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Abstract

abspara0010 The last two decades have seen a revolution in the statistical sciences with classical inferential approaches becoming slowly
replaced by Bayesian ones. This has impacted on many fields in science and engineering, including neuroscience. A Bayesian
perspective on neuroscience includes the idea that human behavior inmany domains is close to statistical optimality and that
the structure and machinery of the brain itself is reflected in message-passing algorithms that implement Bayesian inference.

p0010 This article presents a review of Bayesian models in Neuro-
science. The work in this field splits broadly into two cate-
gories: (1) Bayesian modeling of behavior, which develops
normative behavioral models based on statistical optimality
principles, and (2) Bayesian models of the brain, which
describe the internal operations of the brain that would give
rise to such behaviors. In the latter category, neuroscientific
data from a variety of sources are used including invasive
electrophysiological recordings from mice, rats, and monkeys.
It also focuses on detailed neurophysiological mechanisms
over a range of spatial scales, from plasticity in dendrites to
changes in connectivity among brain regions. Given the nature
of this encyclopedia, our review focuses most strongly on the
former category (behavior), as this is more closely related to
psychology and sociology.

p0015 The review is structured in two main sections. The first
section provides a mathematical description of Bayesian
inference, introducing the basic concepts that will be referred to
later on. We use the example of a game of tennis to make the
main ideas more concrete. The second section reviews Bayesian
models of behavior, focusing on a range of topics. Under
‘sensory integration,’ we review how, for example, information
from visual and tactile senses are optimally combined. Under
‘visual processing,’ we review models of visual search and the
processing of ambiguous or conflicting visual information.
Under ‘sensorimotor integration,’ we describe how dynamic
Bayesian models accurately describe how the consequences of
movements can be predicted and perceptually downweighted.
Under ‘collective decision making,’ we review how Bayesian
inference has been used to describe how groups of people
interact to make decisions.

s0010 Bayesian Inference

p0020 Consider some quantity, x. Our beliefs about the likely
values of x can be described by the probability distribution
p(x). If we make a new observation y that is related to x, then
we can update our belief about x using Bayesian inference. In
statistics the optimal way of updating your beliefs is via
Bayes rule.

p0025 First we need to specify the likelihood of observing y given
x. This is specified by a probability distribution called the
likelihood, p(yjx). It tells us, if we know x, what are the likely
values of y. Our updated belief about x, that is, after observing

the new data point y is given by the posterior distribution
p(xjy).This can be computed via Bayes rule:

pðxjyÞ ¼ pðyjxÞpðxÞ
pðyÞ [1]

p0030The denominator ensures that p(xjy) sums to 1 over all
possible values of x, i.e., that it is a probability distribution. It
can be written as

pðyÞ ¼
Z

pðyjx0Þpðx0Þdx0 [2]

p0035Equations [1] and [2] describe the basic computations
underlying Bayes rule. These are multiplication and normali-
zation (eqn [1]) and marginalization (eqn [2]). Following
bib29

Wolpert and Ghahramani (2004), we will use the game of
tennis to illustrate key points. Imagine that you are receiving
serve. One computation you need to make before returning
serve is to estimate x, the position of the ball when it first hits
the ground, as depicted in Figure 1.

p0040It is possible to make an estimate solely on the basis of the
balls trajectory, i.e., via the data y. We can find the value of x
which maximizes the likelihood, p(yjx). This is known as
Maximum Likelihood (ML) estimation. It is also possible to

AU1

f0010Figure 1 Estimating the position of the ball when it first lands. The
prior is shown in blue, the likelihood distribution in red, and the poste-
rior distribution with the white ellipse. The maximum posterior estimate
is shown by the magenta ball. This estimate can be updated in light of
new information about the ball’s trajectory (yellow). Adapted from
Wolpert, D., Ghahramani, Z., 2004. Bayes rule in perception, action and
cognition. In: Oxford Companion to the Mind. Oxford Univ.
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estimate the uncertainty in this estimate. The ML estimate and
the uncertainty in it together give rise to the likelihood distri-
bution shown in Figure 1.

