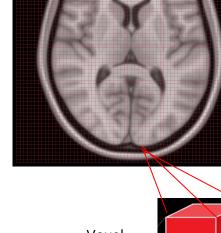
1. Preprocessing

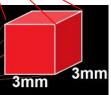
- 2. Realigning
- 3. Unwarping
- 4. SPM

Realigning and Unwarping MRI data

Shuge Guan Camille Lasbareilles


fMRI data

fMRI data: four-dimensional (3 x space and 1 x time)

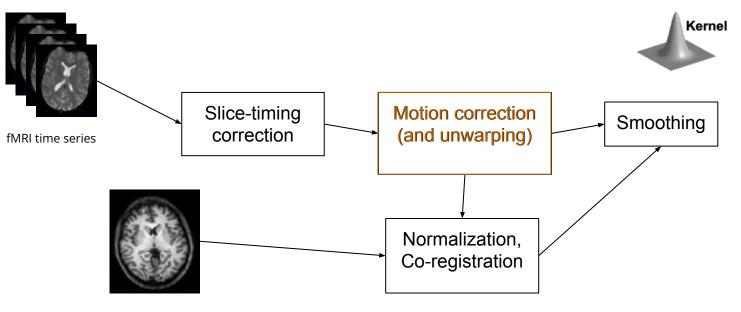

- 3D array of **voxels** repeatedly sampled slice over slice to measure the whole volume of the brain.
- Each voxel has an associated **time-series** of as many time-points as volumes acquired per session.

Assumptions

 The voxels at certain position present the same part of the brain over time.
 All voxels that present a single time point must be acquired simultaneously.

Voxel

Adapted from Nipype Beginner's Guide


fMRI data pre-processing

 \rightarrow Correct or adjust our data and prepare it for statistical analysis

Including:

- Take account of **time differences** between acquiring each image slice
- Correct for **head movement** during scanning
- Detect **anomalous measurements** that should be excluded from subsequent analysis
- Align the **functional** images with the reference **structural** image
- Normalize the data into a **standard space** so that data can be compared among several subjects
- Apply filtering to the image to increase the **signal-to-noise ratio**

Preprocessing pipeline

Structural MRI

Adapted from Dr. Karl Friston May 2011 SPM workshop presentation

Motion on fMRI

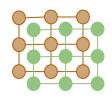
- **Physiological**: heart beat, respiration, blinking
- Actual movement of the head
- Task-related: moving to press buttons

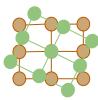
One volex: $3mm \times 3mm \times 3mm$ \rightarrow even small head movements lead to unwanted variation in voxels and reduce the quality of data.

Possible Solutions:

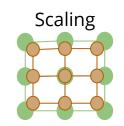
- Make volunteer comfortable
- Schedule short scanning sessions
- Provide instructions not to move head
- Constrain volunteers' movement

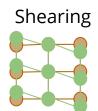
From previous presentation


Most variance still remains! \rightarrow Motion correction


Motion Correction: Realigning

 Minimize the influence of movement on the data by aligning the input image to a target image.


Translation



Rotation

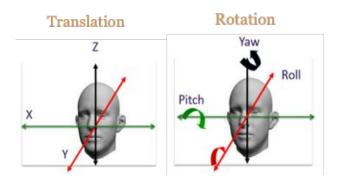
 The target image can be the mean image of all timepoints, the first, or some other time point.

Types of transformations

Only use linear transformations

Rigid body transformation

- Principle: assume that all movements are those of a rigid body (the shape of the brain does not change)
- Translation and rotation
- Similarity transformation
 - Translation, rotation and a single global scaling
- Affine transformation
 - Translation, rotation, scaling and shearing

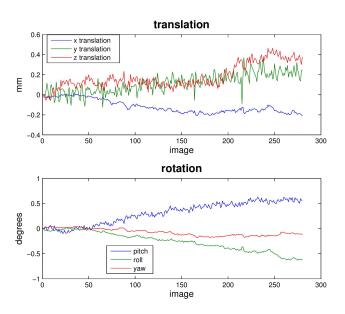

□Two steps:

