robust estimates of variance in the face of
unknown serial correlations. In that paper, the hyperparameter was
estimated using the filtered residuals

� �
tr�SRyyTR TS T	

tr�SRQ �1�R TS T	
�

y TR TS TSRy

tr�RSQ �1�S	

This estimate is generally more robust to misspecification of the form
of serial correlations Q(1) if a suitable form for S is adopted. One mild
but obvious misspecification is when the same correlation structure
is assumed for every voxel. When S � C�

�1/2 this is the ReML esti-
mator (see footnote 3 in Friston et al., 2002). In Friston et al. (2000)
the residual forming matrix R is related to the current notation by
SR � RS.

FIG. 2. T statistics based on the simulated data of Fig. 1. These
corresponding to; (i) the standardized ordinary least square estima-
tor under i.i.d. assumptions about the error terms (i.i.d.). The stan-
dardized conditional mean which is equivalent to the standardized
Gauss–Markov estimator obtained using the correlation structure
estimated by the EM algorithm (GM/scm) and (iii) the standardized
generalized least squares estimator of Worsley and Friston (1995)
using the same correlation estimate (WF). All are valid apart from
the naive i.i.d. scheme that ignores serial correlations or non-sphe-
ricity among the errors. The degrees of freedom (d.f.) are provided for
each statistic and were calculated according to (5).
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Friston et al., 2002). After renormalization, the ensu-
ing estimate of the nonsphericity Q(1) � ¥ �kQk

(1) speci-
fies the serial correlations in terms of a single basis.
Voxel-specific hyperparameters can now be estimated
in a non-iterative fashion in the usual way, because
there is only one hyperparameter to estimate (see foot-
note 3 of Friston et al., 2002, and this paper). This is
very convenient from a computational perspective.
This device is not limited to serial correlations in fMRI
but can be applied in any context where nonsphericity
is an issue. We will pursue this in a subsequent paper
dealing with nonsphericity correction in multistage
analyses of fMRI data.

1.4 Application to Empirical Data

In this subsection we address the variability of serial
correlations over voxels within subject and over sub-
jects within the same voxel. Here we are concerned
only with the form of the correlations (see Section
2.3 for a discussion of between-subject error variance
per se).

Using the model specification in (2) serial correla-
tions were estimated using EM in 12 randomly selected
voxels from the same slice from a single subject. The
results are shown in Fig. 3 (left panel) and show that
the correlations from one scan to the next can vary
between about 0.1 and 0.4. The data sequences and
experimental paradigm are described in the figure leg-
end. Briefly these data came from an event-related

study of visual word processing in which new and old
words (i.e., encoded during a prescanning session) were
presented in a random order with a stimulus onset
asynchrony (SOA) of about 4 s. These data will be used
again in the next section. Although the serial correla-
tions within subject vary somewhat there is an even
greater variability from subject to subject at the same
voxel. The right hand panel of Fig. 3 shows the auto-
correlation functions estimated separately for 12 sub-
jects at a single voxel. In this instance, the correlations
between one scan and the next range from about �0.1
to 0.3 with a greater dispersion relative to the within-
subject autocorrelations.

1.5 Summary

These results are provided to illustrate one potential
application of covariance component estimation, not to
provide an exhaustive characterization of serial corre-
lations. This sort of application may be important
when it comes to making assumptions about models for
serial correlations at different voxels or among sub-
jects. We have chosen to focus on a covariance estima-
tion problem that requires an iterative parameter re-
estimation procedure in which the hyperparameters
controlling the covariances depend on the variance of
the parameter estimates and vice versa. There are
other important applications of covariance component
estimation we could have considered (although not all
require an iterative scheme). One example is the esti-
mation of condition-specific error variances in PET and
fMRI. In conventional SPM analyses one generally as-
sumes that the error variance expressed in one condi-
tion is the same as that in another. This represents a
sphericity assumption over conditions and allows one
to pool several conditions when estimating the error
variance. Assumptions of this sort, and related sphe-
ricity assumptions in multi-subject studies, can be eas-
ily addressed in unbalanced designs, or even in the
context of missing data, using EM.

2. VARIANCE COMPONENT ESTIMATION
IN fMRI: TWO-LEVEL MODELS

In this section we augment the model of the previous
section with a second level. This engenders a number of
important issues, including (i) the distinction between
fixed- and random-effect inferences about the subjects’
responses, (ii) the opportunity to make Bayesian infer-
ences about single-subject responses and (iii) the role of
variance component estimation in power analyses of
classical inference at the second level. As in previous
sections we start with model specification, proceed to
simulated data and conclude with an empirical exam-
ple. In this section the second level represents obser-
vations over subjects. Analyses of simulated data are
used to illustrate the distinction between fixed- and

FIG. 3. Estimates of serial correlations expressed as autocorre-
lation functions based on empirical data. Left panel: Estimates from
12 randomly selected voxels from a single subject. Right panel:
Estimates from the same voxel over 12 different subjects. The voxel
was in the cingulate gyrus and came from same slice reported in
Section 2. The empirical data are described in Henson et al. (2000).
They comprised 300 vol, acquired with EPI at two Tesla and a TR of
3 s. The experimental design was stochastic and event-related look-
ing for differential response evoked by new relative to old (studied
prior to the scanning session) words. Either a new or old word was
presented visually with a mean stimulus onset asynchrony (SOA) of
4 s (SOA varied randomly between 2.5 and 5.5 s). Subjects were
required to make an old vs new judgment for each word. The design
matrix for these data comprised two regressors (early and late) for
each of the four trial types (old vs new and correct vs incorrect) and
the first 16 components of a discrete cosine set (as in the simula-
tions).
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random-effect inferences by looking at how their re-
spective T values depend on the variance components
and design factors. The empirical analyses are used to
assess, quantitatively, the sensitivity and specificity of
Bayesian inference at the first level and classical in-
ference at the second. The fMRI data are the same as
used in section 1 and comprise event-related time-
series from 12 subjects. We chose a data set that would
be difficult to analyze rigorously using software avail-
able routinely. These data not only evidence serial
correlations but also the number of trial-specific events
varied from subject to subject, giving an unbalanced
design.

2.1 Model Specification

The observation model here comprises two levels
with the opportunity for subject-specific differences in
error variance and serial correlations at the first level
and parameter-specific variance at the second. The
estimation model here is simply an extension of that
used in the previous section to estimate serial correla-
tions. Here it embodies a second level that accommo-
dates observations over subjects.

level one y � X �1�� �1� � � �1�

�
y1

···
ys
� � �

X 1
�1� · · · 0
···

· · ·
···

0 · · · X s
�1�
��

� 1
�1�

···
� s

�1�
� � � �1�

Q 1
�1� � �

It · · · 0
···

· · ·
···

0 · · · 0
� , . . . , Q s

�1� � �
0 · · · 0
···

· · ·
···

0 · · · It
�

Q s�1
�1� � �

KK T · · · 0
···

· · ·
···

0 · · · 0
� , . . . ,

Q 2s
�1� � �

0 · · · 0
···

· · ·
···

0 · · · KK T
�

(6)

level two � �1� � X �2�� �2� � � �2�

X �2� � 1s � Ip

Q 1
�2� � Is � �

1 · · · 0
···

· · ·
···

0 · · · 0
� , . . . ,

Q p
�2� � Is � �

0 · · · 0
···

· · ·
···

0 · · · 1
�

for s subjects each scanned on t occasions and p param-
eters. The Kronecker tensor product A V B simply
replaces the element of A with AijB. An example of
these design matrices and covariance constraints were
shown, respectively, in Figs. 1 and 3 of Friston et al.
(2002). Note that there are 2s error covariance con-
straints, one set for the white noise components and
one for AR(1) components. Similarly, there are as
many prior covariance constraints as there are param-
eters at the second level.

2.2 Simulations

In the simulations we used 128 scans for each of 12
subjects. The design matrix comprised three effects,
modeling an event-related hemodynamic response to
frequent but sporadic trials (in fact the instances of
correctly identified “old” words from the empirical ex-
ample below) and a constant term. Activations were
modeled with two regressors, constructed by convolv-
ing a series of delta functions with a canonical hemo-
dynamic response function (HRF)4 and the same func-
tion delayed by 3 s. The delta functions indexed the
occurrence of each event. These regressors model
event-related responses with two temporal compo-
nents, which we will refer to as “early” and “late” (c.f.
Henson et al., 2000). Each subject-specific design ma-
trix therefore constituted three columns giving a total
of 36 parameters at the first level and three at the
second. The HRF basis functions were scaled so that a
parameter estimate of one corresponds to a peak re-
sponse of unity. After division by the grand mean, and
multiplication by 100, the units of the response vari-
able and parameter estimates were rendered adimen-
sional and correspond to percent whole brain mean
over all scans. The simulated data were generated
using (6) with unit Gaussian noise coloured using a
temporal, convolution matrix (¥ �k

(1)Qk
(1))1/2 with first-

level hyperparameters �j
(1) � 0.5 and �0.1 for each

subject’s white and AR(1) error covariance compo-
nents, respectively. The second level parameters and
hyperparameters were �(2) � [0.5, 0, 0]T, �(2) � [0.02,
0.006, 0]T. These model substantial early responses
with an expected value of 0.5% and a standard devia-
tion over subjects of 0.14% (i.e., square root of 0.02).
The late component was trivial with zero expectation
and a standard deviation of 0.077%. The third or con-
stant terms were discounted with zero mean and vari-
ance. These values were chosen because they are typ-
ical of real data (see below).