p0045 But before our opponent hits the ball we may have a good
idea as to where they will serve. It may be the case, for example,
that when they serve from the right the ball tends to go down
the line. We can summarize this belief by the prior distribution
p(x) (shown in blue in Figure 1). We can then use Bayes rule to
estimate the posterior distribution. This is the optimal
combination of prior knowledge (‘down the line’) and new
data (visual information from the ball’s trajectory). Our final
single best estimate of where the ball will land is then given by
the maximum of the posterior density. This is known as MAP
estimation (from ‘Maximum a Posteriori’).

p0050 As we continue to see the ball coming toward us we can
refine our belief as to where we think the ball will land. This can
be implemented by applying Bayes rule recursively such that
our belief at time point n depends only on our belief at the
previous time point, n� 1. That is,

pðxnjYnÞ ¼ pðyn
��xnÞpðxnjYn�1Þ

pðYnÞ [3]

where Yn¼ {y1, y2,., yn} denotes all observations up to time n.
Our prior belief, that is, prior to observing data point yn is
simply the posterior belief after observing all data points up to
time n� 1, p(xnjYn�1). Colloquially, we say that “today’s prior
is yesterday’s posterior.”

p0055 The variable x is also referred to as a hidden variable or
hidden state because it is not directly observed. If the hidden
state were a discrete variable, such as whether the ball landed in
or out of the service box, one can form a likelihood ratio:

LR ¼ pðxn ¼ INjYnÞ
pðxn ¼ OUTjYnÞ [4]

p0060 Decisions based on the likelihood ratio are statistically
optimal in the sense of having maximum sensitivity for any
given level of specificity. In contexts where LR is recursively
updated, these decisions correspond to a sequential likelihood
ratio test (

bib5

Bogacz et al., 2006). There is a good deal of evidence
showing that the firing rate of single neurons in the brain report
evolving log LR values (

bib12

Gold and Shadlen, 2001).

s0015 Gaussians

p0065 If our random variables x and y are normally distributed, then
Bayesian inference can be implemented exactly using simple
formulae. These are most easily expressed in terms of preci-
sions, where the precision of a random variable is its inverse
variance; a precision of 10 corresponds to a variance of 0.1. We
first look at inference for a single variable (e.g., distance from
side of tennis court).

p0070 For a Gaussian prior with mean m0 and precision l0 and
a Gaussian likelihood with mean md and precision ld, the
posterior distribution is Gaussian with mean m and precision l

where

m ¼ l0

l
m0 þ ld

l
md [5]

p0075 So, precisions add and the posterior mean is the sum of the
prior and data means, but each weighted by their relative
precision. This relationship is illustrated in Figure 2. Though

fairly simple, eqn [5] shows how to optimally combine two
sources of information. As we shall see in the following section,
various aspects of human behavior from sensory integration to
instances of collective decision making have been shown to
conform to this ‘normative model.’ Similar formulae exist for
multivariate (instead of univariate) Gaussians (

bib4

Bishop, 2006)
where we have multidimensional hidden states and observa-
tions, e.g., three-dimensional position of the ball, and two-
dimensional landing position on court surface.

s0020Behavioral Models

p0080An attractive feature of Bayesian models of behavior is that they
provide descriptions of what would be optimal for a given task.
They are often referred to as ‘ideal observer’ models because
they quantify how much to update our beliefs in light of new
evidence. Departures from these normative models can then be
explained in terms of other constraints such as computational
complexity or individual differences.

p0085One way to address individual differences is to use an
empirical Bayesian approach in which parameters of priors and
their parametric forms are estimated from data. See

bib25

Stocker and
Simoncelli (2006) for an example of this approach inmodeling
visual motion processing.

