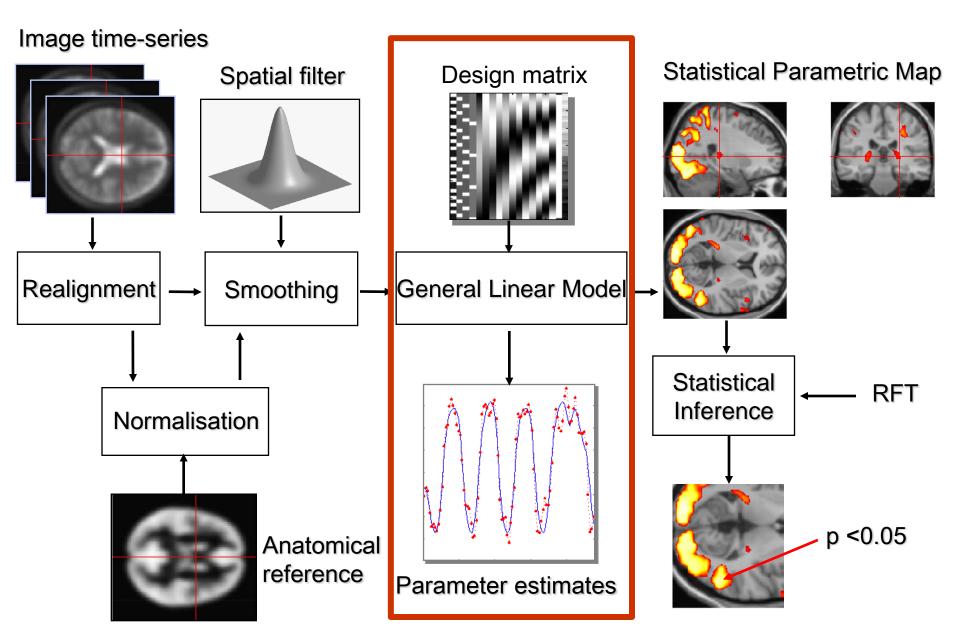


fMRI Modelling & Statistical Inference

Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London

> SPM Course Chicago, 22-23 Oct 2015

[▲]SPM



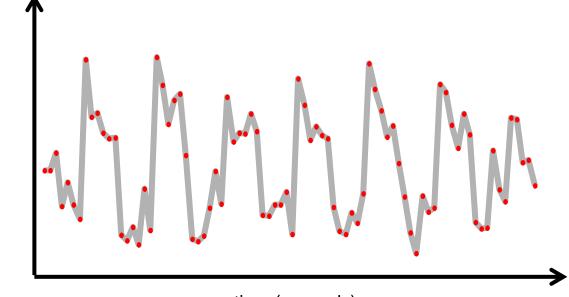
Example: Auditory block-design experiment

BOLD response at [62,-28,10]

Passive word listening versus rest

7 cycles of rest and listening

Blocks of 6 scans with 7 sec TR

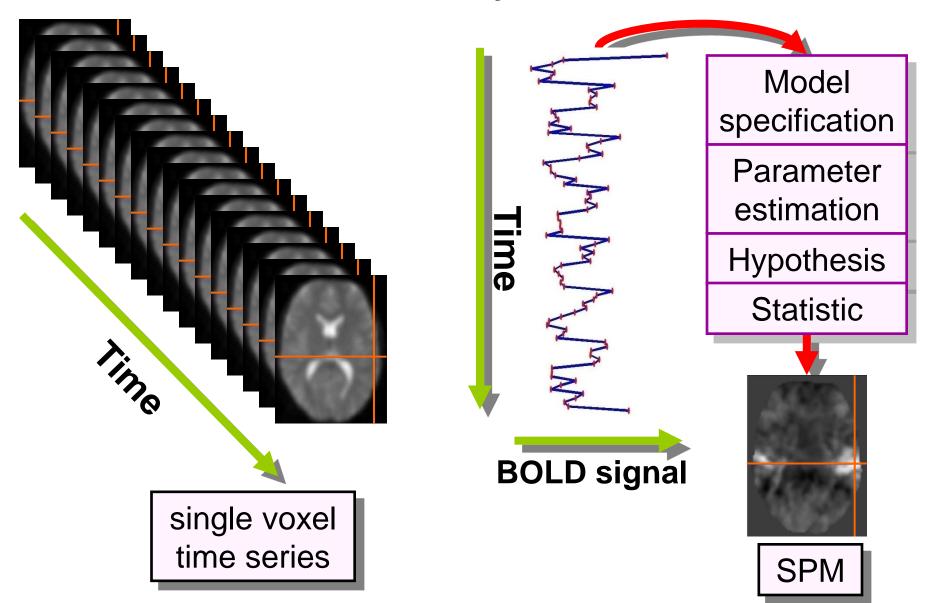


time (seconds)