Figures 4 and 5 show the results after entering the
simulated data into the EM algorithm to estimate

4 The canonical HRF was the same as that employed by SPM. It
comprises a mixture of two gamma variates modeling peak and
undershoot components and is based on a principal component anal-
ysis of empirically determined hemodynamic responses, over voxels,
as described in Friston et al. (1998).
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the conditional mean and covariances of the subject-
specific evoked responses. Figure 4 shows the
estimated hyperparameters and parameters (black)
alongside the true values (white). The first-level hyper-
parameters controlling within subject error (i.e., scan
to scan variability) are estimated in a reasonably reli-
able fashion but note that these estimates show a
degree of variation about the veridical values (see

Conclusion). In this example the second-level hyperpa-
rameters are over-estimated but remarkably good
given only 12 subjects. The parameter estimates at the
first and second levels are again very reasonable, cor-
rectly attributing the majority of the experimental
variance to an early effect. Figure 4 should be com-
pared with Fig. 7 that shows the equivalent estimates
for real data.

The top panel in Fig. 5 shows the ML estimates
that would have been obtained if we had used a
single-level model. These correspond to response es-
timates from a conventional fixed-effects analysis.
The insert shows the classical fixed-effect T values,
for each subject, for contrasts testing early and late
response components. Although these T values prop-
erly reflect the prominence of early effects their vari-
ability precludes any threshold that could render the
early components significant and yet exclude false
positives pertaining to the late component. The lower
panel highlights the potential of revisiting the first
level, in the context of a hierarchical model. It shows
the equivalent responses based on the conditional
mean and the posterior inference (insert) based on
the conditional covariance. This allows us to reiter-
ate some points made in Friston et al. (2002). First,
the parameter estimates and ensuing response esti-
mates are informed by information abstracted from
higher levels. Secondly this prior information en-
ables Bayesian inference about the probability of an
activation that is specified in neurobiologically
meaningful terms.

In Fig. 5 the estimated responses are shown (solid
lines) with the actual responses (broken lines). Note
how the conditional estimates show a regression or
“shrinkage” to the conditional mean. In other words,
their variance shrinks to reflect, more accurately,
the variability in real responses. In particular the
spurious variability in the apparent latency of
the peak response in the ML estimates disappears
when using the conditional estimates. This is be-
cause the contribution of the late component, that
induces latency differences, is suppressed in the con-
ditional estimates. This, in turn, reflects the fact
that the variability in its expression over subjects is
small relative to that induced by the observation
error. Simulations like these suggest that character-
izations of intersubject variability using ML ap-
proaches can severely overestimate the true vari-
ability. This is because the ML estimates are
unconstrained and simply minimize observation er-
ror without considering how likely the ensuing inter-
subject variability is.

The posterior probabilities (insert) are a function of
the conditional mean ���y

(1) and covariance C��y
(1) and a size

threshold 
 � 0.1 that specifies an “activation.”

FIG. 4. The results of an analysis of simulated event-related
responses in a single voxel. Parameter and hyperparameter esti-
mates based on a simulated fMRI study are shown in relation to the
true values. The simulated data comprised 128 scans for each of 12
subjects with a mean peak response over subjects of 0.5%. The
construction of these data is described in the main text. Stimulus
presentation conformed to the presentation of “old” words in the
empirical analysis described in the main text. Serial correlations
were modeled as in Section 1. Upper left: first-level hyperparam-
eters. The estimated subject-specific values (black) are shown along-
side the true values (white). The first 12 correspond to the “white”
term or variance. The second 12 control the degree of autocorrelation
and can be interpreted as the covariance between one scan and the
next. Upper right. Hyperparameters for the early and late compo-
nents of the evoked response. Lower left: The estimated subject-
specific parameters pertaining to the early and late response com-
ponents are plotted against their true values. Lower right: The
estimated and true parameters at the second level representing the
conditional mean of the distribution from which the subject-specific
effects are drawn.
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The contrast weight vectors were cearly � [1, 0, 0]T and
clate � [0, 1, 0]T. As expected, the probability of the early

response component being greater than 
 was uni-
formly high for all 12 subjects, whereas the equivalent
probability for the late component was negligible. Note
that, in contradistinction to the classical inference,
there is now a clear indication that each subject ex-
pressed an early response but no late response.

FIG. 5. Response estimates and inferences about the estimates described in the legend of Fig. 4: Upper panel: True (dotted) and ML
(solid) estimates of event-related responses to a stimulus over 12 subjects. The units of activation are adimensional and correspond to percent
of whole brain mean. The insert shows the corresponding subject-specific T values for contrasts testing for early and late responses. Lower
panel: The equivalent estimates based on the conditional means. It can be seen that the conditional estimates are much “tighter” and reflect
better the intersubject variability in responses. The insert shows the posterior probability that the activation was greater than 0.1%. Because
the responses were modeled with early and late components (basis functions corresponding to canonical hemodynamic response functions,
separated by 3 s) separate posterior probabilities could be computed for each. The simulated data comprised only early responses as reflected
in the posterior probabilities.
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2.3 Classical Fixed- and Random-Effect Analyses

In this subsection we focus on the importance of
covariance component estimation from a classical per-
spective, in particular the differences in classical infer-
ence using fixed (single-level) and random (two-level)
effect analyses. In this two-level model the variance
partitioning is

E�yy T	 � C �
�1�

error

� X �1�C �
�2�X �1�T

2nd-level random effects

� X �1�X �2�� �2�� �2�TX �2�TX �1�T

fixed effects

(8)

The first term on the right is simply observation error.
The second term corresponds to variance in the re-
sponse variable due to between-subject variability in
the parameters that is projected down to the observa-
tion space by the first-level design matrix. The final
term corresponds to the sum of squares due the fixed
effects at the second level (i.e., the mean effects over
subjects) projected down by the design matrices at both
levels. Observation error corresponds to within-subject
error, second-level random effects correspond to be-
tween-subject error and the fixed effects to the vari-
ance attributable to activations per se.

What implications does this variance partitioning
have for the classical inference? Recall from equation
(9) in Friston et al. (2002) that the T statistic can be
expressed in terms of error variances at all levels spec-
ified. For this two-level model the random effects T
statistic is

T �2� � c TM �2�y/�c TM �2�C �̃M �2�Tc
(9)

C �̃ � C �
�1� � X �1�C �

�2�X �1�T,

where M(2) is the ML projector as defined in (7) in
Friston et al. (2002). The second expression is the com-
bined error in the observation that contributes to the
standard error of the contrast. It comprises within-
subject error and between-subject error projected by
the first-level design matrix onto the observation space
(i.e., random effects). Their relative contributions to
the standard error of the T statistic can be understood
in terms of the difference between random and fixed-
effect inference in classical analyses:

Pretend that we had only specified our model to the
first level. To test for the mean activation we would
have to augment c to average over subjects giving
c(1)T � cTX(2)� (� denotes pseudoinverse). Here the sec-
ond-level design matrix enters, not as a constraint on
the parameter expectations but directly into the con-
trast at the first level. The corresponding fixed effects T
statistic is

T �1� � c TX �2��M �1�y/�c TX �2��M �1�C �̃M �1�TX �2��Tc
(10)

C �̃ � C �
�1�.

For balanced designs with equal variances, X(2)�M(1) �
M(2). In this case the only difference between the two T
statistics is the contribution of the random effects
X(1)C�

(2)X(1)T to the standard error. This contribution will
be large when (i) the second-level error is big or (ii)
when the first-level design matrix amplifies its projec-
tion onto the observation space, i.e., many observations
at the first level, relative to the second. This accounts
for the well-known fact that the distinction between
the fixed and random-effect T statistics is greater when
the within-subject error is small relative to between-
subject error and when there are many repeated mea-
sures per subject. This is why random effect analyses
are more critical in fMRI than in PET. In fMRI the
scan to scan variability is much smaller than in PET
and typically there are many more scans per session in
fMRI.

These points are illustrated in Fig. 6 where the T
statistics were computed according to (9) and (10) us-
ing the estimated parameters and hyperparameters
from the simulation. In the upper panel the first-level
design matrix was decimated to reduce the number of
scans per subject. It can be seen that at around 16
scans the fixed (broken line) and random-effect (solid
line) T statistics converge, whereas there is a substan-
tial difference by 32 scans. In the lower panel the error
covariance was scaled while keeping the design matri-
ces constant. In this illustration, as the error covari-
ance falls to zero the fixed-effect T statistic tends to
infinity whereas the random-effect T statistic properly
reflects the intrinsic between-subject variability.

In summary, covariance component estimation is
critical for inference in hierarchical models because
mixtures of variance components are required to com-
pute the standard error of contrasts. In random-effect
analyses intersubject differences are treated as a vari-
ance component, rendering the inference about a
contrast of effects relative to that contrast’s inherent
variability. In fixed-effect analyses this variance
component is discounted and the inference is in rela-
tion to the precision with which the effect can be mea-
sured.