p0090What follows is a review of Bayesian models of sensory
integration, visual processing, sensorimotor integration, and
collective decision making. As we shall see, the priors that we
have about, for example, our visual world most readily show
themselves in situations of stimulus ambiguity or at low
signal-to-noise ratios. Much of the phenomonology of these
perceptual illusions is long established (

bib13

Gregory, 1998) but
Bayesian modeling provides new quantitative explanations
and predictions. A more introductory review of much of this

f0015Figure 2 Bayes rule for Gaussians. For the prior p(x) (blue) m0¼ 20,
l0¼ 1 and the likelihood p(yjx) (red) md¼ 25, ld¼ 3, the posterior
p(xjy) (magenta) shows the posterior distribution with m¼ 23.75,
l¼ 4. The posterior is closer to the likelihood than the prior because
the likelihood has higher precision. Bayes rule for Gaussians has been
used to explain many behaviors from sensory integration to collective
decision making.
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material is available in Frith’s outstanding book on mind and
brain (

bib11

Frith, 2007).

s0025 Sensory Integration

p0095
bib8

Ernst and Banks (2002) considered the problem of integrating
information from visual and tactile (haptic) modalities. If
vision v and touch t information are independent given
observation of an object x, then Bayesian fusion of sensory
information produces a posterior density:

pðxjv; tÞ ¼ pðvjxÞpðtjxÞpðxÞ
pðv; tÞ [6]

p0100 For a uniform prior p(x) and for Gaussian likelihoods, the
posterior will also be a Gaussian with precision lvt. From Bayes
rule for Gaussians (eqn [5]), we know that precisions add:

lvt ¼ lv þ lt [7]

where lv and lt are the precision of visual and haptic senses
alone, and the posterior mean is a relative-precision weighted
combination:

mvt ¼ wvmv þ wtmt [8]

where the weights are wv¼ lv/lvt and wt¼ lt/lvt.
p0105

bib8

Ernst and Banks (2002) asked subjects which of two
sequentially presented blocks was the taller. Subjects used
either vision alone, touch alone or a combination of the two.
They recorded the accuracy with which discrimination could be
made and plotted this as a function of difference in block
height. This was repeated for each modality alone and then
both together. They also used various levels of noise on the
visual images. From the single modality discrimination curves
they then fitted cumulative Gaussian density functions, which
provided estimates of the precisions lt and lv(i) where i indexes
visual noise levels.

p0110 In the dual modality experiment, the weighting of visual
information predicted by Bayes’ rule for the ith level of visual
noise is

wvðiÞ ¼ lvðiÞ
lvðiÞ þ lt

[9]

p0115 This was found to match well with the empirically
observed weighting of visual information. They observed
visual capture (strong weighting) at low levels of visual noise
and haptic capture at high levels. Inference in this simple
Bayesian model is consistent with standard signal detection
theory. However, Bayesian inference is more general as it can
accommodate, for example, nonuniform priors over block
height.

p0120 There have been numerous studies of the potential role of
Bayesian inference for integration of other senses. For example,
object localization using visual and auditory cues (

bib2

Alais and
Burr, 2004) has supported a Bayesian integration model with
vision dominating audition in most ecologically valid contexts.
This visual capture is the basis of the ‘ventriloquism’ effect,
but is rapidly degraded with visual noise. This literature has
considered only simple inferences about single variables such
as block height or spatial location. Nevertheless these studies
have demonstrated a fundamental concept; that sensory inte-
gration is near Bayes-optimal.

p0125The representations in the brain that are used to support the
above computations are a subject of ongoing study. One
proposal is that populations of neurons represent probability
distributions such that higher neuronal firing rates reflect
higher precisions. Moreover, if the distribution of cell activities
is approximately Poisson then Bayesian inference for optimal
cue integration, for example, can be implemented with simple
linear combinations of neural activity (

bib18

Ma et al., 2006). Recent
recordings in whichmonkeys were trained to estimate direction
of motion from visual and vestibular cues showed neuronal
activity consistent with this theory (

bib9

Fetsch et al., 2011).