1.Registration (estimate)

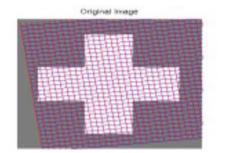
2.Re-slicing (resample)

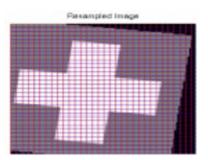
Realigning-Registration

→ Determining the 6 parameters that describe the **rigid body transformation** between each image and a reference image

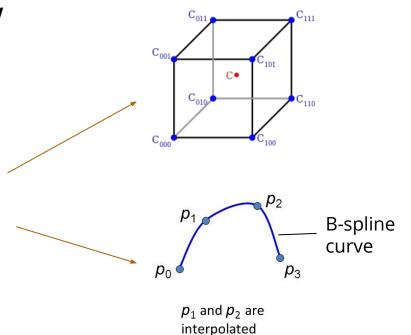

Rigid body	transformations	parameterised	by:
------------	-----------------	---------------	-----

Т	ra	ans	sla	tions			Pit	ch				R	oll				Yaw		
(1	0	0	X trans		1	0	0	0		cos(Θ)	0	sin(Θ)	0)		$\cos(\Omega)$	$sin(\Omega)$	0	0)
	0	1	0	Y trans		0	$\cos(\Phi)$	$\sin(\Phi)$	0		0	1	0	0		$-\sin(\Omega)$	$\cos(\Omega)$	0	0
1	0	0	1	Ztrans	×	0	$-sin(\Phi)$	$\cos(\Phi)$	0	×	$-\sin(\Theta)$	0	$\cos(\Theta)$	0	×	0	0	1	0
	0	0	0	1		0	0	0	1)		0	0	0	1)		0	0	0	1)


- → The goal is to find the set of parameters which minimizes some cost function.
- → Cost function = sum of squared difference between consecutive images


Realigning-Transformation

"Reslice", i.e. resample the images \rightarrow apply the transformation parameters


- • Need to fill in the gaps
- Determine values of the new voxels
- → Interpolation

Interpolation

- Interpolation involves **constructing new data points** based on known data
- Interpolation can be
 - Nearest neighbour (0- order): take the intensity of the closest voxel
 - **Tri-linear** (1st-order): take the average of the neighbouring voxels
 - **"B-splines"** used in **SPM**: Approximate all control points, Polynomials of any degree d

Part 2: Unwarping

After realignment

- •There is still a lot of variance that is explained by movement
- Movement-related-variance
- •This variance is typically large compared to experimentally-induced variance.
 •Up to 90% of the variance in fMRI time series after realignment = movement
 - •Loss of sensitivity (missing true activations)
 - •Loss of specificity (mistake movement-induced variance for true activation)

Why is there still residual variance after realignment?

•Realignment **only** addresses rigid/linear transformations that preserve shape (e.g. shape of the brain)

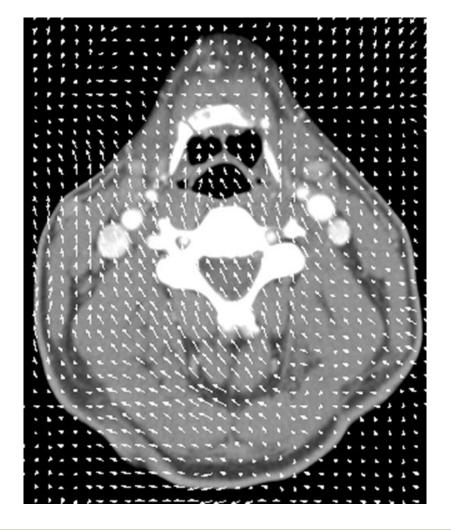
However...

•There are also non-rigid/non-linear transformations that modifies the shape of the image

Non-linear transformations : Inhomogeneities in the magnetic field

•Different tissue types: white matter, grey matter, CSF, blood, air-tissue interfaces

•Different tissue types = different magnetic susceptibilities


•The differences in tissue susceptibility = field inhomogeneity between tissue boundaries because spin dephase faster (= signal loss)

•Areas with air-tissue boundaries are "problem areas"

 $\cdot Orbitofrontal$ cortex

•Medial temporal lobe

•Frontal pole

This is what happens in EPI data

- •EPI images are not faithful representations of the object (brain) being scanned
- •Observed image = warped version of reality
- •Funfair mirrors

•An image collected for a given subject position is not identical to that collected at another

•Susceptibility-by-movement interaction accounts for a large amount of residual movement-related variance

To summarise...