2.4 Empirical Analyses

Here the analysis is repeated using real data and the
results compared to those obtained using simulated
data. We focus first on the parameter and hyperparam-
eter estimates and how these are used to form posterior
probability maps or PPMs. We then use the covariance
component estimates to quantify the specificity and
sensitivity of Bayesian inference at the first level, and
classical inference at the second. The empirical data
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are described in Henson et al. (2000). Briefly, they
comprised 128� scans in 12 subjects. Only the first 128
scans were used below. The experimental design was
stochastic and event-related, looking for differential
responses evoked by new relative to old (studied prior
to the scanning session) words. Either a new or old
word was presented every 4 s or so (SOA varied be-
tween 2.5 and 5.5 s). In this design one is interested
only in the differences between evoked responses to the
two stimulus types. This is because the efficiency of the
design to detect the effect of stimuli per se is negligible
with such a short SOA. Subjects were required to make
an old vs. new judgment for each word. Drift (the first

8 components of a discrete cosine set) and the effects of
incorrect trials were treated as confounds and were
removed using linear regression.5 The first-level sub-
ject-specific design matrix partitions comprised four
regressors with early and late effects for both old and
new words.

The analyses proceeded in exactly the same way as
for the simulated data. The only difference was that
the contrast tested for differences between the two
word types (i.e., c � [1, 0, �1, 0]T for an old minus new
early effect). The hyperparameter and parameter esti-
mates, for a voxel in the cingulate gyrus (BA 31; �3,
�33, 39 mm), are shown in Fig. 7, adopting the same

5 Strictly speaking the projection matrix implementing this adjust-
ment should also be applied to the covariance constraints but this
would (i) render the constraints singular and (ii) ruin their sparsity
structure. We therefore omitted this and ensured, in simulations,
that the adjustment had a negligible effect on the hyperparameter
estimates.

FIG. 6. Comparison of fixed and random-effect T values. Upper
panel: The relationship between the T values based on a single-level
(FFX—broken line) and two-level hierarchical model (RFX—solid
line) as a function of the number of scans for each subject’s session.
Lower panel: Equivalent relationship as a function of relative with-
in-subject error (the dashed vertical line corresponds to the error
estimated empirically). In the limit of high within-subject error, or
variability in its estimate due to a small number of scans the two T
statistics converge. These results used the hyperparameter esti-
mates from the analysis of the simulated data described in the
legend of Fig. 4.

FIG. 7. Estimation of differential event-related responses in real
data. The format of this figure is identical to that of Fig. 4. The only
differences are that these results are based on real data where the
response is due to the difference between studied or familiar (old)
words and novel (new) words. In this example we used the first 128
scans from 12 subjects. Clearly in this figure we cannot include true
effects.
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format as in Fig. 4. Here we see that the within-subject
error varies much more in the empirical data with the
last subject showing almost twice the error variance of
the first subject. As we found in Section 1 the serial
correlations vary considerably from subject to subject
and are not consistently positive or negative. The sec-
ond-level hyperparameters showed the early compo-
nent of the differential response to be more reliable
over subjects than the late component (0.007 and 0.19,
respectively). All but two subjects had a greater early
response, relative to late, which on average was about
0.28%. In other words, activation differentials, in the
order of 0.3%, occurred in the context of an observation
error with a standard deviation of 0.5% (see Fig. 7).
The intersubject variability was about 30% of the mean
response amplitude. A component of the variability in
within-subject error is due to uncertainty in the ReML
estimates of the hyperparameters (see Section 6.1) but
this degree of inhomogeneity is substantially more
than in the simulated data (where subjects had equal
error variances). It is interesting to note that, despite
the fact that the regressors for the early and late com-
ponents had exactly the same form, the between-sub-
ject error for one was less than half that of the other.
Results of this sort speak to the prevalence of non-
sphericity (in this instance heteroscedasticity or un-
equal variances) and a role for the analyses illustrated
here.

The response estimation and inference are shown in
Fig. 8. Again we see the characteristic “shrinkage”
when comparing the ML to the conditional estimates.
It can be seen that all subjects, apart from 1 and 3, had
over a 95% chance of expressing an early differential of
0.1% or more. The late differential response was much
less consistent, although one subject expressed a dif-
ference with about 84% confidence.

2.5 Posterior Probability Maps (PPMs)

The analysis was repeated for all voxels, in the slice
containing the voxel reported above, surviving a con-
ventional fixed-effect analysis for any condition-related
effect using a capricious F ratio (P � 0.001 uncorrect-
ed). The distributions, over voxels, of the contrast test-
ing for an early differential response are shown in Fig.
9. The differential activations from a single subject
(subject 5) range from about �0.28% to 0.75%. It is
interesting to note that even with the pre-selection of
both activated and deactivated voxels, the distribution
is unimodal and shows positive skew (upper left panel).
In contradistinction the activations at the second level,
over subjects, are roughly Gaussian (upper right
panel). This distribution is interesting for two reasons.
First, its central nature suggests voxels show an equal
tendency to activate and deactivate even within a slice.
Global normalization would require the masses under
the positive and negative sides of the distribution to be

equal, over the entire brain, but not for a subset of
voxels from a single slice. More importantly the uni-
modal distribution suggests that activations are con-
tinuously distributed and speak against two distinct
distributions for activated and nonactivated voxels.
This touches on the assumption made in the next sec-
tion, in which observations over voxels constitute the
second level. The distributions of within and between-
subject error, over voxels, are presented in the lower
panels of Fig. 9. These are the conditional variances
of the contrasts in the upper panels. Both correspond
to scaled chi-squared distributions with a mean
within- and between-subject error of 0.72% (stan-
dard error) and 0.13% (standard error), respectively.
This means that the within-subject error is about the
same as the maximum activations expressed by
subjects. Similarly the between-subject variability
is only slightly less than the maximum activation
averaged over subjects.

The posterior probabilities of differential activa-
tions (early component) for the first subject were
calculated using (7) and assembled into a PPM
(Fig. 10). The PPM is shown alongside the corre-
sponding conventional fixed-effect SPM{T} for this
subject. The upper panels show the relationship be-
tween the posterior probabilities and conditional
means (left) and the fixed-effect T values (right).
Notice that when the conditional mean approaches
the size threshold used for posterior inference (in
this case 0.1%) the posterior probabilities approach
50%. The PPM identifies enhanced activation for
studied words in the right prefrontal, bilateral pos-
terior parietal, cingulate cortices and the precuneus.
A similar profile, although less complete, obtains
from the SPM{T} thresholded at P � 0.001 uncor-
rected. The critical thing to note is that there is no
simple one to one relationship between the fixed-
effect T value and the posterior probability (see the
upper right panel). The discrepancy between the
SPM and PPM reflects the essential differences in
the nature of the inference and the implied specific-
ity and sensitivity. As discussed in Section 3 of the
previous paper (Friston et al., 2002) the PPM has the
latitude to adjust its specificity and sensitivity ac-
cording to the inherent variability of the activations
over subjects and the local error variance. It does
this to maintain focus on the object of the inference;
namely whether the activation is greater than the
specified threshold. In contradistinction the SPM{T}
has no notion of how variable the response is or how
big the response has to be before it is meaningful. It
simply adopts the same specificity for all brain re-
gions. The sensitivity and specificity of Bayesian in-
ferences in this example are now dealt with in more
detail.
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2.6 Sensitivity and Specificity of Bayesian Inference

In section 2.5 we introduced some heuristics concern-
ing the sensitivity and specificity of Bayesian inference in
relation to classical inference. In this subsection we con-
sider this issue in quantitative terms using the empirical

estimates of error and prior covariances from the previ-
ous analysis. By extending the expressions in Section 3 in
Friston et al. (2002) to cover design matrices with multi-
ple columns, we can compute the sensitivity and specific-
ity of the thresholding PPMs (at a confidence level spec-
ified by the Z-variate u).

FIG. 8. The format of this figure is identical to that of Fig. 5. The only differences are that these results are based on real data were the
response is due to the difference between studied or familiar (old) words and novel (new) words. The same regression of conditional responses
to the conditional mean is seen on comparing the ML and conditional estimates. In relation to the simulated data, there is more evidence for
a late component but no late activation could be inferred for any subject with any degree of confidence. The voxel from which these data were
taken was in the cingulate gyrus (BA 31) at �3, �33, 39 mm.
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Here the contrast weights c were chosen to test for
early activation differentials in the first subject, at the
cingulate voxel reported above. Superscripts have been
dropped from (11) because these expressions hold for
any level considered. Here we are dealing with Bayes-
ian inference at the first level. Both sensitivity and
specificity are functions of the size threshold 
 speci-
fied, whereas only sensitivity is a function of A, the
true effect. Figure 11 shows the sensitivity or power �
(solid line) and false positive rate � � 1 � specificity
(broken line) as functions of the size threshold. These
results are for 90% confidence, given a true activation
of 0.5% (vertical line). As one might expect both power
and false positive rate increase as the threshold is
reduced. The lower panel shows the same relationship
but on a semilog scale. It can be seen that false positive
rate approaches very small levels as the threshold ap-
proaches the true activation. In the example shown, a
voxel would be correctly declared as activating by 0.1%
or more on about 50% of occasions while retaining
considerable specificity (� � 10�4). Conversely we can
examine sensitivity and specificity as functions of the
true activation for a fixed size threshold. Figure 12
shows the results for a threshold that maintains a low
false positive rate of � � 10�4 (vertical line). Specificity
is not a function of the true activation but sensitivity
increases dramatically with activations above 0.4%.

