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Where are we headed? 

•  A delicious analogy 
•  The General Linear Model equation 

•  What do the variables mean? 
•  How does this relate to fMRI? 

•  Minimizing error 



Analogy: Reverse Cookery 
 Start with finished product and try 
 to explain how it is made... 
–  You specify which ingredients 

to add (X) 
–  For each ingredient, GLM 

finds the quantities (β) that 
produce the best reproduction 

–  Then if you tried to make the 
cake with what you know 
about X and β then the error 
would be the difference 
between the original cake/
data and yours! exxy ++= 2211 ββ



The General Linear Model 

eXy += β
The General Linear Model 
Describes a response (y), such as the BOLD response in a voxel, 
in terms of all its contributing factors (xβ) in a linear combination, whilst  
also accounting for the contribution of error (e). 



The General Linear Model 

eXy += β
Dependent variable 
Describes a response 
(such as the BOLD response  
in a single voxel, taken from  
an fMRI scan) 



The General Linear Model 

eXy += β
Independent Variable 
aka. Predictor 
e.g. Experimental conditions 
(Embodies all available knowledge  
about experimentally controlled  
factors and potential confounds) 



Parameters   (aka regression coefficient/beta weights) 

Quantifies how much each 
predictor (X) independently  
influences the dependent 
variable (Y) 
 The slope of the line 

The General Linear Model 

eXy += β

         X  

Y 



The General Linear Model 

eXy += β
Error 
Variance in the data (y)  
which is not explained by the  
linear combination of  
predictors (x) 
 



Therefore… 

eXy += β
(IV x Parameters) 
= 

DV = + Error 

As we take samples of a response (y) many times, 
this equation actually represents a matrix… 



…the GLM matrix 

= 
Single  
voxel 

...over 
time 

One response… 

BOLD signal 

Ti
m
e 



Each predictor (x) has an expected signal time 
course, which contributes to y 

residuals fMRI signal 

Tim
e 

Y: Observed Data 

= + 

Residual 

+ 1 × 2 × 3 × + 

X1 X2 X3 

X: Predictors  



Parameters (β) 

•  Beta is the slope of the regression line 
  Quantifies a specific predictor’s (x) contribution to y. 

  The parameter (β) chosen for a model should minimise the error 
(reducing the amount of variance in y which is left unexplained) 

 

Y 

X 



The design matrix does not account for all of y 

  If we plot our observations (n) on a  
 graph these will not fall in a straight  
 line 

  This is a result of uncontrolled influences 
 (other than x) on y 

 
  This contribution to y is called the error  

(or residual) 

  Minimising the difference between the response predicted by the 
model (y) and the actual response (y) minimises the error of the 
model 

Y 

^ 



Generation Shadowing Baseline 

Measured 

X1 X2 X3 

”Known” 

 
 

≈ 

We have our set of hypothetical time-series: x1, x2, x3.... 

....and our data 



 
 

 We find the best parameter values by modelling... 

...the best parameter will miminise the error in the model 

Generation Shadowing Baseline 

4 3 2 

≈ 

1 0 2 1 0 1 0 

+ β3* 

”Unknown” parameters 

+ β2* β1* 



Generation Shadowing Baseline 

≈ + β3* 

Here, there is a lot of residual variance in y which is 
unexplained by the model (error) 

4 3 2 1 0 

β1* 

Not brilliant 

2 1 0 

0 0 3 

1 0 

+ β2* 



Generation Shadowing Baseline 

+ β3* 

1 0 

β1* 

2 1 0 

1 0 4 

1 0 

+ β2* 

Still not great 

4 3 2 

≈ 

...and the same goes here 



Generation Shadowing Baseline 

≈ 

4 3 2 

≈ + β2* + β1* 

1 0 

β0* + β3* 

1 0 

β1* 

1 0 

+ β2* 

2 1 0 

0.83 0.16 2.98 

...but here we have a good fit, with minimal error 



Generation Shadowing Baseline 

+ β2* + β1* β3* ≈ ≈ 

3 2 1 

In other words: 

≈ + β2* + β1* 

1 0 

β0* + β3* 

1 0 

β1* 

1 0 

+ β2* 

2 1 0 

0.68 0.82 2.17 

...and the same model can fit different data   
– just use different parameters 



Generation Shadowing Baseline 

+ β2* + β1* β0* ≈ ≈ ≈ 

3 2 1 

Doesn’t care: 

≈ + β2* + β1* 

1 0 

β0* + β3* 

1 0 

β1* 

1 0 

+ β2* 

2 1 0 

0.03 0.06 2.04 

...as you can see 

Different data (y) 

Different parameters () 

The same predictors (x) 
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So the same model can be used across all voxels of the brain, 
just using different paramteres 



•  The y and x in our model are all 
vectors of the same dimensionality 
and so, lie within the same large space. 