s0030Visual Perception

p0130
bib14

Kersten et al. (2004) reviewed the problem of visual object
perception and argued that much of the ambiguity in visual
processing, for example concerning occluded objects, can be
resolved with prior knowledge. This idea is naturally embodied
in a Bayesian framework (

bib16

Knill and Richards, 1996) and has its
origins in the work of Helmholtz who viewed perception as
‘unconscious inference.’ An example is how the inference of
shape from shading is informed by a ‘light-from-above’ prior.
This results in circular patches that are darker at the bottom
being perceived as convex. The adaptability of this prior, and
subsequent perceptual experience, has been demonstrated by
bib1

Adams et al. (2004).
p0135An example of such a Bayesian modeling approach is the

work of
bib30

Yu et al. (2009) who propose a normative model for
the Eriksen Flanker task. This simple decision-making task was
designed to probe neural and behavioral responses in the
context of conflicting information. On each trial, three visual
stimuli are presented and subjects are required to press a button
depending on the identity of the central stimulus. The flanking
stimuli are either congruent or incongruent.

bib30

Yu et al. (2009)
proposed a discrete time ideal observer model that qualita-
tively captured the dynamics of the decision-making process.
This used the recursive form of Bayes rule in eqn [3]. In later
work, a continuum time limit of this model was derived,
which produced semi-analytic predictions of reaction time
and error rate that accurately predicted subject behavior. They
also proposed an algorithm for how these models could be
implemented in the brain.

p0140
bib27

Weiss et al. (2002) proposed that many motion illusions
arise from the result of Bayes-optimal processing of ecologically
invalid stimuli. Their model was able to reproduce a number of
psychophysical effects based on the simple assumptions that
measurements are noisy and the visual system has a prior
which expects slower movements to be more likely than faster
ones. For example, the model could predict the direction of
global motion of simple objects such as rhomboids, as a func-
tion of contrast and object shape. This model was later refined
(
bib25

Stocker and Simoncelli, 2006) by showing the prior to be non-
Gaussian and subject specific, and that measurement noise
variance was inversely proportional to visual contrast.

p0145
bib20

Najemnik and Geisler (2005) developed an ideal Bayesian
observer model of visual search for a known target embedded
in a natural texture. Prior beliefs in target location were updated
to posterior beliefs using a likelihood term that reflected the
foveated mapping properties of visual cortex. When this like-
lihood was matched to individual subjects discrimination

AU2
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ability, the resulting visual searches were nearly optimal in
terms of the median number of saccades. Later work showed
that fixation statistics were also similar to the ideal observer.

p0150 An important idea to emerge in recent years is that Bayesian
inference operates at the level of cortical macrocircuits (

bib22

Rao
and Ballard, 1999). These circuits are arranged in a hierarchy
that reflects the hierarchical structure of the world around us,
e.g., scenes are comprised of objects that are in turn comprised
of features that are in turn comprised of simpler elements. The
connections among regions have also been proposed to have
a rather specific anatomy. For example, top-down connections
originate from cortical pyramidal cells lying deep in the gray
matter (i.e., close to white matter) whereas bottom-up
connections originate more superficially (

bib19

Mumford, 1992).
The signals sent up and down these cortical hierarchies then
map onto the message-passing algorithms that implement
Bayesian inference in dynamic, hierarchical models (

bib10

Friston,
2003).

p0155 If the world we perceive is the result of hierarchical pro-
cessing in cortical networks then, because this processing may
take some time (of the order of 100 ms), what is perceived to
be the present could actually be the past. As this would be
disadvantageous for the species, it has been argued that our
perceptions are based on predictive models. A 50 ms delay in
processing could be accommodated by estimating the state of
the world 50 ms in the future. There is much experimental
evidence for this view (

bib21

Nijhawan, 1994). However, a purely
‘predictive’ account fails to accommodate recent findings in
visual psychophysics. The flash-lag effect, for example, is
a robust visual illusion whereby a flash and a moving object
that are located in the same position are perceived to be dis-
placed from one other. If the object stops moving at the time of
the flash no such displacement is perceived. This indicates that
the position of the object after the flash affects our perception
of where the flash occurred. This ‘postdictive’ account explains
the phenomenon (

bib7

Eagleman and Sejnowski, 2000) and related
data where the object reverses its direction at the flash time. A
simple Bayesian model has been proposed to account for the
activity of V4 neurons in this task (

bib26

Sundberg et al., 2006) and
later experimental work found evidence for a linear combina-
tion of both predictive and postdictive mechanisms.