Finally, we demonstrate the dependence on error
variance. This is interesting because different error
variances in different brain regions imply that Bayes-
ian inference has a self-adjusting sensitivity and spec-
ificity depending on the local noise. Figure 13 shows
power and false positive rate as functions of relative
error variance, modeled by scaling the error covariance
between 0 and 4 while holding the true activation and
threshold fixed. For relatively large errors, sensitivity
and false positive rate fall in tandem with increasing
error. However, the critical thing to note is that the
proportional difference between the power and false
positive rate in the semilog plot (lower panel) decreases
with relative error variance. This means that the
power, relative to false positive rate falls more slowly
with increasing error. In other words, the balance be-
tween specificity and sensitivity is implicitly adjusted
depending on the reliability of the measured response.

2.7 Sensitivity and Specificity of Classical Inference

In this final subsection we turn to inference at
the final level using the ML estimator and the T
statistic. The aim here is to demonstrate how the
covariance component estimation can be useful from
a purely classical perspective. We do this by using
the variance partitioning to evaluate how the sensi-
tivity of a classical second-level inference depends on
the relative number of subjects and scans. We cre-
ated a series of synthetic balanced designs in which

FIG. 9. Results from an analyses over multiple voxels selected on
the basis of a conventional SPM analysis (F test for all event-related
responses, P � 0.001, uncorrected) at z � 39 mm. Upper left panel:
Distribution of a contrast of conditional mean responses, here the dif-
ferential peak response evoked by old words relative to new, in terms of
the early component. This distribution is for subject 5. The noncentral
nature and skew of this distribution suggests that regional responses in
this part of the brain tend to be greater for “old” relative to “new” words.
However, relative deactivations are nearly as prevalent. A reasonable
differential activation, in this context would be about 0.2%. Upper right
panel: Equivalent contrast at the second level reflecting conditional
responses averaged over subjects. Lower left panel: Distribution of
within-subject error over the same voxels. This corresponds to the
conditional variance of this subject-specific contrast. The average stan-
dard deviation of this error is 0.72%. Therefore responses of about 0.3%
are occurring in the context of errors that are over twice their magni-
tude. Lower panel: Between-subject error over the same voxels. This
represents the variability in responses over subjects. It can be seen that
the average standard deviation (0.13%) is a little less than the magni-
tude of the larger responses themselves. These results are interesting
because they frame, quantitatively the size of responses in relation to
the within-session noise and their variability over subjects.
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FIG. 10. Posterior probability map (PPM) and SPM{T} pertaining to first-level effects. The posterior probability of an early differential
response in subject 5 was computed for the voxels described in the legend of Fig. 9. Upper panels: Posterior probability that the differential
effects were greater than 0.1% expressed as a function of the conditional means (left) and fixed-effect T values (right). Lower panels (left).
Posterior probability map (PPM) (above) and thresholded (below) to show regions that evidenced a differential peak response of 0.1% or more
with 90% confidence, or more. Lower panels (right). Equivalent SPM{T} based on the single-level model, fixed-effects T values. The threshold
adopted here (lower right panel) was 0.001 uncorrected. It can be seen that this particular subject shows quite an extensive differential
response involving cingulate, right prefrontal, and bilateral parietal cortices that is similar to, but more complete than, the activation profile
inferred on the basis of the SPM{T} (even with this liberal threshold).
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subject-specific responses were modeled by the same
design matrix (that of the first subject). Different
numbers of scans per subject and numbers of sub-
jects were modeled by decimating the first- and sec-
ond-level design matrices, respectively. These design
matrices and the covariance hyperparameters, for
the voxel of the previous subsection, were entered
into (9) to give the standard error of the second-level
ML contrast testing for an early activation differen-
tial. The sensitivity of the corresponding T test is
simply

� � 1 	 
T�w 	
A

�c TM �2�C �̃M �2�Tc
� , (12)

where w is some T value threshold and A is the true
activation, here set to 0.001 and 0.5% respectively. The
results are shown in Fig. 14. As might be anticipated
there is a trade-off between the number of subjects and
number of scans per subject. The minimum number of
subjects, required to attain 90% sensitivity for voxels
such as the one chosen, appears to be about 8 and this
requires about 100 scans per subject. Scanning 16 sub-
jects with about 24 scans each can approximate the
same sensitivity. This power analysis is presented as
an illustration of how covariance component estima-
tion can be used in a classical power analysis. The
quantitative conclusions pertain to, and only to the
voxel reported.

FIG. 12. As for Fig. 11 but holding the threshold constant at
about 0.14% (such that the specificity was at least 1 � 10�4) and
varying the true activation. In this case the specificity is constant but
sensitivity increases as the true activation exceeds the specified
threshold.

FIG. 11. Specificity and sensitivity of first-level inferences as a
function of activation threshold: Upper panel: The probability of
declaring a voxel “activated” to degree u or more, with 90% confi-
dence in the context of no activation (broken curve) and with a true
activation of 0.5% (solid curve and vertical dashed line). These prob-
abilities are based on the hyperparameters from the analysis of
section 2.4. In this instance the posterior probabilities pertain to the
activations in the cingulate gyrus voxel described in the legend of
Fig. 7, in the first subject. Lower panel: The same as in the upper
panel but plotted on a semilog scale. A 50% sensitivity is achieved
with an activation threshold of about 0.1% whilst retaining a high
specificity.
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2.8 Summary

The examples presented above allow us to reprise a
number of important points made in the previous pa-
per (Friston et al., 2002). In conclusion the main points
are:

● There are many instances when an iterative pa-
rameter re-estimation scheme is required (e.g., dealing
with serial correlations or missing data). These
schemes are generally variants of an EM algorithm.

● Even before considering the central role of covari-
ance component estimation in hierarchical or empirical
Bayes models it is an important aspect of model esti-
mation in its own right, particularly in estimating non-
sphericity among observation errors. Parameter esti-

mates can either be obtained directly from an EM
algorithm, in which case they correspond to the ML or
Gauss–Markov estimates, or the hyperparameters
can be used to determine the error correlations which
reenter a generalized least square scheme, as a non-
sphericity correction.

● Hierarchical models enable a collective improve-
ment in response estimates by using conditional, as
opposed to maximum-likelihood, estimators. This im-
provement ensues from the constraints derived from
higher levels that enter as priors at lower levels.

● The sensitivity and specificity of Bayesian infer-
ence differs from that of classical approaches. In par-
ticular, Bayesian inference maintains a high specificity
while adjusting its sensitivity according to the prevail-

FIG. 14. Sensitivity of second-level inferences. Upper panel: Sen-
sitivity or the probability of declaring a voxel (in the cingulate gyrus)
significant at P � 0.001 based on the second-level T statistic. The
sensitivity is shown in image format (white � 1 and black � 0) as a
function of the number of subjects and scans per subject. Lower
panel: The same data but plotted graphically as a function of scan
number. Here the activation was assumed to be 0.5%. Note the
trade-off between the number of scans and subjects, lending a hy-
perbolic-like form to the sensitivity function.

FIG. 13. As for Figs. 11 and 12 but holding the threshold and
true activation constant (at 0.14% and 0.5% respectively) and vary-
ing the relative amount of error variance. As might be expected,
increasing the error variance reduces the probability of declaring a
voxel to be activated irrespective of the true activation. Critically, it
does so in proportion at high levels of error. However, at very low
levels of within-subject error the specificity falls, relative to sensi-
tivity to a lower limit that is determined by the between-subject
variability and the threshold chosen.
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ing error variance and inherent variability of the re-
sponse. Specificity can be ensured by making an infer-
ence about an “unlikely” (i.e., reasonably large) effect.
This is precluded in classical inferences because the
inference is about the data, not the activation.

In the next section we revisit two-level models but
consider hierarchical observations over voxels as op-
posed to subjects.

3. SPATIOTEMPORAL MODELS
WITH EMPIRICAL BAYES

3.1 Introduction

There has been a growing interest in spatiotemporal
Bayes models for imaging data-sequences as exempli-
fied by some recent and engaging proposals. For exam-
ple Descombes et al. (1998) have explored the use of
spatiotemporal Markov field models to characterize ac-
tivations in fMRI, while Everitt and Bullmore (1999)
have looked at mixture models to assign conditional
activation probabilities. The compelling work of
Hartvig and Jensen (2000) combines both these ap-
proaches. The dynamics of fMRI time-series has been
addressed by Højen-Sørensen et al. (2000) who use
Hidden Markov Models to making inferences about
which state the brain is in.

These proposals are exciting and will probably be a
focus of research for many years. However, the purpose
of this paper is not to propose a new model but to show
that existing models can be treated in a Bayesian fash-
ion. To enable this we have to make one assumption,
about the distribution of activations, in addition to
those made in conventional analyses. Namely that re-
gionally specific responses have an expectation of zero,
over the whole brain (this is true by definition, other-
wise they would not be regionally specific) and a
Gaussian distribution (this can be motivated using the
empirical results of the previous section).6 With this
assumption conventional models (e.g., anatomically in-
formed basis functions AIBF; Kiebel et al., 2000; Phil-
lips et al., 2000) can be simply extended to facilitate
inference through empirical Bayes.