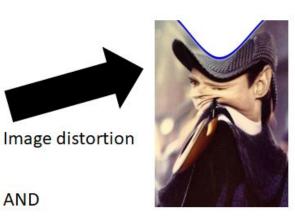
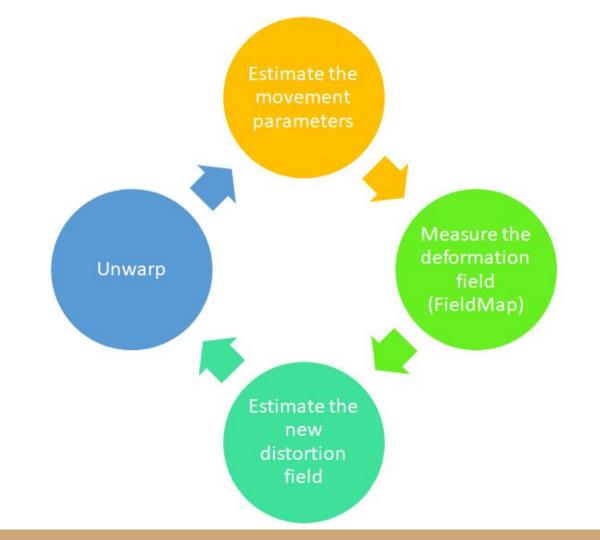


Image distortion

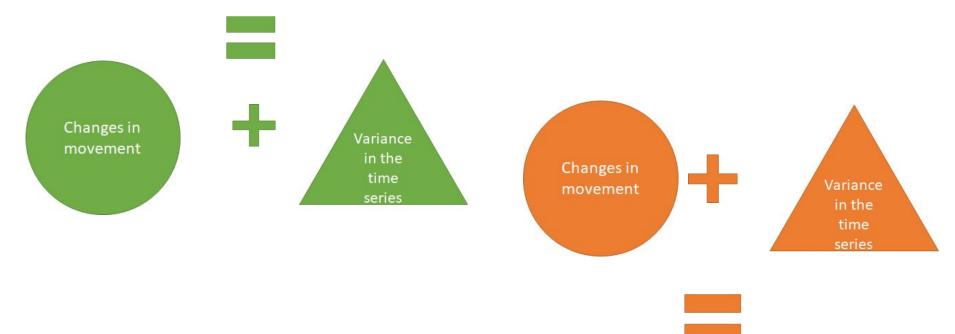
The image obtained in the scanner is distorted (EPI is not an exact replica)

Participant movement

AND



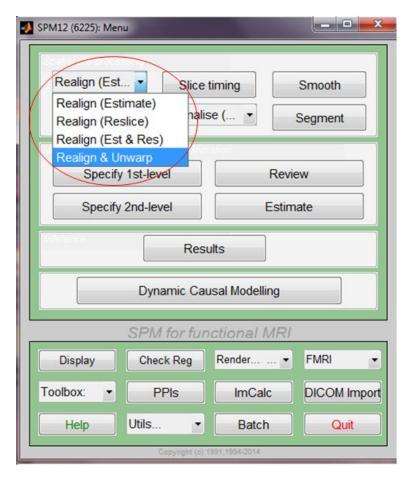
Participant movement interacts with the image distortions.


So what can I do?