s0035 Sensorimotor Integration

p0160
bib28

Wolpert et al. (1995) have examined the use of dynamic
Bayesian models, also referred to as forward models, for
sensorimotor integration. These models describe relations
among a current state variable xn, motor commands un, and
sensory observations yn. The state might correspond, for
example, to a multivariate vector comprising a list of joint angle
positions and velocities. These dynamic models have a transi-
tion density pðxnjxn�1; un�1Þ describing how the hidden state
evolves over time. The posterior distribution over hidden states
can then be computed as described in standard texts (

bib4

Bishop,
2006). First, the dynamical equation describing state transi-
tions is integrated to create an estimate of the next state. This
requires as input a copy of the current motor command (so-
called ‘efference copy’) and the current state. This is referred to
as a time update step. A prediction of sensory input can then be
made based on the predicted next state and the mapping from

xn to yn. Finally, a measurement update or correction step can
be applied, which updates the state estimate based on current
sensory input.

p0165
bib28

Wolpert et al. (1995) cite a number of key features of
dynamic Bayesian models including the following. First, they
allow outcomes of actions to be predicted and acted upon
before sensory feedback is available. This may be important for
rapid movements. Second, they use efference copy to cancel the
sensory effects of movement (‘re-afference’), e.g., the visual
world is stable despite eye movements. Third, simulation of
actions allows for mental rehearsal which can potentially lead
to improvements in movement accuracy.

p0170This mathematical framework was applied to the estimation
of arm position using proprioceptive feedback and a forward
model based on a linear dynamical system (

bib28

Wolpert et al.,
1995). Inference in this model was then implemented using
a Kalman filter. The resulting bias and variance in estimates of
arm position were shown to closely correspond to human
performance, with proprioceptive input becoming more useful
later on in the movement when predictions from the forward
model were less accurate.

p0175One of the core ideas behind these forward models is that,
during perceptual inference, the sensory consequences of
a movement are anticipated and used to attenuate the percepts
related to these sensations. This mechanism reduces the
predictable component of sensory input to self-generated
stimuli, thereby enhancing the salience of sensations that
have an external cause. This has many intriguing consequences.
For example, it predicts that self-generated forces will be
perceived as weaker than externally generated forces. This
prediction was confirmed in a later experiment (

bib23

Shergill et al.,
2003), thereby providing a neuroscientific explanation for
force escalation during conflict; children trading tit-for-tat
blows will often assert the other hit him harder.

p0180
bib17

Kording and Wolpert (2004) have investigated learning in
the sensorimotor system using a visual reaching task in which
subjects moved their finger to a target and received visual
feedback. This feedback provided information about target
position that had an experimentally controlled bias and vari-
ance. Subjects were found to be able to learn this mapping
(from vision to location) and integrate it into their behavior in
a Bayes-optimal way.

p0185Returning to our tennis theme, an analysis of 3 years of
Wimbledon games has indicated that the outcome of the
current point depends on the outcome of the previous point
(
bib15

Klaassen and Magnus, 2001). There are multiple potential
sources of correlation here. It could be that a player intermit-
tently enjoys a sweet parameter spot where his internal senso-
rimotor model accurately predicts body and ball position and
is able to hit the ball cleanly, or perhaps a player finds a new
pattern in his opponent’s behavior such as body position, or
previous serve, predicting current service direction.

s0040Collective Decision Making

p0190
bib24

Sorkin et al. (2001) have applied Bayes rule for Gaussians
(see eqn [5]) in their study of collective decision making. Here
the optimal integration procedure involves each group
members’ input to the collective decision being weighted
proportionally by the member’s competence at the task.
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Statistically, ‘competence’ corresponds to precision. This model
of group behavior was shown to be better than a different
model which assumed members made individual decisions
which were then combined into a majority vote. This latter
model better described collective decision making when
members did not interact.

