

Study Design

ULTIMATE GOAL: TEST SPECIFIC HYPOTHESIS

MANIPULATION: TOOLS

- Stimulus type and properties
- What they see
- Stimulus timing
- When they see it
- Subject Instructions
- What they are told

CATEGORICAL DESIGNS: SUBTRACTION

1. Task A contains Process X
2. Task B does not contain Process X
3. Activation C is found in A but not B
\rightarrow Activation C underlies Process X

Assumption of "Pure Insertion" (Amaro \& Barker, 2006 but Friston et al., 1996)

CATEGORICAL DESIGNS: SUBTRACTION

Task A: "When you see a word on the screen, repeat it. Task B: "When you see a word on the screen, don't repeat it".

1. Task A contains word repetition
2. Task B does not contain word repetition
3. pSTG activation is found in A but not B
\rightarrow pSTG activation underlies word repetition

CATEGORICAL DESIGNS: SUBTRACTION

BUT: Can we rule out that word repetition may have interacted with the other processes at hand (e.g. reading) and changed their neural implementation?

FACTORIAL DESIGNS

\longrightarrow Explicitly testing for interactions (besides main effects)

Treatment A	
Present	Absent
Present- Present	Absent- Present
Present-	Absent- Absent

CATEGORICAL DESIGNS: CONJUNCTION

Process	Task Pair I		Task Pair II	
	Task I-A	Task I-B	Task II-A	Task II-B
1	V	V		
2	\vee		V	V
3			V	
4 (PI)	V		\vee	
5	\vee	\vee		

Pair I

Pair II -
Differences

CATEGORICAL DESIGNS: CONJUNCTION

CATEGORICAL DESIGNS: CONJUNCTION

True conjunction defined logically by ('AND' / \&\&)
$\left.\begin{array}{r}\text { Thus: H1: } n \text { (Contrasts) }=n(\text { Significant Effects }) \\ \text { HO: } n \text { (Contrasts) }>\mathrm{n}(\text { Significant Effects })\end{array}\right\}$ Conjunction NHST

As opposed to more lenient Global Null Hypothesis

- Significant set of consistent effects
- Not necessarily all individually significant

PARAMETRIC DESIGNS

\longrightarrow Incremental increase of process involvement

PARAMETRIC DESIGNS

\rightarrow Process involvement modelled by basic functions

STIMULUS PRESENTATION STRATEGIES

Eventrelated
 Mixed

BLOCK DESIGNS

> Baseline choice depends on RQ!
example:
Task A: Forward Sentences
Task B: Reversed Sentences

BLOCK DESIGNS

BLOCK DESIGNS

Pros	Cons
Good SNR: Power • max between-conditions var • min within-conditions var	Insensitivity to HRF-shape • strategies
Less task switching costs	• expectancies • habituation
Easy analysis	Signal drift

EVENT-RELATED DESIGNS

EVENT-RELATED DESIGNS

Pros	Cons		
Better estimation of HRF • shape • timing	Lower statistical power \bullet HRF not back at baseline • random jitter \& order help		
Trial-by-trial adjustments	Possibly task switching costs		
More suitable for many tasks		\quad	More complex than block
:---			

MIXED DESIGNS

Time

Several kinds of processes

- Across blocks: state-related
- Within blocks: item-related
example:
Stim A: Congruent Words
Stim B: Incongruent Words
Blocks: Forward / Reverse

