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Passive word 

listening 

versus rest 

7 cycles of  

rest and listening 

Blocks of 6 scans 

with 7 sec TR 

Stimulus function 

Example: Auditory block-design experiment 
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Single voxel regression model 
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Mass-univariate analysis: voxel-wise GLM 

= 



e+ y X 

N

1

N N

1 1p

p

Model is specified by 

1. Design matrix X 

2. Assumptions about e 

N: number of scans 

p: number of 

regressors 

eXy  

The design matrix embodies all available knowledge about 

experimentally controlled factors and potential confounds. 
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• one sample t-test 

• two sample t-test 

• paired t-test 

• Analysis of Variance 

(ANOVA) 

• Analysis of Covariance 

(ANCoVA) 

• correlation 

• linear regression 

• multiple regression 

GLM: a flexible framework for parametric analyses 



Parameter estimation 
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Ordinary least 

squares estimation 

(OLS) (assuming i.i.d. 

error): 
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Problems of this model with fMRI time series 

1. The BOLD response  has a delayed and dispersed 
shape. 
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BOLD response: Convolution model 

expected BOLD response  

= input function impulse response function (HRF) 

 = 

Impulses Expected BOLD 

Linear time-invariant system: 

Hemodynamic response 

function (HRF) 



Problem 1: BOLD response 
Solution: Convolution model 



Convolution model of the BOLD response 

Convolve stimulus function 

with a canonical 

hemodynamic response 

function (HRF): 

 HRF 
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Brief 

Stimulus 

Informed Basis Set Canonical HRF 

Hemodynamic Response  Temporal Basis Set 

Canonical HRF 

Temporal derivative 

Dispersion derivative 



Problems of this model with fMRI time series 

1. The BOLD response  has a delayed and dispersed 
shape. 

2. The  BOLD signal includes substantial amounts of 
low-frequency noise (eg due to scanner drift). 



blue =  data 

black =  mean + low-frequency drift 

green =  predicted response, taking into 

account  low-frequency drift 

red =  predicted response, NOT taking 

into  account low-frequency drift 

Problem 2: Low-frequency noise  
Solution: High pass filtering 

discrete cosine 

transform (DCT) 

set 



Problems of this model with fMRI time series 

1. The BOLD response  has a delayed and dispersed 
shape. 

2. The  BOLD signal includes substantial amounts of 
low-frequency noise (eg due to scanner drift). 

3. Due to breathing, heartbeat & unmodeled neuronal 
activity, the errors are serially correlated. This violates 
the assumptions of the noise model in the GLM. 
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Problem 3: Serial correlations 

𝑒~𝑁(0, 𝜎2𝐼) i.i.d: 



Multiple covariance components 

=  1 + 2 

Q1 Q2 

Estimation of hyperparameters  with ReML (Restricted Maximum Likelihood). 

V 

enhanced noise model at voxel i 

error covariance components Q 

and hyperparameters 
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A mass-univariate approach 

Summary 



Estimation of the parameters 

𝑦  = +𝜀 

𝛽 

𝜀~𝑁(0, 𝜎2𝑉) 

𝛽 = (𝑋𝑇𝑉−1𝑋)−1𝑋𝑇𝑉−1𝑦 

noise assumptions: 

WLS: 

𝛽 1 = 3.9831 

𝛽 2−7 = {0.6871, 1.9598, 1.3902, 166.1007, 76.4770, −64.8189} 

𝛽 8 = 131.0040 

𝜀 = 

Summary 
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Contrasts 

 A contrast selects a specific effect of interest. 

 

 A contrast 𝑐 is a vector of length 𝑝. 

 

 𝑐𝑇𝛽 is a linear combination of regression 

coefficients 𝛽. 

𝑐 = [1 0 0 0 … ]𝑇 
 
𝑐𝑇𝛽 = 𝟏 × 𝛽1 + 𝟎 × 𝛽2 + 𝟎 × 𝛽3 + 𝟎 × 𝛽4 + ⋯ 
 

        =  𝜷𝟏 

𝑐 = [0 1 − 1 0 … ]𝑇  
 
𝑐𝑇𝛽 = 𝟎 × 𝛽1 + 𝟏 × 𝛽2 + −𝟏 × 𝛽3 + 𝟎 × 𝛽4 + ⋯ 
 

          =   𝜷𝟐 − 𝜷𝟑 

[1 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 1 -1 0 0 0 0 0 0 0 0 0 0 0] 



Hypothesis Testing 

 Null Hypothesis H0 

     Typically what we want to disprove (no effect). 

      The Alternative Hypothesis HA expresses outcome of interest. 

To test an hypothesis, we construct “test statistics”. 

 Test Statistic T 

     The test statistic summarises evidence 

about H0. 

     Typically, test statistic is small in 

magnitude when the hypothesis H0 is true 

and large when false.  