p0195
bib3

Bahrami et al. (2010) investigated pairs of subjects (dyads)
making collective perceptual decisions. Dyads with similarly
sensitive subjects (similar precisions) were found to produce
collective decisions that were close to optimal, but this was not
the case for dyads with very different sensitivities. These
observations were explained by a Bayes-optimal model under
the assumption that subjects accurately communicated their
confidence. This confidence sharing proved essential for the
group decision to be better than the decision of the best subject.

See also: Bayesian Statistics; Bayesian Decision Theory;
Bayesian Graphical Models and Networks; 43021; 43068;
43090; Vision, High Level Theory of.

Bibliography

Adams, W., Graf, E., Ernst, M., 2004. Experience can change the ‘light-from-above’
prior. Nature Neuroscience 7, 1057–1058.

Alais, D., Burr, D., February 2004. The ventriloquist effect results from near-optimal
bimodal integration. Current Biology 14 (3), 257–262.

Bahrami, B., Olsen, K., Latham, P., Roepstor, A., Rees, G., Frith, C., August 2010.
Optimally interacting minds. Science 329 (5995), 1081–1085.

Bishop, C.M., 2006. Pattern Recognition and Machine Learning. Springer.
Bogacz, R., Brown, E., Moehlis, J., Holmes, P., Cohen, J., 2006. The physics of

optimal decision making: a formal analysis of models and performance in two-
alternative forced-choice tasks. Psychological Review 113 (4), 700–765.

Doya, K., Ishii, S., Pouget, A., Rao, R. (Eds.), 2007. Bayesian Brain: Probabilistic
Approaches to Neural Coding. MIT Press.

Eagleman, D., Sejnowski, T., March 2000. Motion integration and postdiction invisual
awareness. Science 287 (5460), 2036–2038.

Ernst, M., Banks, M., 2002. Humans integrate visual and haptic information in
a statistically optimal fashion. Nature 415 (6870), 429–433.

Fetsch, C., Pouget, A., DeAngelis, G., Angelaki, D., 2011. Neural correlates of
reliability-based cue weighting during multisensory integration. Nature Neurosci-
ence 15 (1), 146–154.

Friston, K., 2003. Learning and inference in the brain. Neural Networks 16 (9),
1325–1352.

Frith, C., 2007. Making Up the Mind: How the Brain Creates Our Mental World. Wiley-
Blackwell.

Gold, J., Shadlen, M., 2001. Neural computations that underlie decisions about
sensory stimuli. Trends in Cognitive Sciences 4, 10–16.

Gregory, R., 1998. Eye and Brain: The Psychology of Seeing. Oxford University Press.
Kersten, D., Mamassian, P., Yuille, A., 2004. Object perception as Bayesian inference.

Annual Review of Psychology 55, 271–304.
Klaassen, F., Magnus, J., 2001. Are points in tennis independent and identically

distributed? Evidence from a dynamic binary panel data model. Journal of the
American Statistical Association 96, 500–509.

Knill, D., Richards, W., 1996. Perception as Bayesian Inference. Cambridge.
Kording, K., Wolpert, D., 2004. Bayesian integration in sensorimotor learning. Nature

427, 244–247.
Ma, W., Beck, J., Latham, P., Pouget, A., November 2006. Bayesian inference with

probabilistic population codes. Nature Neuroscience 9 (11), 1432–1438.
Mumford, D., 1992. On the computational architecture of the neocortex II: the role of

cortico-cortical loops. Biological Cybernetics 66, 241–251.
Najemnik, J., Geisler, W., March 2005. Optimal eye movement strategies in visual

search. Nature 434 (7031), 387–391.
Nijhawan, R., 1994. Motion extrapolation in catching. Nature 370, 256–257.
Rao, R.P., Ballard, D.H., January 1999. Predictive coding in the visual cortex:

a functional interpretation of some extra-classical receptive field effects. Nature
Neuroscience 2 (1), 79–87.