In this section we focus on priors that derive from
making multiple observations over voxels and how
these observations can be harnessed in an empirical
Bayesian framework to make more informed infer-
ences about any single voxel. In Bayesian inference the
posterior probability of an effect is proportional to its
likelihood and prior probability. If the latter is known
this allows a full Bayes treatment. If the priors are not
know then they can be [hyper]parameterized in terms
of some hyperparameters that are estimated from the

data using empirical Bayes. The basic idea, here, is
that the prior probability of a particular voxel activat-
ing can be estimated from the distribution of estimated
activations over all remaining voxels. This rests upon a
hierarchical observation model where the first level is
exactly the same as in a conventional voxel-based gen-
eral linear model and the second level comprises obser-
vations over voxels. The ensuing variance can be par-
titioned into within- and between-voxel components
that are estimated, jointly with voxel-specific activa-
tions per se, using the EM algorithm described in Fris-
ton et al. (2002).

This section revisits Bayesian inference in a practi-
cal sense and illustrates the latitude afforded by being
able to incorporate prior knowledge into estimation
and inference schemes. We have chosen PET data to
illustrate some key points because the benefits are
more apparent given PETs relatively poor spatial res-
olution and the smaller number of scans. In what fol-
lows we present a spatiotemporal model and discuss
how prior information of different sorts can be incor-
porated. The underlying form and motivation for the
model is described in this section. In the next section,
simulated PET data is subject to Bayesian analysis to
show the advantages, in relation to known underlying
activations. The final section applies exactly the same
procedures to real PET data. This data is the verbal
fluency data set used in many of our previous theoret-
ical publications and is the SPM training PET data,
available from http://www.fil.ion.ucl.ac.uk/spm. We
conclude with a general discussion of empirical Bayes
in neuroimaging.

3.2 Spatio-Temporal Hierarchical Models

As in the previous sections we start with model spec-
ification and develop the implied constraints under
which its parameters are estimated. In this example
we treat each voxel as a replication of the same obser-
vation at the first level

level one y � X �1�� �1� � � �1�

�
y1

···
ys
� � P�

X 1
�1� · · · 0
···

· · ·
···

0 · · · X s
�1�
��

� 1
�1�

···
� s

�1�
� � � �1�

Q 1
�1� � PP T

(13)
level two � �1� � X �2�� �2� � � �2�

X �2� � 0s

Q 1
�2� � GDG T

At the first level, all the voxel time-series are stacked
on top of each other to create a large response vector y

6 This assumption differs from those made by the approaches
mentioned in the first paragraph, in which a separate distribution is
assumed for activated and nonactivated voxels.
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with t � s elements (t scans for each of s voxels). The
design matrix X(1) is a leading block diagonal matrix
with the voxel-specific design matrix (in this case the
same design matrix for each voxel) along the leading
diagonal. Vectorizing the response variable in this way
essentially converts a s-variate multivariate problem
into a univariate model with repeated measures over s
voxels. The explanatory variables are pre-multiplied
by P, which models the spatial blurring due to the point
spread function psf and is given by

P � psf � It (14)

where V is the Kronecker tensor product and psfij is the
value of the point spread function at the distance be-
tween voxels i and j. Because we are dealing with PET,
temporal autocorrelations are not considered.7 By mod-
eling spatial correlations in this fashion, parameter
estimation effects an implicit least squares de-convo-
lution. This is because the spatial correlations, induced
by the point spread function, are embodied in the ex-
planatory variables (i.e., the forward model from the
point of view of source estimation) and not in the pa-
rameter estimates. This is only possible because of the
spatiotemporal form adopted in (13). The constraints
Q(1) on the error variance are scaled by a hyperparam-
eter to give the error covariances at the first level
�1Q

(1) � C�
(1). These correspond here to stationary error

terms over voxels whose spatial correlation structure
conforms to the point spread function. Although this is
appropriate for the simulated data in the next section,
this basis set should obviously be extended to allow for
voxel-specific variations in error variance (see the Sec-
tion 4). The parameters �(1) are a large vector with p
parameters for each of the s voxels. For simplicity we
have used only one regressor in the design matrices in
the examples below.

At the second level the voxel-specific parameter �(2)

estimates are modeled as zero mean variates with a
spatially structured covariance. The first-level param-
eters are assigned an expectation of zero because we
are only interested in regionally specific effects.8 This
means that the average of any effect over voxels is zero
and presupposes that global effects have been removed
from the data before estimation (i.e., global normaliza-
tion). Adopting a second level allows one to model the
spatial dependencies of the signal in nearby voxels and
use the variability of responses, over voxels, as priors
on the estimate of any particular voxel’s response.

The second-level spatial dependencies among the re-
sponses are based on spatial priors that are con-
structed according to the following arguments. First, in
the absence of any information about the relative tis-
sue composition of each voxel (e.g., grey matter, white
matter, CSF etc) we know that hemodynamic signals
evidence spatial correlations. These short-range corre-
lations are due to the mediation of increases in rCBF
by diffusive signals and the local architecture of cere-
bral vasculature. Optical imaging experiments suggest
an intrinsic smoothness of between 2 and 5 mm. We
can build this information into the model by specifying
these intrinsic correlations in terms of a covariance
constraint at the second level. Here modeled by D, a
Gaussian correlation matrix of 4 mm full width at half
maximum (FWHM). Second, we can impose neuroana-
tomical constraints by modulating these stationary
correlations using grey matter priors G. These priors
enter as a leading diagonal matrix whose elements
reflect the probability that the corresponding voxel is
a grey matter voxel (Ashburner and Friston, 1997).
Alternatively, these priors can be construed as the
proportion of the voxel that is grey matter and, conse-
quently, capable of engendering a measurable re-
sponse. It follows that, in the absence of any functional
information, the prior covariance of the signal has the
form Q1

(2) � GDGT. An intuitive way to motive this form
for the spatial priors is to think about biophysical sig-
nals that induce blood flow as being smoothed and
dispersed by some intrinsic convolution matrix D1/2.
The hemodynamic response, induced in a voxel, will be
proportional to the interaction between, or product of,
the amount of dispersed signal and the proportion of
that voxel that can respond (i.e., the grey matter prob-
ability). The resulting convolution with GD1/2 of i.i.d.
sources would give a signal with covariance propor-
tional to GDGT. We could of course incorporate the fact
that grey matter is the most likely origin of these
flow-inducing signals to give Q1

(2) � GD1/2GGTD1/2TGT

but the simpler form in (13) is sufficient for current
purposes. Before proceeding to estimation we have to
consider the size of the matrices in (13). If we wanted to
include a hundred thousand voxels, they would be pro-
hibitively large. In order to make the estimation com-
putationally tractable these matrices have to be re-
duced. This is not a generic aspect of the Bayesian
approach but something one has to consider in spa-
tiotemporal models with large numbers of scans and
voxels.

3.3 Model Reduction and “Hard” Priors

In this subsection we suggest a form of model reduc-
tion that uses the priors to motivate a suitable basis
set, onto which the data at various levels can be pro-
jected. This effectively reduces the problem of dealing
with s voxels to dealing with a much smaller number of

7 If we wanted to incorporate some known temporal convolution we
would simply multiply the design matrix by Is V hrf where hrf is a
temporal convolution matrix for each time-series, for example, a
hemodynamic response function.

8 More generally X(2) � 1s V Ip giving a second level design matrix
with s � p rows and p columns where each column is associated with
a second level parameter.
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m spatial modes. To do this we borrow a device devel-
oped previously for the inverse problem in EEG source
estimation (Phillips et al., 2002) using AIBF (anatom-
ically informed basis functions) (Kiebel et al., 2000).
Namely, use the spatial basis set that preserves the
most information about sources, that conform to the
prior covariance, after projection into the subspace in
which they are estimated.9 These bases are simply the
eigenvectors U of the prior covariance matrix with the
largest m eigenvalues

Q 1
�2�U � US (15)

where S is a m � m leading diagonal matrix of eigen-
values.

The basic idea behind anatomically informed basis
functions (AIBF) is to establish a small number of
spatial patterns or modes that can be linearly mixed to
approximate the profile of voxel-specific responses. Be-
cause the number of modes or AIBF is much smaller
than the number of voxels, iterative schemes like EM
can be used with relative computational ease. The ba-
sis set is chosen to maximize the amount of information
(entropy) in the responses, under the prior distribu-
tion, after the responses are projected onto this basis
(i.e., expressed in terms of the coefficients of the basis
set). Under Gaussian assumptions, these basis func-
tions are the eigenvectors of the prior covariance ma-
trix with the largest eigenvalues. The use of AIBF can
be construed as setting the prior variances of activa-
tion patterns conforming to the “unused” minor eigen-
vectors to zero. This precludes the estimates from lying
in the subspace spanned by these minor modes, be-
cause the resulting priors enforce zero response with
infinite precision. One could simply modify the prior
covariance matrix and proceed in voxel space. How-
ever, using AIBF is mathematically the same, but is
much more efficient and represents a useful way to im-
plement “hard” priors.10 An example of a hard constraint
would be setting the prior variance of hemodynamic re-
sponses to be zero in brain ventricles or white matter.
These are the sorts of constraints embodied in AIBFs.