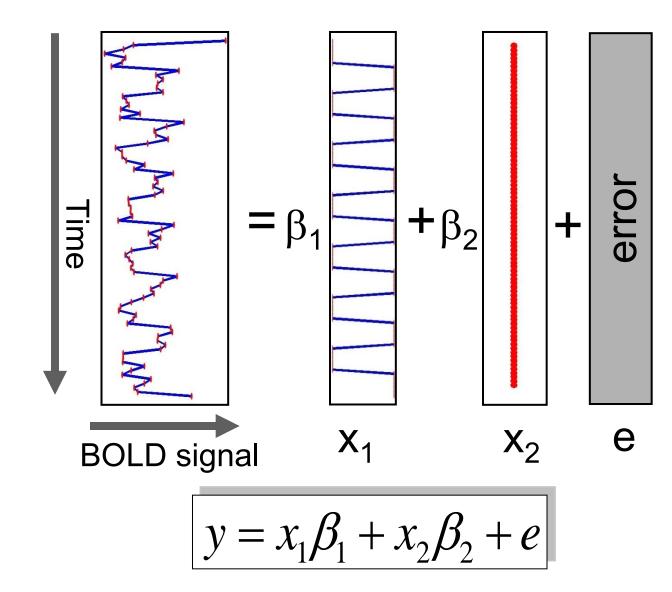
Stimulus function

[▲] SPM

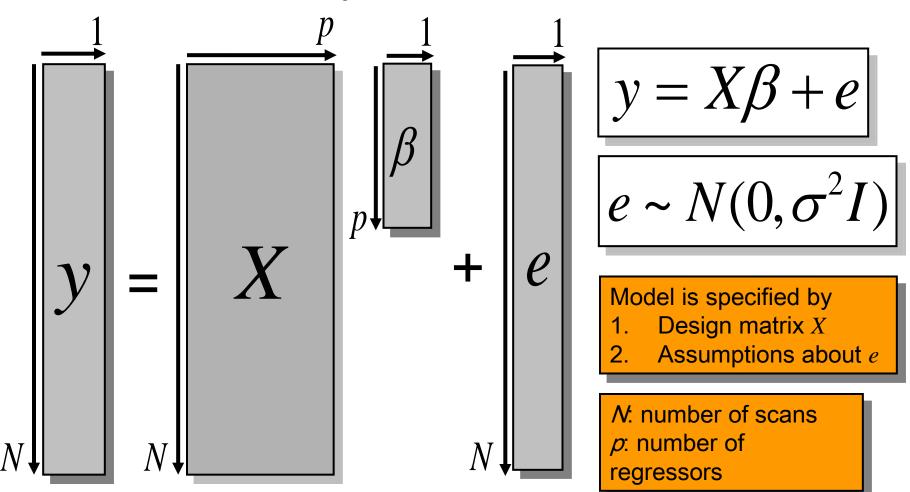
Voxel-wise time series analysis



Single voxel regression model



Mass-univariate analysis: voxel-wise GLM



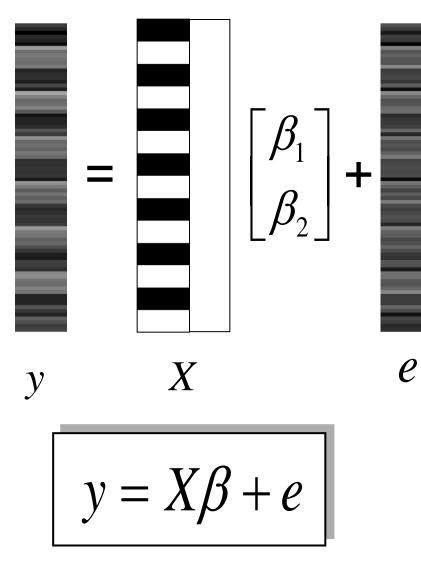
The design matrix embodies all available knowledge about experimentally controlled factors and potential confounds.

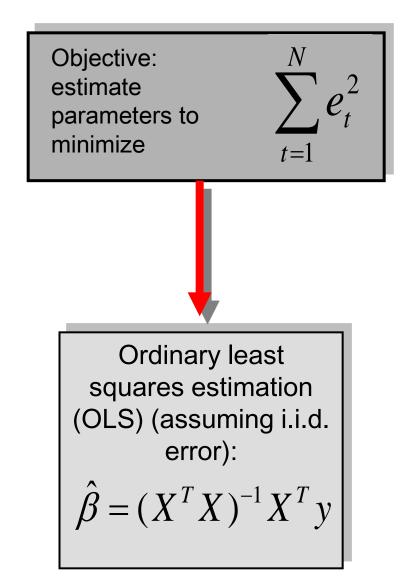
GLM: a flexible framework for parametric analyses

- one sample *t*-test
- two sample *t*-test
- paired *t*-test
- Analysis of Variance (ANOVA)
- Analysis of Covariance (ANCoVA)
- correlation
- linear regression
- multiple regression

[▲] SPM

Parameter estimation

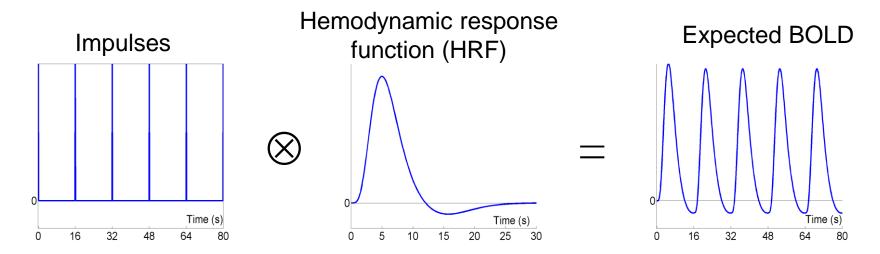




Problems of this model with fMRI time series

1. The *BOLD response* has a delayed and dispersed shape.

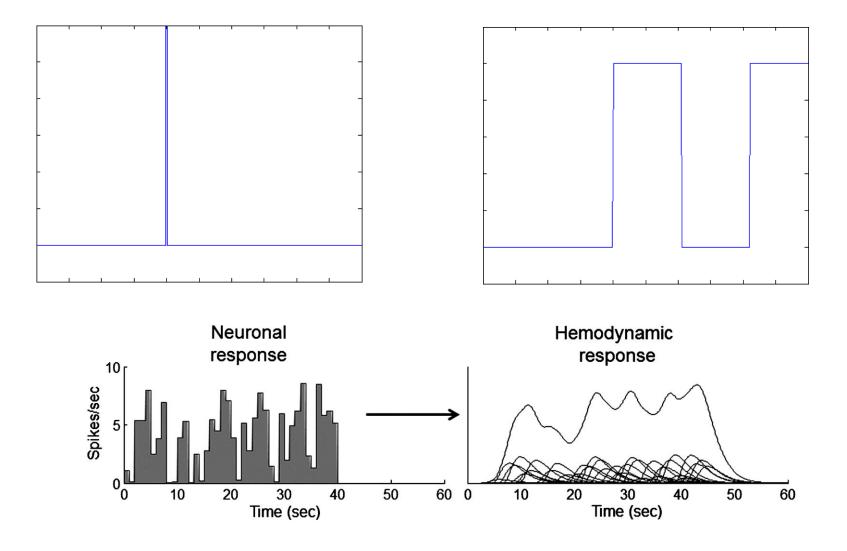
BOLD response: Convolution model



Linear time-invariant system: $f \otimes g(t) = \int_{0}^{t} f(\tau)g(t-\tau)d\tau$

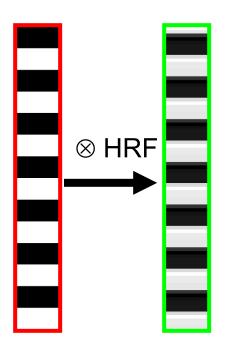
expected BOLD response = input function \otimes impulse response function (HRF)

