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Passive word 

listening 

versus rest 

7 cycles of  

rest and listening 

Blocks of 6 scans 

with 7 sec TR 

Stimulus function 

Example: Auditory block-design experiment 
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Voxel-wise time series analysis 
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Single voxel regression model 
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Mass-univariate analysis: voxel-wise GLM 
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Model is specified by 

1. Design matrix X 

2. Assumptions about e 

N: number of scans 

p: number of 

regressors 

eXy  

The design matrix embodies all available knowledge about 

experimentally controlled factors and potential confounds. 
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• one sample t-test 

• two sample t-test 

• paired t-test 

• Analysis of Variance 

(ANOVA) 

• Analysis of Covariance 

(ANCoVA) 

• correlation 

• linear regression 

• multiple regression 

GLM: a flexible framework for parametric analyses 



Parameter estimation 
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Ordinary least 

squares estimation 

(OLS) (assuming i.i.d. 

error): 
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Objective: 

estimate 

parameters to 

minimize 
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Problems of this model with fMRI time series 

1. The BOLD response  has a delayed and dispersed 
shape. 
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BOLD response: Convolution model 

expected BOLD response  

= input function impulse response function (HRF) 

 = 

Impulses Expected BOLD 

Linear time-invariant system: 

Hemodynamic response 

function (HRF) 



Problem 1: BOLD response 
Solution: Convolution model 



Convolution model of the BOLD response 

Convolve stimulus function 

with a canonical 

hemodynamic response 

function (HRF): 

 HRF 
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Brief 

Stimulus 

Informed Basis Set Canonical HRF 

Hemodynamic Response  Temporal Basis Set 

Canonical HRF 

Temporal derivative 

Dispersion derivative 



Problems of this model with fMRI time series 

1. The BOLD response  has a delayed and dispersed 
shape. 

2. The  BOLD signal includes substantial amounts of 
low-frequency noise (eg due to scanner drift). 



blue =  data 

black =  mean + low-frequency drift 

green =  predicted response, taking into 

account  low-frequency drift 

red =  predicted response, NOT taking 

into  account low-frequency drift 

Problem 2: Low-frequency noise  
Solution: High pass filtering 

discrete cosine 

transform (DCT) 

set 



Problems of this model with fMRI time series 

1. The BOLD response  has a delayed and dispersed 
shape. 

2. The  BOLD signal includes substantial amounts of 
low-frequency noise (eg due to scanner drift). 

3. Due to breathing, heartbeat & unmodeled neuronal 
activity, the errors are serially correlated. This violates 
the assumptions of the noise model in the GLM. 
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Problem 3: Serial correlations 

𝑒~𝑁(0, 𝜎2𝐼) i.i.d: 



Multiple covariance components 

=  1 + 2 

Q1 Q2 

Estimation of hyperparameters  with ReML (Restricted Maximum Likelihood). 

V 

enhanced noise model at voxel i 

error covariance components Q 

and hyperparameters 
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A mass-univariate approach 

Summary 



Estimation of the parameters 

𝑦  = +𝜀 

𝛽 

𝜀~𝑁(0, 𝜎2𝑉) 

𝛽 = (𝑋𝑇𝑉−1𝑋)−1𝑋𝑇𝑉−1𝑦 

noise assumptions: 

WLS: 

𝛽 1 = 3.9831 

𝛽 2−7 = {0.6871, 1.9598, 1.3902, 166.1007, 76.4770, −64.8189} 

𝛽 8 = 131.0040 

𝜀 = 

Summary 
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Contrasts 

 A contrast selects a specific effect of interest. 

 

 A contrast 𝑐 is a vector of length 𝑝. 

 

 𝑐𝑇𝛽 is a linear combination of regression 

coefficients 𝛽. 

𝑐 = [1 0 0 0 … ]𝑇 
 
𝑐𝑇𝛽 = 𝟏 × 𝛽1 + 𝟎 × 𝛽2 + 𝟎 × 𝛽3 + 𝟎 × 𝛽4 + ⋯ 
 

        =  𝜷𝟏 

𝑐 = [0 1 − 1 0 … ]𝑇  
 
𝑐𝑇𝛽 = 𝟎 × 𝛽1 + 𝟏 × 𝛽2 + −𝟏 × 𝛽3 + 𝟎 × 𝛽4 + ⋯ 
 

          =   𝜷𝟐 − 𝜷𝟑 

[1 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 1 -1 0 0 0 0 0 0 0 0 0 0 0] 



Hypothesis Testing 

 Null Hypothesis H0 

     Typically what we want to disprove (no effect). 

      The Alternative Hypothesis HA expresses outcome of interest. 

To test an hypothesis, we construct “test statistics”. 

 Test Statistic T 

     The test statistic summarises evidence 

about H0. 

     Typically, test statistic is small in 

magnitude when the hypothesis H0 is true 

and large when false.  