•  The design matrix (x1, x2, x3…) 
defines a subspace; the design space 
(green panel). 

eXy += β

Finding the optimal parameter can also be visualised 
in geometric space 

 

Design space 
defined by X 

x1 

x2 

^ 



Parameters determine the co-ordinates of the 
predicted response (y) within this space 

•  The actual data (y) however, lie outside 
this space. 

•  So there is always a difference between 
the predicted y and actual y 

y 

x1 

x2 ˆ y 
^ 

^ 



•  So the GLM aims find the projection 
of y on the design space which 
minimises the error of the model   

 (minimises the difference between 
predicted y and actual y) 

 

 

We need to minimise the difference between 
predicted y and actual y 

 

y 

e (minimise) 

x1 

x2 ˆ y 
^ 

^ 

^ 



 …So the best parameter will position y 
so that the error vector between y and y 
is orthogonal  to the design space 
(minimising the error) 

The smallest error vector is orthogonal to the design 
space… 

 

y 

e 

x1 

x2 ˆ y 

^ ^ 



How do we find the parameter which produces 
minimal error? 



The optimal parameter can be calculated using  

Ordinary Least Squares 

yXXX TT 1)(ˆ −=β
A statistical method for estimating unknown parameters from sampled data 

- minimizing the difference between predicted data and observed data. 

å 
= 

N 

t 
t e 

1 

2 = minimum 



Overview of SPM 

Realignment Smoothing 

Normalisation 

General linear model 

Image time-series 

Parameter estimates 

Design matrix 

Template 

Kernel 

Gaussian  
field theory 

p <0.05 

Statistical 
inference 



fMRI data 
Single voxel analyzed 
across many different 
time points 

Y = BOLD signal at each 
time point from that voxel 

BOLD signal 

Tim
e 



An fMRI experiment 

Is there a 
change in the 
BOLD 
response 
between the 
two 
conditions? 



Applying the GLM 

exxy ++= 2211 ββ

BOLD 
response at 
each time point 
at chosen voxel 

Predictors that 
explain the data 

How much each 
predictor 
explains the 
data 
(Coefficient) 

Variance in the 
data that cannot 
be explained by 
the predictors 
(noise) 

β = 0.44 



Statistical Parametric Mapping 
•  Null 

hypothesis: 
your effect of 
interest 
explains none 
of your data. 

•  Is the task 
significally 
different? Statistical Inference  

eg. P<0.05 



Problems 

1.  BOLD signal is not a simple on/off 
2.  Low-frequency noise 
3.  Assumptions about the nature of the error 
4.  Physiological confounds 



expected BOLD response  
= input function x hemodynamic response function (HRF) 

x = 

Impulses HRF Expected BOLD 

Convolution model 



Convolve stimulus function 
with a canonical 
hemodynamic response 
function (HRF): 

 HRF 

Original 
Convolved 
HRF 

Convolution model 



discrete cosine 
transform (DCT) 

set 

Adjusting for low frequencies 



Adjusting for low frequencies 

Blue = data 
Black = mean + low-frequency 
drift 
Green = predicted response, 
taking into account low-
frequency drift 
red  = predicted response, 
NOT taking  into account 
low-frequency drift 
 



GLM Assumptions 

1.  Errors are normally distributed  - smoothing 

2. Error is the same in each & every measurement 
point 
 

 

3. There is no correlation between errors at 
different time points/data points 

 

x 



Error is time-correlated 

•  The error at each time point is correlated to the error at the 
previous time point 

 

0 

It is… 

t 

e 
e in time t is correlated 

with e in time t-1 

It should be… 

0 t 

e 



Autoregressive Model 

•  Temporal autocorrelation:  
in y = Xβ + e over time 
et = aet-1 + ε 

•  ‘Whitening’  
 

•  To compensate for inflated t-value 



Physiological Confounds 

•  head movements 

•  arterial pulsations 

•  breathing 

•  eye blinks (visual cortex) 

•  adaptation affects, fatigue, changes in attention to task 



(Predictors x Parameters...) 

To recap... 

exxy ++= 2211 ββ
= 

Response = + Error 



Thanks to... 

•  Previous years MfD slides (2009-2010) 

•  Dr. Guillaume Flandin 