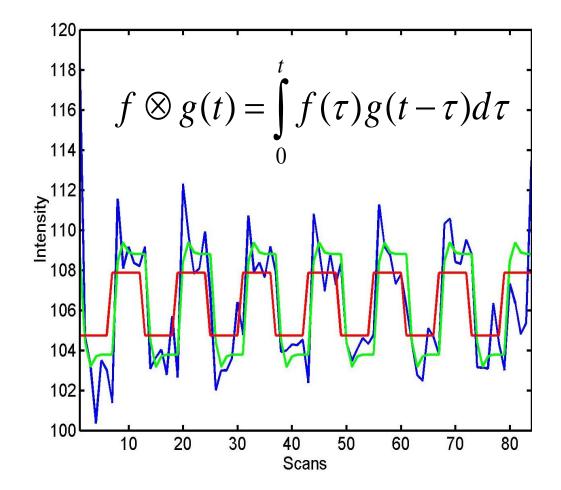
Problem 1: BOLD response Solution: Convolution model



Convolution model of the BOLD response

Convolve stimulus function with a canonical hemodynamic response function (HRF):

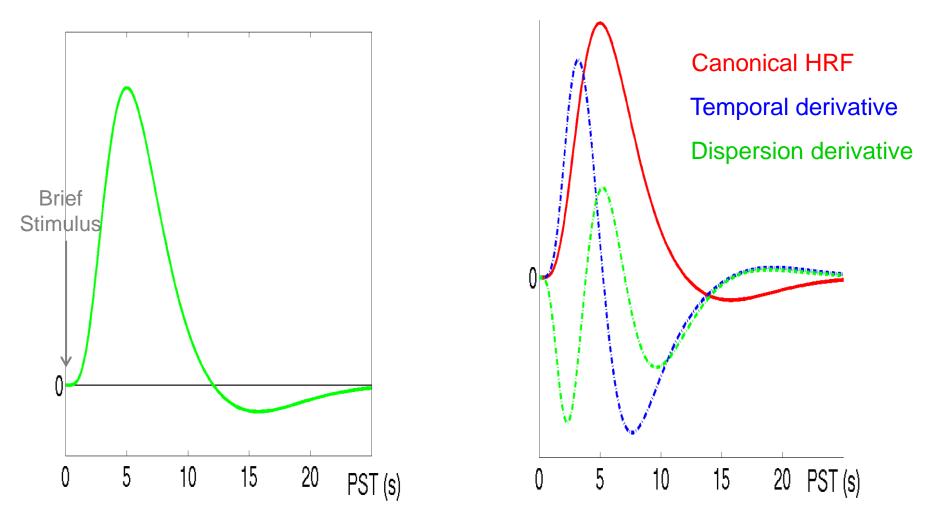




Hemodynamic Response ⇒ Temporal Basis Set

Canonical HRF

Informed Basis Set



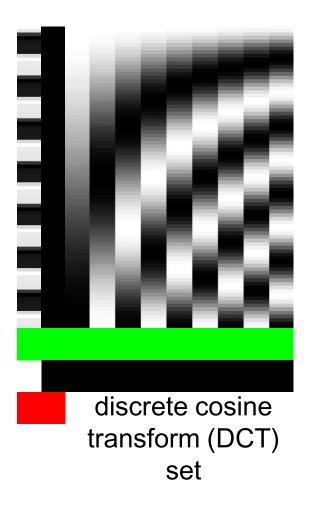
Problems of this model with fMRI time series

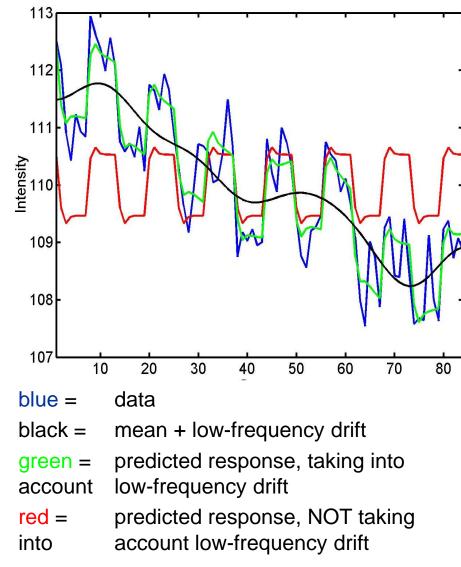
1. The *BOLD response* has a delayed and dispersed shape.

2. The BOLD signal includes substantial amounts of *low-frequency noise* (eg due to scanner drift).

[▲] SPM

Problem 2: Low-frequency noise Solution: High pass filtering





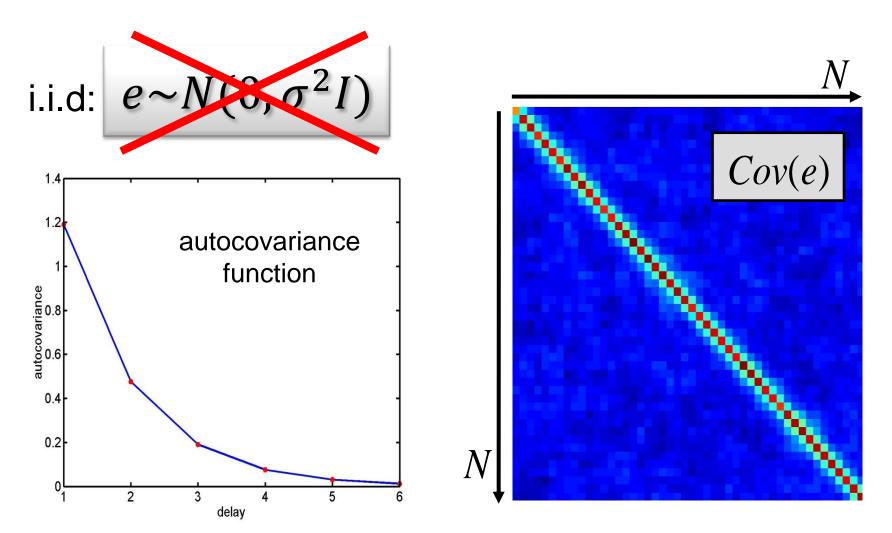
Problems of this model with fMRI time series

1. The *BOLD response* has a delayed and dispersed shape.

2. The BOLD signal includes substantial amounts of *low-frequency noise* (eg due to scanner drift).

3. Due to breathing, heartbeat & unmodeled neuronal activity, the *errors are serially correlated*. This violates the assumptions of the noise model in the GLM.