The eigenvectors or AIBF now enter into (13) to give
a reduced form that is computationally tractable

level one

�UT � It�y � �U T � It�X �1�UU T� �1�

� �U T � It�� �1�

giving yu � X u
�1�� u

�1� � � u
�1�

where X u
�1� � �U T � It�X �1�U

� u
�1� � U T� �1�

Q u
�1� � �U T � It�PP T�U T � It�

T

level two

U T� �1� � U TX �2�� �2� � U T� �2�

giving � u
�1� � X u

�2�� �2� � � u
�2�

where X u
�2� � U TX �2� � 0u

Q u
�2� � U TGDG TU � S. (16)

Note that when using these spatial bases the covari-
ance constraints at the second level reduce to the
leading diagonal matrix of eigenvalues in (15). In
this form we are solving, not for voxel-specific esti-
mates, but mode-specific estimates of the conditional
means and covariances. From these we can recon-
struct the relevant statistics in voxel space as shown
below. In the simulations below and in the empirical
example of the subsequent section we used 64 spatial
modes. The expressions in (16) have been written out
in full to show the relationship between the reduced
and non-reduced forms. In practice the operations
involving Kronecker tensor products can be imple-
mented in a simpler and computationally more effi-
cient fashion.

4. SPATIOTEMPORAL MODELS:
A SIMULATION STUDY

The aim of these simulations is to compare and
contrast Bayesian and classical inference at the first
level to highlight the potential usefulness of the
former. We simulated data according to (13) using an
activation, centred in the left dorsolateral prefrontal
cortex, of 16 mm Gaussian width, modulated by the
grey matter priors described above (see Fig. 15). The
modulated activation was scaled to a peak height of
0.5. The error process at the first level was Gaussian,
with unit variance, convolved with a Gaussian point
spread function ( psf ) of 8 mm FWHM. The activa-
tion, encoded by the level-one design matrix, was a
simple alternating baseline-activation sequence of
16 scans. The simulated data, design matrices and
constraints according to (16) were entered into the
EM algorithm to provide estimates of the conditional
mean � ��y

(i) and covariances C ��y
(i) at each level. The

conditional probability that the activation exceeded
a size threshold 
 � 0.1 was computed for each voxel
j at the first level with

9 Note that this device can only be used if the constraints on the
priors comprise just a single matrix.

10 “Hard” (as opposed to “soft”) constraints are priors that are
specified with infinite precision or zero variance.
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FIG. 15. Analysis of simulated PET data. Upper left panel: The ML estimates plotted against the true effect for each voxel. These ML
estimates were obtained by solving (16) using only the first level. Upper right panel: The same, but now for the first-level conditional means
using both levels. Insert: Plot of the true and conditional responses in the space of the basis functions. Lower Panels (left): Grey matter priors
and the true activation. This activation was centred at �36, 24, 12 mm (Talairach and Tournoux, 1988) and comprised a 16-mm Gaussian
function modulated by the grey matter priors. This simulated activation was scaled to a peak height of 0.5 arbitrary units (that can be
considered ml/dl/min equivalents). Lower panel (middle): Posterior probability map (PPM) detailing the voxel-wise probability that the
activation is greater than 0.1. The lower panel is the PPM threshold at P  0.95 (i.e., the showing regions where one would be at least 95%
confident that the activation was 0.1 or more). Lower panels (right): Classical analysis in terms of the SPM{T}. This SPM has been
thresholded in the lower panel at P � 0.05 (corrected). These simulated data constitute a time-series of 16 (32 � 32 voxel) axial slices through
the left dorsolateral prefrontal cortex, with the simulated activation appearing in alternate scans. Spatial correlations were modeled by
smoothing a unit Gaussian noise field with a stationary Gaussian convolution kernel of 8 mm FWHM. The dimension reduction employed
64 spatial modes (see main text).
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1 	 
� 
 	 U �j� ��y
�1�

�U �jC ��y
�1�U �j

T� , (17)

where U �j corresponds to the row of the eigenvector
matrix associated with voxel j. U �j plays the role of a
vector of contrast weights that would be specified di-
rectly in more conventional settings (see Eq. (7) in the
previous paper, Friston et al., 2002). These probabili-
ties form the posterior probability map (PPM), shown
in Fig. 15 (middle panels) before and after threshold-
ing.

The size threshold operationally defines the seman-
tic or meaning of “activation,” in much the same way
that an age threshold of 12 might arbitrarily, but use-
fully, distinguish a child from a young person. Because
this semantic formalism is precluded in classical infer-
ence there are few precedents to fall back on here. One
could motivate the choice of 
 � 0.1 by noting this is
about 1% of a full-blown activation in PET (around 10
ml/dl/min). In other words, we are stipulating that
anything less than 0.1 does not conform to an “activa-
tion” in the sense of a hemodynamic response that is
typically evoked in an experiment.

To compare the PPM with the equivalent SPM, T
values were computed for each voxel using conven-
tional least squares and the first-level design matrix.
The resulting SPM{T} is shown in the left-hand panels
of Fig. 15, before and after thresholding at a conven-
tional level of 0.05 (corrected for the volume analyzed).
It is clear from Fig. 15 that the PPM is a more ana-
tomically informed characterization of the activations
than the SPM. A critical thing here is that the SPM
appears to have quite significant values even in areas
with very low signal (lower right panels). This is be-
cause, although the activation effect may be very low,
so is the estimated error variance. Only when we spec-
ify explicitly an interest in non-trivial effects (by set-
ting 
 � 0.1 in the Bayesian scheme) is the essential
role of the priors evident.

The thresholded PPM identifies voxels whose poste-
rior probability of activating is at least 95%, where an
activation is 
, or more. This means that, at most, 5%
of the voxels identified could have activations less than

. In other words, thresholding a PPM establishes an
upper bound on the false discovery rate or FDR (Ben-
jamini and Hochberg, 1995). The FDR is the proportion
of voxels declared active (i.e., discovered) that are not.
This is very different from the false positive rate that is
the proportion of all voxels tested that are declared
falsely significant. In short, thresholding a SPM con-
trols false positive rate, whereas thresholding a PPM
can be regarded as controlling FDR (see Genovese et
al., 2002). In this sense thresholding PPMs has a much
closer connection to FDR control in classical schemes.
However, we reiterate there is no reason to threshold a
PPM, other than to enable a classical inference.

The sizes of the activations estimated by the classical
and hierarchical Bayes models are actually very simi-
lar. The voxel-specific first-level parameter estimates
U �j���y

(1) are plotted against the true values in the upper
panels of Fig. 15. The left-hand panel shows the ML
estimates that obtain using the first level only and are
slight overestimates in relation to the conditional
means. Although the Bayesian estimates approximate
the true effects more closely, there is still some discrep-
ancy at high levels of activation. This is due largely to
the curvilinear relationship between the true and esti-
mated voxel-specific responses. This nonlinearity re-
flects the inability of the relatively “coarse” spatial
basis set to fit the true activation profile exactly. When
plotting the actual and estimated responses in the
space of the basis functions U, the anticipated, tight
linear relationship is seen (insert in the upper right
panel).

Notice how the conditional means in Fig. 15 (upper
panel) cluster around the true values more than the
ML estimates. This “shrinkage” or regression is due to
the effect of the priors. As will be shown next, this
effect can be very pronounced when the prior variance
is small.

4.1 A Null Analysis

To illustrate a fundamental difference between the
Bayesian approach, relative to the classical analysis,
the analyses were repeated exactly, while setting the
activation to zero (i.e., using the same error terms).
Figure 16 shows the results in the same format as Fig.
15. At the threshold used, the classical approach still
identifies false positive activations and, with a suitably
low threshold, will always do so. We have deliberately
chosen a low threshold (0.05 uncorrected) to highlight
the arbitrary inferences that ensue from thresholding
in a classical framework. On the other hand the PPM
correctly shows no activations whatsoever. As inti-
mated in the previous section this is not due to en-
hanced sensitivity of the Bayesian approach. It is sim-
ply a reflection of the fact that the criterion used to
assess the conditional activation in the Bayesian
scheme has a far greater specificity than the criterion
adopted by the classical one, despite retaining suffi-
cient sensitivity to give results with face validity. In
this example the FDR is still 5%, or less, but there are
no “discoveries” to be false.