Shergill, S., Bays, P., Frith, C., Wolpert, D., July 2003. Two eyes for an eye: the
neuroscience of force escalation. Science 301 (5630), 187.

Sorkin, R., Hays, C., West, R., January 2001. Signal-detection analysis of group
decision making. Psychological Review 108 (1), 183–203.

Stocker, A., Simoncelli, E., April 2006. Noise characteristics and prior expectations in
human visual speed perception. Nature Neuroscience 9 (4), 578–585.

Sundberg, K., Fallah, M., Reynolds, J., February 2006. A motion-dependent distortion
of retinotopy in area v4. Neuron 49 (3), 447–457.

Weiss, Y., Simoncelli, E., Adelson, E., June 2002. Motion illusions as optimal percepts.
Nature Neuroscience 5 (6), 598–604.

Wolpert, D.M., Ghahramani, Z., Jordan, M.I., 1995. An internal model for sensorimotor
integration. Science 269 (5232), 1880–1882.

Wolpert, D., Ghahramani, Z., 2004. Bayes rule in perception, action and cognition. In:
Oxford Companion to the Mind. Oxford Univ.

Yu, A., Dayan, P., Cohen, J., June 2009. Dynamics of attentional selection under
conflict: toward a rational Bayesian account. Journal of Experimental Psychology
Human Perception and Performance 35 (3), 700–717.

Relevant Websites

http://cnl.salk.edu/.
http://www.eecs.berkeley.edu/Faculty/Homepages/jordan.html.
http://www.fil.ion.ucl.ac.uk/�wpenny/.
http://www.gatsby.ucl.ac.uk/.
http://en.wikipedia.org/wiki/Bayesian_approaches_to_brain_function.

ED1

Bayesian Models in Neuroscience 5

ISB2 56035

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s), Elsevier and typesetter

TNQ Books and Journals Pvt Ltd. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