Problem 3: Serial correlations



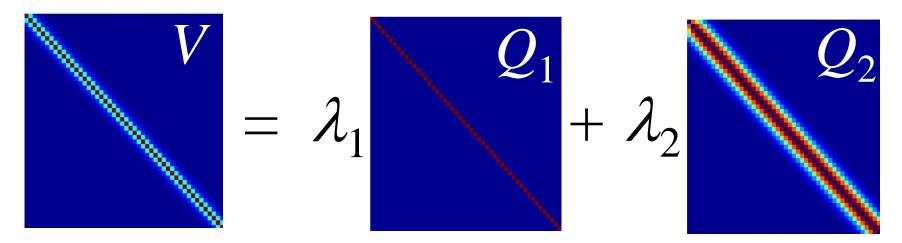
Multiple covariance components

enhanced noise model at voxel i

$$e_i \thicksim N(0, C_i)$$

$$C_i = \sigma_i^2 V$$
$$V = \sum \lambda_j Q_j$$

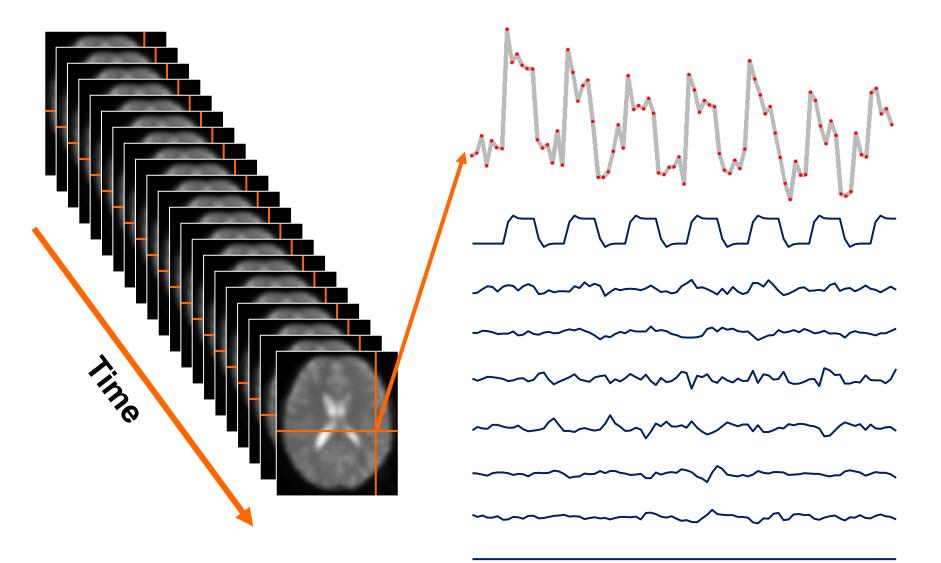
error covariance components Qand hyperparameters λ



Estimation of hyperparameters λ with ReML (Restricted Maximum Likelihood).