The empirical Bayes and ML parameter estimates in
the top panel of Fig. 16 evidence a further important
difference. Here the classical ML estimates (left-hand
panel) are wildly overestimated in relation to the con-
ditional estimates (right panel). In this instance the
estimates should all be zero and the shrinkage of the
first-level conditional means to zero is clearly evident.
This illustrates an essential benefit of the Bayesian
approach. By embodying the knowledge that all brain
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regions respond to a greater or lesser extent, augment-
ing the classical single-level model with a second level
allows the Bayesian approach to estimate the intrinsic
variability in activations from voxel to voxel. When
variability is very small the estimates of activation at
any voxel are suitably moderated. In contrast, the clas-

sical approach is uninformed and simply minimizes
error variance at the first level in an unconstrained
fashion, overestimating them by one or more orders of
magnitude. In short the Bayesian scheme enables a
regression to the [conditional] mean based on the rel-
ative variability induced in those estimates by the ob-

FIG. 16. As for Fig. 1 but in this instance the activation was omitted from the simulated data. Histograms of the ML and conditional
estimates replace the plots of Fig. 15. The critical thing to note here is that the conditional estimates of the activation now show a profound
regression to the true (zero) activation whereas the ML estimates are not constrained and provide wildly inflated estimates of the effect
(upper left panel). As expected the SPM{T} shows a few false positives at this uncorrected threshold of 0.05. In contradistinction the PPM
indicates, correctly, that no activation can be inferred with 95% confidence.
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servation error and the intrinsic variability over vox-
els. This is the strength of Bayesian estimators.

5. SPATIOTEMPORAL MODELS:
AN EMPIRICAL EXAMPLE

5.1 Analysis of Real Data

In this section we apply the same model to PET data
to demonstrate the role of spatial priors in an empirical
setting. These data are described in the legend to Fig.
17. Briefly they came from 5 subjects each scanned 12
times while performing a verbal fluency task (ortho-
graphic word generation) alternating with a word
shadowing (word repetition) baseline. The model
adopted was exactly the same as above (i.e., Eq. (16))
with one exception. In the simulations the error vari-
ance was the same for all voxels. However, in the real
brain, error variance may change from brain structure
to brain structure. This is accommodated easily by
expanding the constraints on the error covariances to
cover the nonstationariness of error variance antici-
pated. Here we adopt a very simple model and assume
that error variance has two components, one that is
stationary (as used above) and one that conforms to the
same spatial profile as the hemodynamic signal itself,
where, prior to reduction

Q 1
�1� � PP T

(18)
Q 2

�1� � P�Q 1
�2� � It�P T.

As in the simulations the intrinsic correlation matrix D
was Gaussian with 4 mm FWHM. The point spread
function was Gaussian with 16 mm FWHM, corre-
sponding to the smoothing kernel applied to the data
after spatial normalization. The motivation for
smoothing the data, and then incorporating the
smoothing kernel in the estimation model, is that one
can reduce variations in spatial correlations from scan
to scan and subject to subject. Furthermore, this allows
one to accommodate variation in gyral and functional
anatomy among subjects that is smaller than the
smoothing kernel. By smoothing the data and then
applying the same anatomical constraints we effec-
tively estimate what would have been observed if every
subject had exactly the same neuroanatomy, namely
that of the standard space used in anatomical normal-
ization and to derive the priors. Subject-specific effects,
linear time effects, global effects, and the constant
term were all treated as nuisance variables and were
removed from the data (and design matrix) prior to
estimation.11 As above, each partition of the block di-

agonal first level design matrix was a single column of
alternating �1 s and �1 s depending on whether the
scan was an activation scan or baseline. The adjusted
data were entered into the EM algorithm as above.

The results of the analysis are presented in Fig. 17
using a similar format to Figs. 15 and 16. In this
instance we show the ML estimators (upper panel) that
obtain from a voxel by voxel estimation, i.e., without
using spatial basis functions or incorporating the point
spread function into the estimation model. We omitted
these components to show (i) the impoverished spatial
resolution (lower panels) and (ii) partial volume effect
that ensues (upper panel). The PPM and SPM are
pleasingly congruent particularly in light of the realis-
tic threshold used for the SPM{T} (0.05 corrected).
However, the enhanced spatial information available
in the PPM, relative to the SPM is immediately obvi-
ous. The slice shown is at 12 mm above the ACPC line.
The regions showing an activation of 0.1 ml/dl/min
(Equivalents), or more, comprise Broca’s area (BA 44)
and contiguous premotor cortex (BA 6), an activation
deep in the anterior frontal operculum and a subcorti-
cal activation centred on the mediodorsal nucleus of
the thalamus. This anatomical precision could not be
supported using the conventional SPM (right hand
panels in Fig. 17). Equally interesting are the condi-
tional means and ML estimates in the upper panel.
The critical thing to note here is that, due to smoothing
or partial volume effects, the ML estimates (dots) are
too small. Because the conditional means (line) are
informed about the spatial configuration of sources,
subtending signals observed after convolution, they are
approximately twice as large. This suggests (as we
already knew) that conventional analyses can substan-
tially underestimate true effects, especially when they
are focal.

5.2 Summary

In this section we have illustrated how Bayesian
estimates can supervene over classical ML estimates
by harnessing constraints at higher levels. We have
used spatial constraints in this example and intro-
duced spatiotemporal models to this end. The key
points include:

● The notion that observations over voxels represent
repeated measures of the same neuronal response.
This motivates a two-level hierarchical observation
model and enables Bayesian inference at the first
[voxel] level. The first-level conditional estimates are
generally better than conventional ML estimates be-

11 This is not necessary because we could have simply included
these effects in the first-level design. However, given the computa-
tional load of spatiotemporal models, it is sometimes easier to treat

nuisance variables and confounds as fixed effects and remove them
before applying the EM algorithm. Note that when this is done the
covariance constraints are assumed to hold for the adjusted data, as
opposed to the original data.
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FIG. 17. Analysis of real PET data. The layout of this figure corresponds to Figs. 15 and 16 but in this instance the true activation is
unknown (the lower right panel simply shows the structural image on which the priors were based). These data came from a PET study of
paced FAS orthographic verbal fluency in which five subjects were asked to produce words beginning with a heard letter (word generation)
or simply repeat the letter (word shadowing). These two conditions alternated for 12 scans. In this analysis we treated all 60 scans as if they
came from the same subject because we wanted to illustrate second-level constraints in terms of spatial realizations over voxels. The data
were smoothed with a 16-mm FWHM Gaussian kernel, which ameliorates differences in functional anatomy among subjects. The results
shown are for a 32 � 64 (2 � 2 � 2 mm) voxel slice through the left hemisphere at z � 12 mm. The SPM{T} is based on a conventional
voxel-wise approach that benefits from neither the dimension reduction (hard constraints afforded by the grey matter priors) or the Bayesian
estimation (soft constraints). Consequently the classical analysis has markedly poorer anatomical resolution and is subject to partial volume
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cause they are constrained by information from the
second level. Furthermore, the form of Bayesian infer-
ence means one can avoid the fallacies of classical
inference in the context of very small effects.

● Applying a threshold to PPMs sets an upper bound
on the false discovery rate (FDR). This provides an
interesting connection with FDR schemes in classical
inference (Genovese et al., 2002). In short, Bayesian
inference offers a principled way of controlling the sen-
sitivity and specificity of an inference by referring ex-
plicitly to the size of the activation. However, the sec-
ondary thresholding of PPMs is not an intrinsic part of
Bayesian inference.

● The two-level spatiotemporal model is predicated
on the assumption that the brain shows a high degree
of functional integration such that responses to chang-
ing task or stimulus conditions are expressed in a
distributed fashion everywhere, to a greater or lesser
extent. In other words, we anticipate all brain areas
respond but the vast majority do so imperceptibly with
little or trivially small activations. Once in a while we
encounter a brain area that is sufficiently specialized
to respond in a substantial and unambiguous fashion
(defined operationally by the threshold 
). By assum-
ing the distribution of activations is approximately
Gaussian we can simply enter observations over vox-
els, as a second-level constraint, on the estimates and
inference at any one voxel. Note that this assumption
is different from other proposals where voxels are as-
sumed to be activated or not (e.g., mixture models). In
these models brain regions either show zero activation
or some constant mean activation. One could debate
which is the more biologically plausible (see below), but
our primary motivation here is to demonstrate how
extensions of analyses people currently employ can
bring them into a Bayesian framework.

● Anatomical priors can enter into the estimation
scheme at two levels, (i) in terms of soft constraints
embodied in the form of the prior covariances and (ii) in
terms of hard constraints implicit in the eigenvectors of
these priors that define an estimation (AIBF) subspace.
The former requires a Bayesian framework, the latter
does not (but can be seen as an implementation of
priors with infinite precision). The former is interest-
ing because it is formally identical to minimum norm
approaches to source estimation in the EEG literature
(e.g., ridge regression). In these applications the hyper-
parameters controlling the contribution of the spatial
priors are usually fixed. The framework presented here

allows not only the hyperparameters to be estimated
using empirical Bayes but allows a number of different
spatial priors to be entered into the model concur-
rently.

● By incorporating the point-spread function in the
first-level design matrix (13) the estimation is effec-
tively performing a least squares de-convolution. While
this is, in principle, possible using a classical analysis
the results are generally unstable and require some
form of regularization, such as a smoothness constraint
on the estimators. This regularization is exactly what
the hierarchical model provides through the priors. As
in the previous paragraph the hyperparameters con-
trolling the degree of regularization are estimated au-
tomatically and have a much more natural interpreta-
tion, or plausible motivation, when placed within a
Bayesian framework.

Some of these ideas are not inherently Bayesian in
nature but all are facilitated operationally by a hierar-
chical framework. In short, adopting a Bayesian ap-
proach gives one the latitude to explore and use differ-
ent devices and sources of information to refine the
estimation and inference procedure in ways that are
precluded by classical approaches.

