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Representation of imaging data

 Three dimensional images are made up of voxels.

] Voxel intensities are stored on disk as lists of numbers.

] Meta-information about the data:

— The image dimensions
* Allowing conversion from list to 3D array

— The “voxel-to-world mapping”

LS

« Spatial transformation that maps from data coordinates (voxel column i,
row j, slice k) into a real-world position (X,y,z mm) in a coordinate

system e.g.:
— Scanner coordinates
— T&T/MNI coordinates



Image registration

J Process of transforming different set of images into one
coordinate system. e

] Two key ingredients: ------ ‘g\
» Transformation type: o
" Rigid T+ within-subject i :
«» Affine | - . a7 =

_ } Between-subject
= Non-linear

» Similarity measure:
= Mean-squared difference } Within-modality
= Correlation coefficient

= Mutual information } Between-modality



Optimisation

J Automatic image registration is done by using an
optimisation algorithm.

J Optimisation involves finding some “best” parameters
according to an “objective function”, which is either
minimised or maximised.
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Reslicing / Interpolation

e setvisin

Reoriented Resliced
(1x1x3 mm (to 2 mm
voxel size) cubic)

- Applying the transformation parameters, and re-sampling the
data onto the same grid of voxels as the target image
— reslicing, interpolation, regridding, transformation, and writing



Simple Interpolation
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B-spline Interpolation

A continuous function is represented by a
linear combination of basis functions

2D B-spline basis functions of
degrees 0, 1, 2 and 3

Nearest neighbour and
1 b /% | trilinear interpolation are the
. e PR same as B-spline
interpolation with degrees 0
and 1.
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Motion correction

J Head movement is a very large source
of variance in fMRI data.

J Motion correction: realign a time-series
of Images acquired from the same

subject.
» Within-subject transformation: rigid-body (6 parameters)
> Within-modality: least squares objective function |
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Residual Errors from aligned fMRI

] Slices are not acquired simultaneously
— rapid movements not accounted for by rigid body model

J Resampling can introduce interpolation errors
— especially tri-linear interpolation
- Image artefacts may not move according to a rigid body
model
— Image distortion
— Image dropout

» Functions of the estimated motion parameters can be
modelled as confounds in subsequent analyses



Movement by Distortion Interaction of fMRI

d Subject disrupts B, field, rendering it
Inhomogeneous

» Distortions in phase-encode
direction

-

Fieldmap in Hz

 Subject moves during EPI time Original position
series \

» Distortions vary with subject
orientation

» Shape varies (non-rigidly)

Original position After rotation

» “Realign & Unwarp”: generative
model that combines a model of
geometric distortions and a model of
subject motion to correct images.




Movement correction strategies
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Coregistration
(intra-subject, inter-modal)

- Inter-modal registration.

J Match images from same subject
but different modalities:

» anatomical localisation of
single subject activations

» achieve more precise spatial
normalisation of functional
Image using anatomical image.
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Coregistration maximises Mutual Information

Between-modality registration:
Seek to measure shared information in some sense.

Qriginal Joint Histogram Final Joirt Histogram

-Aanonicaliawg &2 T1 i
-Aanonicaliawg &2 T1 i

.anonicaliavg152 T2 i .anonicaliavg 152 T2 i

Joint histogram sharpness correlates with image alignment.
Mutual information and related measures attempt to quantify how
well one image predicts the other.
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CO reg I St r at I O n Final Joint Histogram
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Spatial Normalisation




Spatial Normalisation - Reasons

 Inter-subject averaging

— Increase sensitivity with more subjects
» Fixed-effects analysis

— Extrapolate findings to the population as a whole
« Random-effects analysis

] Make results from different studies comparable by
aligning them to standard space.



Standard spaces

Talairach Atlas MNI/ICBM AVG152 Template
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The MNI template follows the convention of T&T, but doesn’t match the particular
brain (http://imaging.mrc-cbu.cam.ac.uk/imaging/MniTalairach)
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Unified Segmentation

J Normalising segmented tissue
maps should be more robust and
precise than using the original
Images.

] Tissue segmentation benefits
from spatially-aligned prior tissue
probability maps.

» Combining normalisation and
segmentation in a unified model:

— Gaussian mixture model
segmentation

— Intensity inhomogeneity (bias field)
correction

— Warping (non-linear registration)
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Tissue intensity distributions (T1-weighted MRI)
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Mixture of Gaussians

J Classification 1s based on a Mixture of Gaussians model,
which represents the intensity probability density by a
number of Gaussian distributions.
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Frequency

Image Intensity ——
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Non-Gaussian Intensity Distributions

J Multiple Gaussians per tissue class allow non-Gaussian
Intensity distributions to be modelled.
— E.g. accounting for partial volume effects

0.35 I | I

0.3

0.25 -

0.2

015

01

0.05




.
—

.

"




Tissue Probability Maps I3 W i
yvips [§ l

J Each TPM indicates the
prior probability for a
particular tissue at each
point in MNI space.

J SPM12’s TPMs are
derived from the IXI
dataset initialised with the
ICBM 452 atlas and other
data.

.{.‘.”:5

S B 7
SRRl )

|
L
N\

'~\
v,

(
\_

o
Y

&




th o

Deforming the Tissue Probability Maps

] Tissue probability
Images are warped to
match the subject.

] The inverse transform
warps to the TPMs.

] Warps are constrained
to be reasonable by
penalising various
distortions
(regularisation).




Spatial Normalisation — Overfitting

Without regularisation,

the non-linear

normalisation can

introduce unnecessary

deformation Template
image

N—

Non-linear
registration
using
regularisation.
(SSE = 302.7)

Affine
registration.
(SSE =472.1)

i

Non-linear
registration
without
regularisation.
(SSE = 287.3)



Affine registration Non-linear registration




Spatial Normalisation — Limitations

] Seek to match functionally homologous regions, but...
— No exact match between structure and function
— Different cortices can have different folding patterns
— Challenging high-dimensional optimisation, many local optima

J Compromise
— Correct relatively large-scale variability (sizes of structures)
— Smooth over finer-scale residual differences
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Smoothing

J Why would we deliberately blur the data?

— Improves spatial overlap by blurring over minor anatomical
differences and registration errors

— Averaging neighbouring voxels suppresses noise

— Increases sensitivity to effects of similar scale to kernel (matched
filter theorem)

— Makes data more normally distributed (central limit theorem)
— Reduces the effective number of multiple comparisons

J How is it implemented?

— Convolution with a 3D Gaussian kernel, of specified full-width at half-
maximum (FWHM) in mm



Effect of smoothing

P

3D Gaussian smoothing with FWHM: 0, 2, 4, 6, 8, 10, 12, 14, 16 mm isotropic
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fMRI time series
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