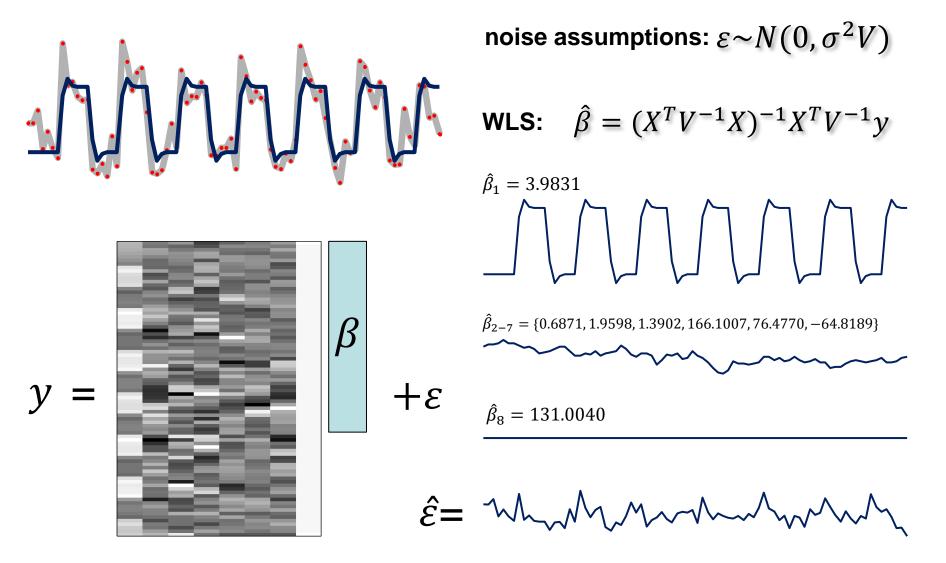
Summary

A mass-univariate approach

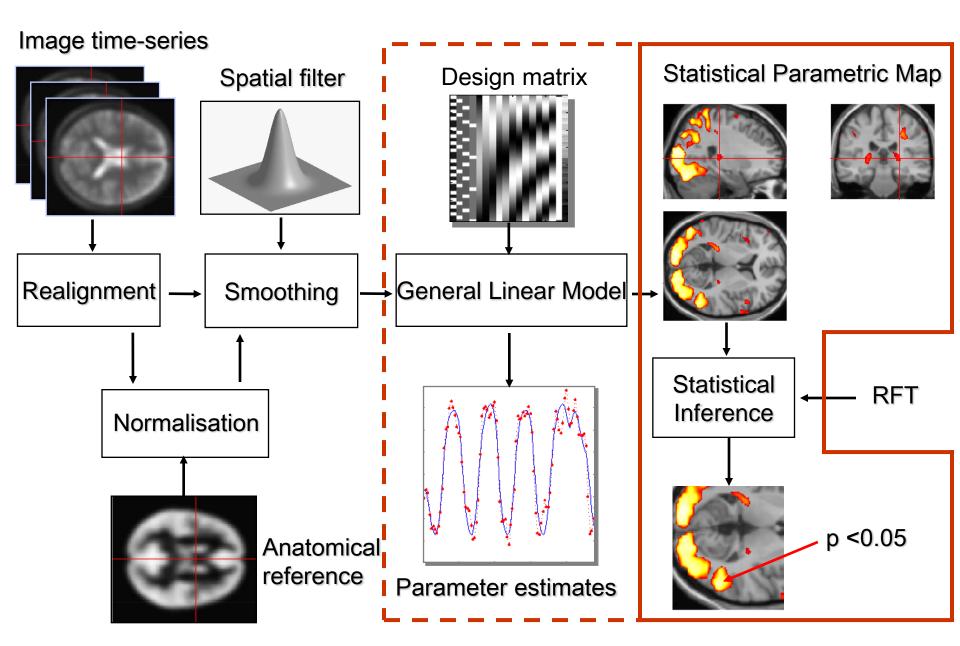


Summary

Estimation of the parameters

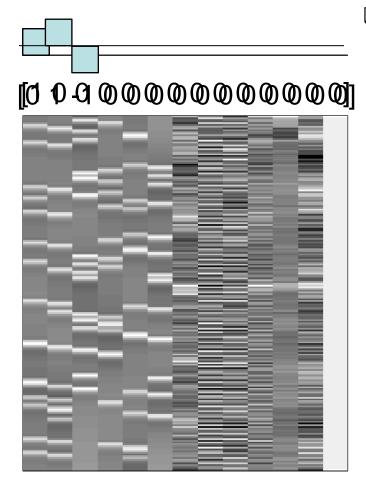


[▲] SPN



[▲]SPM

Contrasts



□ A contrast selects a specific effect of interest.

- \Rightarrow A contrast *c* is a vector of length *p*.
- $\Rightarrow c^T \beta$ is a linear combination of regression coefficients β .

 $c = [1 \ 0 \ 0 \ 0 \ ...]^T$

 $c^{T}\beta = \mathbf{1} \times \beta_{1} + \mathbf{0} \times \beta_{2} + \mathbf{0} \times \beta_{3} + \mathbf{0} \times \beta_{4} + \cdots$ $= \boldsymbol{\beta}_{1}$

 $c = [0 \ 1 \ -1 \ 0 \ ...]^T$

 $c^{T}\beta = \mathbf{0} \times \beta_{1} + \mathbf{1} \times \beta_{2} + -\mathbf{1} \times \beta_{3} + \mathbf{0} \times \beta_{4} + \cdots$ $= \beta_{2} - \beta_{3}$

Hypothesis Testing

To test an hypothesis, we construct "test statistics".

Null Hypothesis H₀

Typically what we want to disprove (no effect).

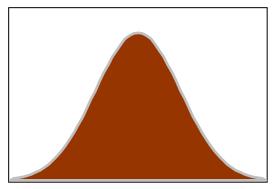
 \Rightarrow The Alternative Hypothesis H_A expresses outcome of interest.

Test Statistic T

The test statistic summarises evidence about H_0 .

Typically, test statistic is small in magnitude when the hypothesis H_0 is true and large when false.

⇒ We need to know the distribution of T under the null hypothesis.



Null Distribution of T

[▲] SPM

Hypothesis Testing

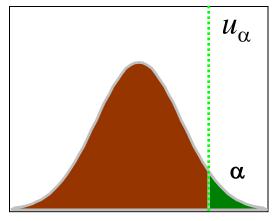
Significance level α:

Acceptable false positive rate α .

 \Rightarrow threshold u_{α}

Threshold u_{α} controls the false positive rate

 $\alpha = p(T > u_{\alpha} \mid H_0)$



Null Distribution of T

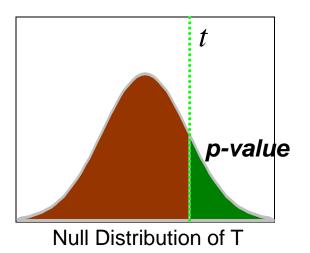
Conclusion about the hypothesis:

We reject the null hypothesis in favour of the alternative hypothesis if $t > u_{\alpha}$

p-value:

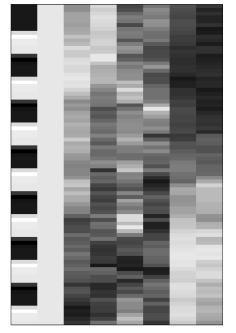
A *p*-value summarises evidence against H_0 . This is the chance of observing value more extreme than *t* under the null hypothesis.

$$p(T > t | H_0)$$



 $c^{T} = 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0$

 $\beta_1 \beta_2 \beta_3 \beta_4 \beta_5 \dots$



Question: Amplitude of cond 1 > 0? i.e. $\beta_1 = c^T \beta > 0$? $H_0: c^T \beta = 0 \qquad H_A: c^T \beta > 0$ Null hypothesis: contrast of estimated parameters Test statistic: T =variance estimate

≜ SPM

$$T = \frac{c^T \hat{\beta}}{\sqrt{\operatorname{var}(c^T \hat{\beta})}} = \frac{c^T \hat{\beta}}{\sqrt{\hat{\sigma}^2 c^T (X^T X)^{-1} c}} \sim t_{N-p}$$

[▲] SPM

Scaling issue [1]/4 Subject 1 [1]/3

Subject 5

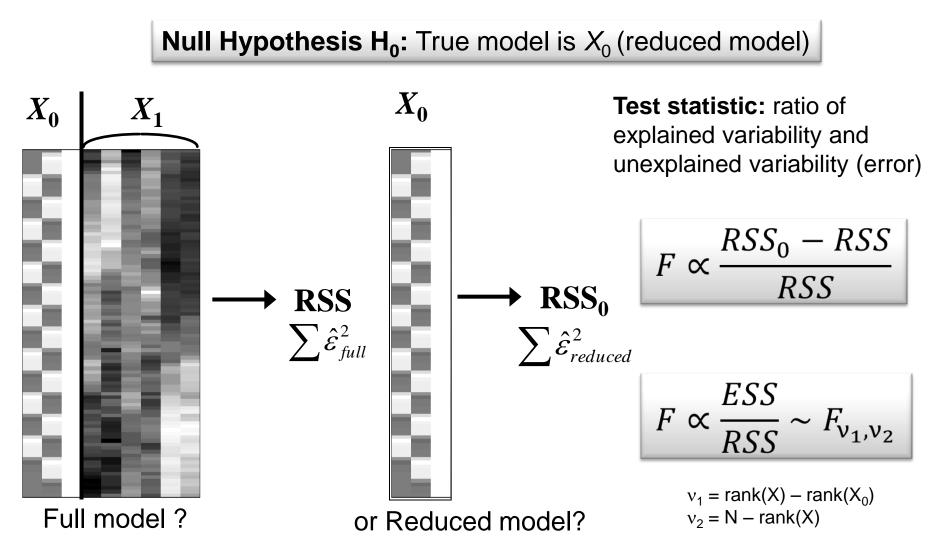
$$T = \frac{c^T \hat{\beta}}{\sqrt{\operatorname{var}(c^T \hat{\beta})}} = \frac{c \beta}{\sqrt{\hat{\sigma} c^T (X^T X)^{-1} c}}$$