      We need to know the distribution of T 

under the null hypothesis. Null Distribution of T 



Hypothesis Testing 

 p-value: 

     A p-value summarises evidence against H0. 

     This is the chance of observing value more 

extreme than t under the null hypothesis. 

Null Distribution of T 

 Significance level α: 

     Acceptable false positive rate α. 

                                                    threshold uα 

     Threshold uα controls the false positive rate  

t 

p-value   

Null Distribution of T 

 

u 

 Conclusion about the hypothesis: 

     We reject the null hypothesis in favour of the 

alternative hypothesis if t > uα 

)|( 0HuTp  

𝑝 𝑇 > 𝑡|𝐻0  



cT = 1 0 0 0 0 0 0 0 

T =  

contrast of 

estimated 

parameters 

variance 

estimate 

Amplitude of cond 1 > 0 ? 
 

i.e. 
 

1 = cT> 0 ? 

1 2 3 4 5 ... 

T-test - one dimensional contrasts – SPM{t} 

Question: 

Null hypothesis: H0: c
T= 0  

Test statistic: 
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Scaling issue 

 The T-statistic does not depend on 

the scaling of the regressors. 
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[1      1      1       1         ] 

[1       1      1         ] 

 Be careful of the interpretation of the 

contrasts          themselves (eg, for a 

second level analysis): 

 

                 sum ≠ average 

 The T-statistic does not depend on 

the scaling of the contrast. 
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 Contrast          depends on scaling. ̂Tc



F-test - the extra-sum-of-squares principle 

 Model comparison: 

Null Hypothesis H0: True model is X0 (reduced model) 

Full model ?  

X1   X0 

or Reduced model?  

X0 Test statistic: ratio of 

explained variability and 

unexplained variability (error) 

1 = rank(X) – rank(X0) 

2 = N – rank(X) 

RSS 

 2ˆ
full

RSS0
 

 2ˆ
reduced



F-test - multidimensional contrasts – SPM{F} 

 Tests multiple linear hypotheses: 

0 0 0 1 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 

0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 1 

cT  = 

H0: 4 = 5 = ... = 9 = 0 

X1  (4-9) X0 

Full model? Reduced model? 

H0: True model is X0 

X0 

test H0 :  c
T = 0 ? 

SPM{F6,322} 



F-test: summary 

 F-tests can be viewed as testing for the additional variance 
explained by a larger model wrt a simpler (nested) model 
 model comparison. 
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0001

 In testing uni-dimensional contrast with an F-test, for example 
1 – 2, the result will be the same as testing 2 – 1. It will be 
exactly the square of the t-test, testing for both positive and 
negative effects. 

 Hypotheses: 

0  : Hypothesis Null 3210  H

0 oneleast at   :  Hypothesis eAlternativ kAH 



Variability described by 𝑋2 Variability described by 𝑋1 

Orthogonal regressors 

Variability in Y 

Testing for 𝑋1  Testing for 𝑋2  



Correlated regressors 
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Shared variance 

Variability in Y 



Correlated regressors 
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Variability in Y 

Testing for 𝑋1  



Correlated regressors 
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Variability in Y 

Testing for 𝑋2  



Correlated regressors 
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Variability in Y 



Correlated regressors 
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Variability in Y 

Testing for 𝑋1  



Correlated regressors 
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Variability in Y 

Testing for 𝑋2  



Correlated regressors 
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Variability in Y 

Testing for 𝑋1 and/or 𝑋2  

Orthogonalization of Regressors in fMRI Models, Mumford et al, PlosOne, 2015 



Design orthogonality 

 For each pair of columns of the 
design matrix, the orthogonality 
matrix depicts the magnitude of the 
cosine of the angle between them, 
with the range 0 to 1 mapped from 
white to black. 

 If both vectors have zero mean then 

the cosine of the angle between the 

vectors is the same as the correlation 

between the two variates. 



Design efficiency 
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 The aim is to minimize the standard error of a t-contrast 

(i.e. the denominator of a t-statistic). 

cXXcc TTT 12 )(ˆ)ˆvar( 

 This is equivalent to maximizing the efficiency e: 

Noise variance Design variance 

 If we assume that the noise variance is independent of the specific 

design: 
11 ))((),(  cXXcXce TT

 This is a relative measure: all we can really say is that one design is 

more efficient than another (for a given contrast). 



Design efficiency 
A B 

A+B 

A-B 

𝑋𝑇𝑋 =
1 −0.9

−0.9 1
 

𝑐 = [1 0]𝑇:         𝑒 𝑐, 𝑋 = 18.1 

𝑐 = [0.5 0.5]𝑇:   𝑒 𝑐, 𝑋 = 19.0 
𝑐 = [1 − 1]𝑇:    𝑒 𝑐, 𝑋 = 95.2 

 High correlation between regressors leads to 

low sensitivity to each regressor alone. 

 We can still estimate efficiently the difference 

between them. 
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