      We need to know the distribution of T 

under the null hypothesis. Null Distribution of T 



Hypothesis Testing 

 p-value: 

     A p-value summarises evidence against H0. 

     This is the chance of observing value more 

extreme than t under the null hypothesis. 

Null Distribution of T 

 Significance level α: 

     Acceptable false positive rate α. 

                                                    threshold uα 

     Threshold uα controls the false positive rate  

t 

p-value   

Null Distribution of T 

 

u 

 Conclusion about the hypothesis: 

     We reject the null hypothesis in favour of the 

alternative hypothesis if t > uα 

)|( 0HuTp  

𝑝 𝑇 > 𝑡|𝐻0  



cT = 1 0 0 0 0 0 0 0 

T =  

contrast of 

estimated 

parameters 

variance 

estimate 

Amplitude of cond 1 > 0 ? 
 

i.e. 
 

1 = cT> 0 ? 

1 2 3 4 5 ... 

T-test - one dimensional contrasts – SPM{t} 

Question: 

Null hypothesis: H0: c
T= 0  

Test statistic: 
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Scaling issue 

 The T-statistic does not depend on 

the scaling of the regressors. 
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 Be careful of the interpretation of the 

contrasts          themselves (eg, for a 

second level analysis): 

 

                 sum ≠ average 

 The T-statistic does not depend on 

the scaling of the contrast. 
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 Contrast          depends on scaling. ̂Tc



F-test - the extra-sum-of-squares principle 

 Model comparison: 

Null Hypothesis H0: True model is X0 (reduced model) 

Full model ?  

X1   X0 

or Reduced model?  

X0 Test statistic: ratio of 

explained variability and 

unexplained variability (error) 

1 = rank(X) – rank(X0) 

2 = N – rank(X) 

RSS 

 2ˆ
full

RSS0
 

 2ˆ
reduced



F-test - multidimensional contrasts – SPM{F} 

 Tests multiple linear hypotheses: 

0 0 0 1 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 

0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 1 

cT  = 

H0: 4 = 5 = ... = 9 = 0 

X1  (4-9) X0 

Full model? Reduced model? 

H0: True model is X0 

X0 

test H0 :  c
T = 0 ? 

SPM{F6,322} 



F-test: summary 

 F-tests can be viewed as testing for the additional variance 
explained by a larger model wrt a simpler (nested) model 
 model comparison. 
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 In testing uni-dimensional contrast with an F-test, for example 
1 – 2, the result will be the same as testing 2 – 1. It will be 
exactly the square of the t-test, testing for both positive and 
negative effects. 

 Hypotheses: 

0  : Hypothesis Null 3210  H

0 oneleast at   :  Hypothesis eAlternativ kAH 



Variability described by 𝑋2 Variability described by 𝑋1 

Orthogonal regressors 

Variability in Y 

Testing for 𝑋1  Testing for 𝑋2  



Correlated regressors 
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Shared variance 

Variability in Y 



Correlated regressors 
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Variability in Y 

Testing for 𝑋1  



Correlated regressors 
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Variability in Y 

Testing for 𝑋2  
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Variability in Y 



Correlated regressors 
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Variability in Y 

Testing for 𝑋1  



Correlated regressors 
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Variability in Y 

Testing for 𝑋2  



Correlated regressors 
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Variability in Y 

Testing for 𝑋1 and/or 𝑋2  

Orthogonalization of Regressors in fMRI Models, Mumford et al, PlosOne, 2015 



Design orthogonality 

 For each pair of columns of the 
design matrix, the orthogonality 
matrix depicts the magnitude of the 
cosine of the angle between them, 
with the range 0 to 1 mapped from 
white to black. 

 If both vectors have zero mean then 

the cosine of the angle between the 

vectors is the same as the correlation 

between the two variates. 



Design efficiency 
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 The aim is to minimize the standard error of a t-contrast 

(i.e. the denominator of a t-statistic). 

cXXcc TTT 12 )(ˆ)ˆvar( 

 This is equivalent to maximizing the efficiency e: 

Noise variance Design variance 

 If we assume that the noise variance is independent of the specific 

design: 
11 ))((),(  cXXcXce TT

 This is a relative measure: all we can really say is that one design is 

more efficient than another (for a given contrast). 



Design efficiency 
A B 

A+B 

A-B 

𝑋𝑇𝑋 =
1 −0.9

−0.9 1
 

𝑐 = [1 0]𝑇:         𝑒 𝑐, 𝑋 = 18.1 

𝑐 = [0.5 0.5]𝑇:   𝑒 𝑐, 𝑋 = 19.0 
𝑐 = [1 − 1]𝑇:    𝑒 𝑐, 𝑋 = 95.2 

 High correlation between regressors leads to 

low sensitivity to each regressor alone. 

 We can still estimate efficiently the difference 

between them. 
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