- □ The *T*-statistic does not depend on the scaling of the regressors.
- □ The *T*-statistic does not depend on the scaling of the contrast.
- **Contrast** $c^T \hat{\beta}$ depends on scaling.
- > Be careful of the interpretation of the contrasts $c^T \hat{\beta}$ themselves (eg, for a second level analysis):

sum ≠ average

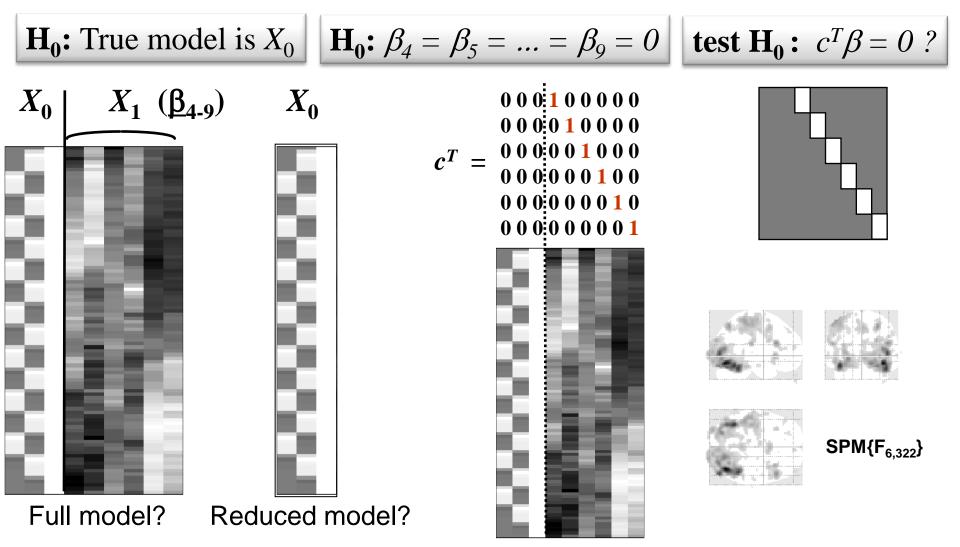
F-test - the extra-sum-of-squares principle

Model comparison:



F-test - multidimensional contrasts – SPM{*F*}

Tests multiple linear hypotheses:



F-test: summary

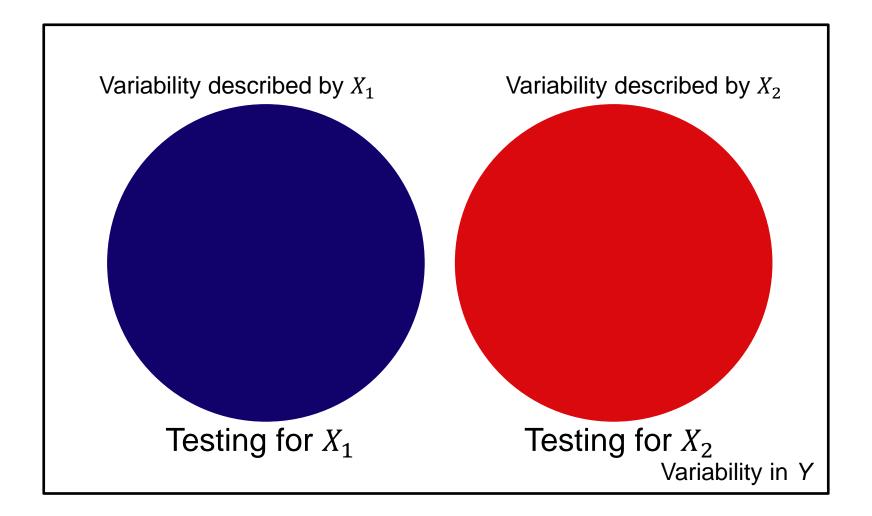
□ F-tests can be viewed as testing for the additional variance explained by a larger model wrt a simpler (*nested*) model ⇒ *model comparison*.

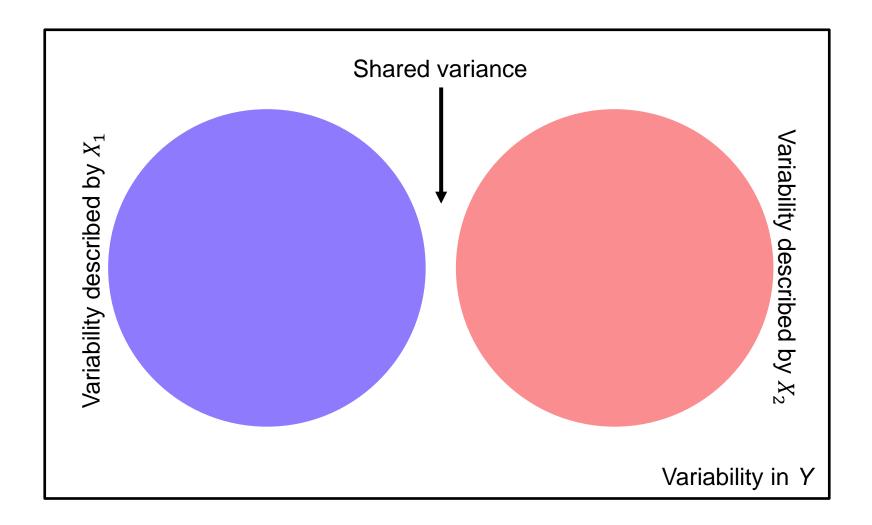
Hypotheses:

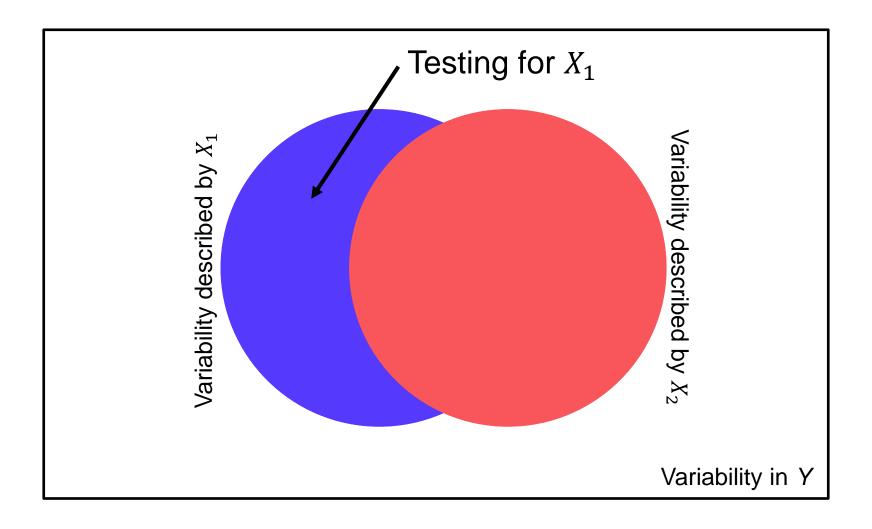
$\begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}$	0 1	0 0	0 0	Null Hypothesis $H_0: \beta_1 = \beta_2 = \beta_3 = 0$
0	0	1	0	Alternative Hypothesis H_A : at least one $\beta_k \neq 0$
0	0	0	0_	Anternative Hypothesis H_A . at least one $p_k \neq 0$

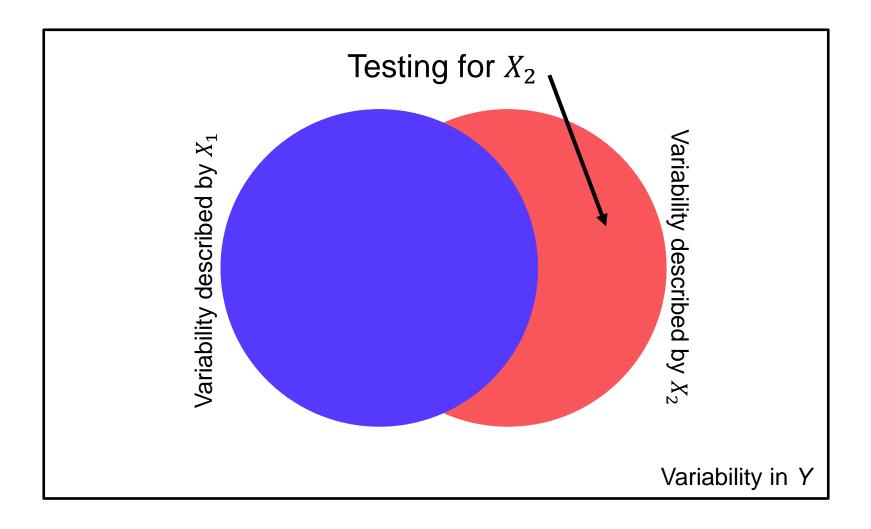
□ In testing uni-dimensional contrast with an *F*-test, for example $\beta_1 - \beta_2$, the result will be the same as testing $\beta_2 - \beta_1$. It will be exactly the square of the *t*-test, testing for both positive and negative effects.