http://refhub.elsevier.com/B978-0-08-097086-8.56035-8/ref0010
http://refhub.elsevier.com/B978-0-08-097086-8.56035-8/ref0010
http://refhub.elsevier.com/B978-0-08-097086-8.56035-8/ref0015
http://refhub.elsevier.com/B978-0-08-097086-8.56035-8/ref0015
http://refhub.elsevier.com/B978-0-08-097086-8.56035-8/ref0020
http://refhub.elsevier.com/B978-0-08-097086-8.56035-8/ref0020
http://refhub.elsevier.com/B978-0-08-097086-8.56035-8/ref0025
http://refhub.elsevier.com/B978-0-08-097086-8.56035-8/ref0030
http://refhub.elsevier.com/B978-0-08-097086-8.56035-8/ref0030
http://refhub.elsevier.com/B978-0-08-097086-8.56035-8/ref0030
http://refhub.elsevier.com/B978-0-08-097086-8.56035-8/ref0035
http://refhub.elsevier.com/B978-0-08-097086-8.56035-8/ref0035
http://refhub.elsevier.com/B978-0-08-097086-8.56035-8/ref0040
http://refhub.elsevier.com/B978-0-08-097086-8.56035-8/ref0040
http://refhub.elsevier.com/B978-0-08-097086-8.56035-8/ref0045
http://refhub.elsevier.com/B978-0-08-097086-8.56035-8/ref0045
http://refhub.elsevier.com/B978-0-08-097086-8.56035-8/ref0050
http://refhub.elsevier.com/B978-0-08-097086-8.56035-8/ref0050
http://refhub.elsevier.com/B978-0-08-097086-8.56035-8/ref0050
http://refhub.elsevier.com/B978-0-08-097086-8.56035-8/ref0055
http://refhub.elsevier.com/B978-0-08-097086-8.56035-8/ref0055
http://refhub.elsevier.com/B978-0-08-097086-8.56035-8/ref0060
http://refhub.elsevier.com/B978-0-08-097086-8.56035-8/ref0060
http://refhub.elsevier.com/B978-0-08-097086-8.56035-8/ref0065
http://refhub.elsevier.com/B978-0-08-097086-8.56035-8/ref0065
http://refhub.elsevier.com/B978-0-08-097086-8.56035-8/ref0070
http://refhub.elsevier.com/B978-0-08-097086-8.56035-8/ref0075
http://refhub.elsevier.com/B978-0-08-097086-8.56035-8/ref0075
http://refhub.elsevier.com/B978-0-08-097086-8.56035-8/ref0080
http://refhub.elsevier.com/B978-0-08-097086-8.56035-8/ref0080
http://refhub.elsevier.com/B978-0-08-097086-8.56035-8/ref0080
http://refhub.elsevier.com/B978-0-08-097086-8.56035-8/ref0085
http://refhub.elsevier.com/B978-0-08-097086-8.56035-8/ref0090
http://refhub.elsevier.com/B978-0-08-097086-8.56035-8/ref0090
http://refhub.elsevier.com/B978-0-08-097086-8.56035-8/ref0095
http://refhub.elsevier.com/B978-0-08-097086-8.56035-8/ref0095
http://refhub.elsevier.com/B978-0-08-097086-8.56035-8/ref0100
http://refhub.elsevier.com/B978-0-08-097086-8.56035-8/ref0100
http://refhub.elsevier.com/B978-0-08-097086-8.56035-8/ref0105
http://refhub.elsevier.com/B978-0-08-097086-8.56035-8/ref0105
http://refhub.elsevier.com/B978-0-08-097086-8.56035-8/ref0110
http://refhub.elsevier.com/B978-0-08-097086-8.56035-8/ref0115
http://refhub.elsevier.com/B978-0-08-097086-8.56035-8/ref0115
http://refhub.elsevier.com/B978-0-08-097086-8.56035-8/ref0115
http://refhub.elsevier.com/B978-0-08-097086-8.56035-8/ref0120
http://refhub.elsevier.com/B978-0-08-097086-8.56035-8/ref0120
http://refhub.elsevier.com/B978-0-08-097086-8.56035-8/ref0125
http://refhub.elsevier.com/B978-0-08-097086-8.56035-8/ref0125
http://refhub.elsevier.com/B978-0-08-097086-8.56035-8/ref0130
http://refhub.elsevier.com/B978-0-08-097086-8.56035-8/ref0130
http://refhub.elsevier.com/B978-0-08-097086-8.56035-8/ref0135
http://refhub.elsevier.com/B978-0-08-097086-8.56035-8/ref0135
http://refhub.elsevier.com/B978-0-08-097086-8.56035-8/ref0140
http://refhub.elsevier.com/B978-0-08-097086-8.56035-8/ref0140
http://refhub.elsevier.com/B978-0-08-097086-8.56035-8/ref0145
http://refhub.elsevier.com/B978-0-08-097086-8.56035-8/ref0145
http://refhub.elsevier.com/B978-0-08-097086-8.56035-8/ref0150
http://refhub.elsevier.com/B978-0-08-097086-8.56035-8/ref0150
http://refhub.elsevier.com/B978-0-08-097086-8.56035-8/ref0155
http://refhub.elsevier.com/B978-0-08-097086-8.56035-8/ref0155
http://refhub.elsevier.com/B978-0-08-097086-8.56035-8/ref0155
http://cnl.salk.edu/
http://www.eecs.berkeley.edu/Faculty/Homepages/jordan.html
http://www.fil.ion.ucl.ac.uk/%7Ewpenny/
http://www.fil.ion.ucl.ac.uk/%7Ewpenny/
http://www.gatsby.ucl.ac.uk/
http://en.wikipedia.org/wiki/Bayesian_approaches_to_brain_function

	ISB2_56035-9780080970868.pdf
	Bayesian Models in Neuroscience
	Bayesian Inference
	Gaussians

	Behavioral Models
	Sensory Integration
	Visual Perception
	Sensorimotor Integration
	Collective Decision Making

	Bibliography
	Relevant Websites