- •UNWARP
- •UNWARP estimates the changes in distortion caused by movement by: •Measuring the distortion field with FieldMap
 - •Observing the subject motion parameters (obtained during realignment)
 - •Changing the deformation field with subject movement
 - •Giving an estimate of the distortion at each time point

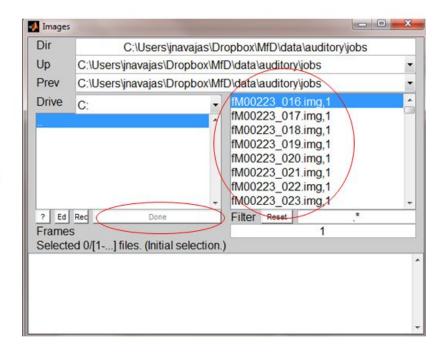
Direct and indirect

How much the deformation field changes with movement


How much the deformation field changes with movement

When to use UNWARP

•UNWARP is intended to correct data afflicted by a particular set of problems:


- •Lots of movement in the data (i.e. >1mm or >1 degree)
- Task-related movements (button press)
- •Studying the "problem areas"
- •Minimises total (across the image volume) variance in the dataset
- •Removes unwanted variance whilst preserving "true" activation
- •UNWARP is computationally intense

SPM12 (6225): Menu 😐 📼 🗙	SPM12 (6225): Graphics
	File Edit View Insert Tools Desktop Window SPM Figure Help
Realign (Est • Slice timing Smooth Coregister (• Normalise (• Segment	Welcome to SPM12
	Please refer to this version as " <u>SPM12</u> " in papers and communications.
Specify 1st-level Review	
Specify 2nd-level Estimate	
Results	
Dynamic Causal Modelling	
SPM for functional MRI	annunder and a second
Display Check Reg Render FMRI •	
Foolbox: PPIs ImCalc DICOM Import	
Help Utils • Batch Quit	
PM12 (6225)	
PM12 (6223)	
	0 0
	The SPM12 Manual and Release Notes are available as PDF documents in the man directory of your SPM installation.
	Updates will be made available from time to time and advertised on the <u>SPM mailing list</u> . You can also check for updates by clicking here.
	We would love to hear your comments or bug reports - please contact us at <fil spm@ucl.ac.uk="">.</fil>
	SPM is developed under the auspices of the Functional Imaging Laboratory (FIL), the Wellcome Trust Centre for NeuroImaging (WTCN), in the Institute of NeuroIogy at University College London (UCL), UK.
	SPM is free software; you can redistribute it and/or modify it under the terms of the <u>GNU General Public Licence</u> as published by the Free Software Foundation; either version 2 of the Licence, or (at your option) any later version.
	Copyright (C) 1991,1994-2014 Wellcome Trust Centre for Neuroimaging The FIL Methods Group <fit spm@ucl.ac.uk=""></fit>

Module List	Current Module: Realign & Unwarp		
Realign & Unwar *	Help on: Realign & Unwarp		
(Data	<-X	f
	Estimation Options		1
	Quality	0.9	E
	. Separation	4	1
	. Smoothing (FWHM)	5	
	Num Passes	gister to first	1
	. Interpolation	ree B-spline	
	Wrapping	No wrap	
	. Weighting	0 files	
	Unwarp Estimation Options		
	Basis Functions	12x12x*	
	Regularisation	1	-
	Current Item: Data		
1	New: Session		1
-			195
<	Specify		
Data			•
	warn		
Data sessions to un	IWGID.		

Module Lis	Current Module: Realign & Unwarp						
Realign & Unwar ^	Help on: Realign & Unwarp						
	Data						
	. Session						
		84 files					
	Phase map (vdm* file)	0 files	ļ				
	Estimation Options						
	. Quality	0.9					
	. Separation	4					
	. Smoothing (FWHM)	5					
	. Num Passes	gister to first					
	. Interpolation	ree B-spline					
	Wrapping	No wrap					
	Current Item: Images						
	C:\Users\jnavajas\Dropbox\\ C:\Users\jnavajas\Dropbox\\ C:\Users\jnavajas\Dropbox\\	fD\data\auditory\jobs	5				
*			-				
< III. +	Specify						
Images							

References

http://mriquestions.com/data-pre-processing.html

http://windstalker.pbworks.com/w/page/55649100/SPM8%20fMRI%20Analyse

http://miykael.github.io/nipype-beginner-s-guide/neuroimaging.html

https://www.fil.ion.ucl.ac.uk/spm/doc/spm12 manual.pdf

The previous MFD presentations