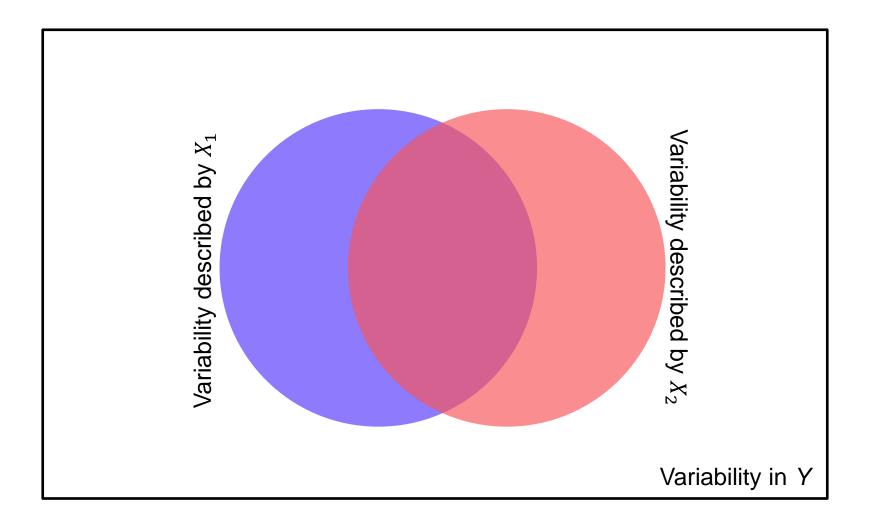
Orthogonal regressors

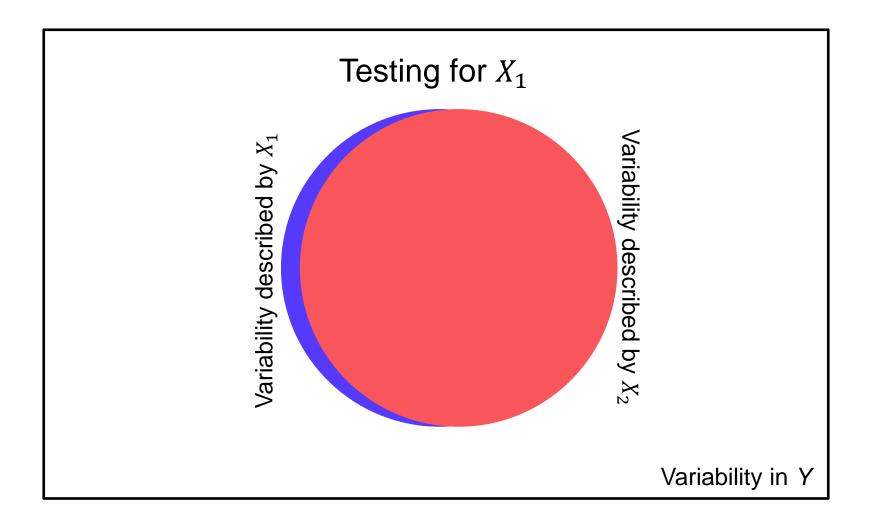


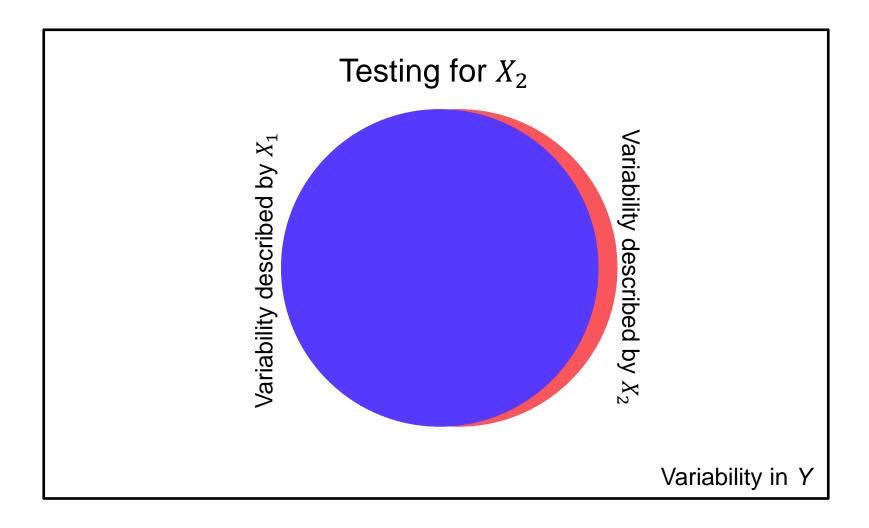


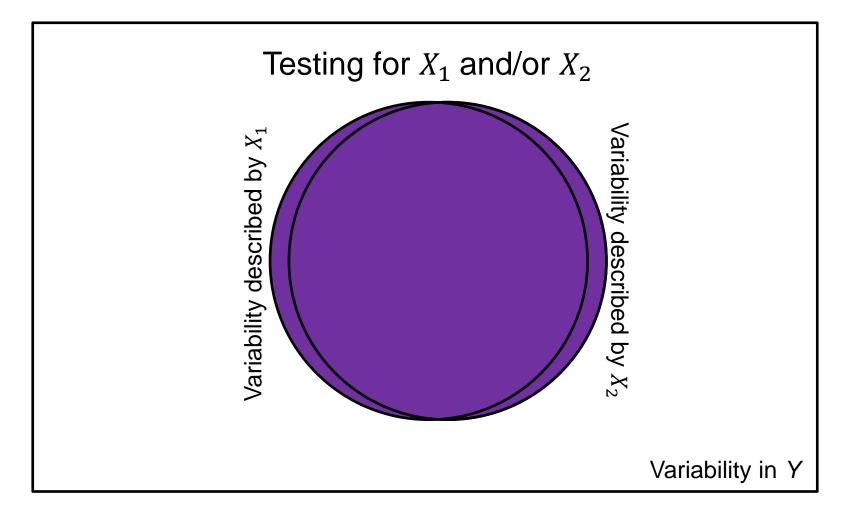






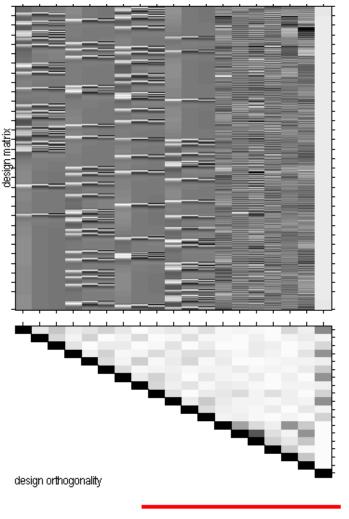






Orthogonalization of Regressors in fMRI Models, Mumford et al, PlosOne, 2015

Design orthogonality



- For each pair of columns of the design matrix, the orthogonality matrix depicts the magnitude of the cosine of the angle between them, with the range 0 to 1 mapped from white to black.
- If both vectors have zero mean then the cosine of the angle between the vectors is the same as the correlation between the two variates.

Measure : abs. value of cosine of angle between columns of design matrix Scale : black - colinear (cos=+1/-1) white - orthogonal (cos=0) gray - not orthogonal or colinear

[▲]SPM

Design efficiency

❑ The aim is to minimize the standard error of a *t*-contrast (i.e. the denominator of a t-statistic).

$$\operatorname{var}(c^T \hat{\beta}) = \hat{\sigma}^2 c^T (X^T X)^{-1} c$$

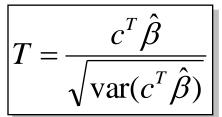
□ This is equivalent to maximizing the efficiency e:

$$e(\hat{\sigma}^2, c, X) = (\hat{\sigma}^2 c^T (X^T X)^{-1} c)^{-1}$$
Noise variance Design variance

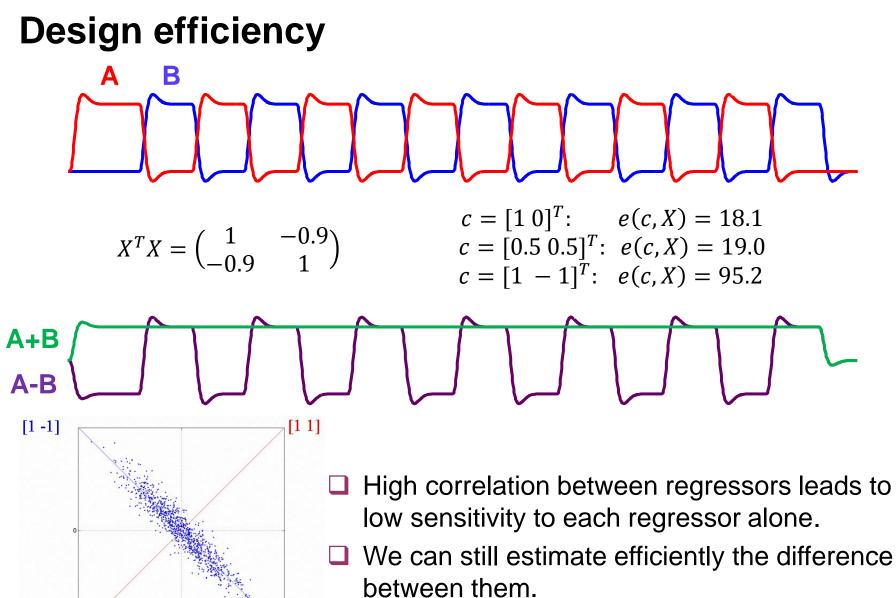
If we assume that the noise variance is independent of the specific design:

$$e(c, X) = (c^T (X^T X)^{-1} c)^{-1}$$

This is a relative measure: all we can really say is that one design is more efficient than another (for a given contrast).



[▲]SPN



[▲] SPM

Image time-series