6. CONCLUSION

In Friston et al. (2002) and in this paper we have
provided a fairly technical but didactic introduction to
the use of hierarchical observation models in func-
tional neuroimaging. We have emphasized the points
of connection between the classical perspective and
Bayesian inference in an effort to show that conven-
tional analyses of PET and fMRI data can be usefully
extended within an empirical Bayes frame of reference.
A critical point is that hierarchical models not only
provide for appropriate inference at the last level but
that one can revisit lower levels suitably equipped to
make Bayesian inferences. Bayesian inferences eschew
many of the fallacies of classical inference and charac-
terize brain responses in a way that is more directly
predicated on the things one is interested in.

There are a large number of potential applications of
the analytic framework presented here which have not
been considered. Among the more important is the
generalization to dynamic and nonlinear models of
neuronal signals. These and further applications, in
the context of linear models, will be dealt with in sub-

effects in terms of the estimated activations. See the upper panel where the conditional estimates are much larger than the ML estimates
in areas of activation. In this instance the ML estimates were computed on a voxel by voxel basis and, like the SPM{T} due not benefit from
the implicit least squares deconvolution implemented when solving the spatiotemporal model in (16). Activations of 0.1 or more can be
inferred with at least 90% confidence in Broca’s area/premotor cortex (BA 44 and 6), deep in the frontal operculum and in the dorsomedial
thalamus. The latter anatomical attribution would be precluded with the conventional analysis and is interesting given the cortical
projections of this subcortical region.
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sequent papers (e.g., Friston, 2002). The examples in
this paper are used to illustrate ideas and serve as
“proof of concept.” In particular, conclusions regarding
sensitivity and specificity pertain only to the specific
data considered.

The drawbacks of empirical Bayes estimation and
inference procedures are theoretical and practical.
Practical difficulties are related simply to computa-
tional load and time of processing (see software imple-
mentation note below). The theoretical difficulties in-
clude the overconfidence problem.

6.1 The Overconfidence Problem

In PEB methods the hyperparameters pertaining to
the covariance components are estimated by maximum
likelihood and are then used to compute the posterior
means and covariance of the parameters. From a fully
Bayesian perspective the PEB approach effectively
substitutes the conditional posterior density, p(��y, �)
with � � �̂ for the correct posterior density given by

p���y� � � p���y, ��p���y�d�. (19)

Thus the PEB approximation fails to take account of
the uncertainty about the hyperparameters that enters
through p(��y). It is well known that the posterior mean
conditional on the ReML estimate �̂ is approximately
equal to the true posterior mean. However, the corre-
sponding conditional posterior covariance is too small
(Kass and Steffrey, 1989). This results in over confi-
dence when making inferences using PEB methodol-
ogy. In other words, although the empirical posterior
response estimates are good approximations, infer-
ences about them may be slightly capricious. Kass and
Steffrey (1989) provide a solution to this problem for
conditionally independent hierarchical models, where

Cov���y� � E�Cov��	�y, �̂	 � Cov�E��	�y, �̂	

	 C��y �
���y

�
Cov���y	

���y
T

�
,

(20)

where the expectation and covariance are with respect
to the posterior distribution of �. This provides for a
first order approximation to the second term in the first
line of (20), using the delta method (i.e., a first-order
Taylor expansion) and the posterior covariance of the
hyperparameters (the second line of 20). This is, in
principle, feasible but requires the specification of both
a likelihood function, of its sufficient statistics, and a
prior density function for the hyperparameters. Effec-
tively this means replacing the ML estimate of the
hyperparameters with its conditional mean and aug-

menting the conditional posterior covariance with the
second term above. The choice of these likelihood func-
tions and priors can sometimes be quite arbitrary and
motivated by mathematical convenience (e.g., conju-
gate priors). While providing the basis for interesting
extensions of PEB for neuroimaging we have chosen to
avoid this issue by treating the hyperparameters as
fixed effects and eschewing the need to specify a like-
lihood. Consequently we adhere to an empirical frame-
work, which assumes that the second term in (20) is
sufficiently small to be ignored. An interesting possi-
bility is to use a PEB estimator of the hyperparameters
themselves. This would lead to a truly recursive algo-
rithm but this is beyond the scope of these papers.

6.2 Priors

A general issue in Bayesian models of spatiotempo-
ral responses is the face validity of the model adopted.
For example, in this paper we have assumed that the
prior distribution of responses, over voxels, is Gauss-
ian. The ensuing hierarchical model uses the between-
voxel variability as a prior variance on the response of
any single voxel. Other models could be used, for ex-
ample mixture models (Everitt and Bullmore, 1999).
Mixture models assume that data are generated by a
small number of “causes,” each parameterized by a
different activation level. Inference can be based on the
posterior probability that a voxel belongs a particular
component of the mixture, where each component is
characterized by its estimated activation. In Penny and
Friston (2002) we show how mixtures of general linear
models can be estimated using EM. Whether a mixture
model is more or less appropriate than the hierarchical
model presented in this paper is an outstanding ques-
tion. Indeed knowing which model is best would im-
plicitly resolve some fundamental questions about
functional brain architectures. Mixture models can be
seen as taking functional segregation to its extreme.
Functional segregation posits that a particular cogni-
tive or sensorimotor function is served by functionality
that is anatomical segregated in one part of the brain.
This implies that the segregated area will respond to
experimental challenge and that remaining areas will
not. The empirical Bayes model considered above al-
lows for functional specialization assuming that
evoked responses are distributed but are expressed
much more in specialized areas. This is consistent with
perspectives offered by cognitive neuroscience (e.g.,
parallel distributed processing). Conversely, the hier-
archical model represents an extreme of functional in-
tegration, in which regional specialization is only
quantitative. A simple refinement of the model in this
paper could involve super-Gaussian priors that model
a small number of highly responsive voxels and a large
number of relatively unresponsive voxels. By hyperpa-
rameterizing non-Gaussian priors of this sort the de-
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gree of segregation or modularity could be ascertained
using empirical Bayes through EM.

6.3 Thresholds

A key aspect of Bayesian inference is that classical
threshold based on false positive rates or specificity is
replaced by a threshold specified in terms of the size of
the effect of interest. This could be seen as a problem
because in many cases (e.g., T2* data in fMRI) the
biophysical or physiological meaning of an activation’s
size is obscure. However, the converse position is that
the whole strength of Bayesian inference stems from
the physical meaning, conferred on the inference,
through the size of the effect. A Bayesian size threshold
enables a much more qualified inference than simply
saying the effect was not zero. An important issue here
is that, although the absolute size may have no direct
relationship to neuronal or synaptic activity, the rela-
tive size can. For example, a large (sensory evoked)
response in PET would be, typically, 5 ml/dl/min and,
for fMRI, about 1% of the signal. A subtle (e.g., cogni-
tive modulation of a sensory evoked response) but sub-
stantial effect may correspond to 1 ml/dl/min in PET or
0.2% in fMRI. This “feel” for what constitutes a sub-
stantial response is quickly acquired by people doing
neuroimaging routinely and yet plays no role in clas-
sical inference. Bayesian inference, on the other hand,
embeds this useful expertise into the posterior proba-
bility.

A more fundamental point is that Bayesian inference
does not really depend on any threshold. It is entirely
sufficient to report the conditional density of an effect.
Under Gaussian assumptions this requires two quan-
tities for each voxel (the conditional mean and covari-
ance). The posterior probability can be viewed as a
simple device to reduce the characterization of the
posterior density to a single quantity (the posterior
probability). This is useful for creating summary maps
(PPMs). An alternative would be to present two maps,
one of the contrast’s conditional expectation and an-
other of its conditional variance. PPMs for any size
threshold could be derived from these two moments. As
mentioned in Friston et al. (2002), the secondary
thresholding of the PPM with a further [probability]
threshold is useful for comparison with classical infer-
ence but is not an intrinsic part of Bayesian inference.

SOFTWARE IMPLEMENTATION

The EM algorithm has been incorporated into the
next release of the SPM software (current development
version) by providing an assessment of nonsphericity.
This allows for analyses of data with inhomogeneity of
variance or arbitrary correlations among the errors. At
present, the ReML formulation (see Appendix A.2 of
Friston et al., 2002) is used to estimate voxel-wide

[stationary] nonsphericity, allowing for proper correc-
tion to the statistics and degrees of freedom. This for-
mulation is used to estimate serial correlations in fMRI
but the approach has also been extended to cover PET
and other basic models where nonsphericity in re-
peated measure designs can be an issue. This is par-
ticularly useful in multilevel designs, in which con-
trasts from one level are taken to a second level,
without having to assume sphericity. Because only one
EM is required the computational load is small in
relation to total analysis time (minutes as opposed to
hours).

At the time of writing, computational limitations
preclude the routine application of the theory in this
paper to all voxels in the search volume. This is due
primarily to memory constraints encountered when
dealing with the very large matrices at the second
level. In principle, the anatomical basis functions,
formed by assuming priors of infinite precision, need
only be computed once for a given standard anatomical
space. This should facilitate routine application with-
out any ad hoc preselection of voxels. However, we
hope to use the same anatomical basis set in the con-
text of EEG-fMRI integration and this additional con-
straint means it may be some time before the theory
presented in this paper is implemented in SPM soft-
ware releases.
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