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Example: Auditory block-design experiment
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Voxel-wise time series analysis
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Single voxel regression model
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Mass-univariate analysis: voxel-wise GLM
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Model is specified by
1. Design matrix X
2. Assumptions about e
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N: number of scans

p. number of
N v N v N v regressors

The design matrix embodies all available knowledge about
experimentally controlled factors and potential confounds.
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GLM: a flexible framework for parametric analyses

* one sample t-test
* two sample t-test
 paired t-test

« Analysis of Variance
(ANOVA)

« Analysis of Covariance
(ANCoVA)

* correlation
* linear regression
« multiple regression



Parameter estimation
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Ordinary least
squares estimation
(OLS) (assuming i.i.d.
error):

B=(X"X)"X"y




Problems of this model with fMRI time series

1. The BOLD response has a delayed and dispersed
shape.



BOLD response: Convolution model

Hemodynamic response

Impulses function (HRF) Expected BOLD
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Linear time-invariant system:  ® g(t) = j f (r)g(t — T)dZ'

0

expected BOLD response
= input function ® impulse response function (HRF)




Problem 1: BOLD response
Solution: Convolution model
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Convolution model of the BOLD response

Convolve stimulus function
with a canonical
hemodynamic response
function (HRF):

® HRF

Intensity
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Hemodynamic Response = Temporal Basis Set
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Informed Basis Set
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Temporal derivative
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Problems of this model with fMRI time series

1. The BOLD response has a delayed and dispersed
shape.

2. The BOLD signal includes substantial amounts of
low-frequency noise (eg due to scanner drift).



Problem 2: Low-frequency noise

Solution: High pass filtering

discrete cosine
transform (DCT)
set
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blue= data
black = mean + low-frequency drift

green = predicted response, taking into
account low-frequency drift

red = predicted response, NOT taking
into account low-frequency drift



Problems of this model with fMRI time series

1. The BOLD response has a delayed and dispersed
shape.

2. The BOLD signal includes substantial amounts of
low-frequency noise (eg due to scanner drift).

3. Due to breathing, heartbeat & unmodeled neuronal
activity, the errors are serially correlated. This violates
the assumptions of the noise model in the GLM.



Problem 3: Serial correlations
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Multiple covariance components

enhanced noise model at voxel | C. = J_ZV
| |

e ~N(,C) \ V=249

error covariance components Q
and hyperparameters A

Q1

+ 4,

Estimation of hyperparameters A with ReML (Restricted Maximum Likelihood).



Summary

A mass-univariate approach
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Summary

Estimation of the parameters

+&

noise assumptions: e~N (0, 0%V)

wLs: B =XTv-1x)"1xTy-1y

B, = 3.9831

JUUVUUY

,[)32_7 = {0.6871,1.9598,1.3902,166.1007,76.4770, —64.8189}

fg = 131.0040
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Contrasts

O A contrast selects a specific effect of interest.
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= A contrast c is a vector of length p.
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= ¢TB is a linear combination of regression
coefficients S.
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= B2 — B3



Hypothesis Testing

To test an hypothesis, we construct “test statistics”.

d Null Hypothesis H,
Typically what we want to disprove (no effect).

= The Alternative Hypothesis H, expresses outcome of interest.

] Test Statistic T
The test statistic summarises evidence

about H,,.

Typically, test statistic is small in
magnitude when the hypothesis H, is true
and large when false.

= We need to know the distribution of T

under the null hypothesis.

Null Distribution of T




Hypothesis Testing

 Significance level a:
Acceptable false positive rate a.
= threshold u,
Threshold u, controls the false positive rate

a=p(T >u, |Hy)

 Conclusion about the hypothesis:
We reject the null hypothesis in favour of the
alternative hypothesis ift > u,

 p-value:
A p-value summarises evidence against H,.

This is the chance of observing value more
extreme than t under the null hypothesis.

p(T > t|H,)

Null Distribution of T

Null Distribution of T
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T-test - one dimensional contrasts — SPM({t}

Question: Amplitude of cond 1 >0 ?
c™=10000000 o
. p=c'p>07?

BBz Bs B s - Null hypothesis: |H,:cTS=0 H,: CT,B >0
contrast of
estimated
parameters

Test statistic: =
variance
estimate
c' B c' B
~ tN

\/var(c ) \/AZ T( )10 N




Subject 1

Subject 5

Scaling Issue

1/ 4

S 1)

Tl B eI

The T-statistic does not depend on
the scaling of the regressors.

The T-statistic does not depend on
the scaling of the contrast.

Contrast C' /3 depends on scaling.

Be careful of the interpretation of the
contrasts C ,B themselves (eg, for a
second level analysis):

sum # average



F-test - the extra-sum-of-squares principle

 Model comparison:

Null Hypothesis Hy: True model is X, (reduced model) 1

Full model ?

Xo

— RSS

ngull

_} RSSO

or Reduced model?

Test statistic: ratio of
explained variability and
unexplained variability (error)

RSS, — RSS l
F «
| RSS

Z red uced

— ESS
| RSS

v, = rank(X) — rank(X)
v, = N — rank(X)

. E}l,vz
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F-test - multidimensional contrasts — SPM{F}

 Tests multiple linear hypotheses:
‘HO: True model isxof ‘HO: L= fs = ...:,89=01 \test H,: cT,B:O?‘
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- SPM{Fg 32}

Full model? Reduced model?




F-test: summary

] F-tests can be viewed as testing for the additional variance
explained by a larger model wrt a simpler (nested) model
= model comparison.

J Hypotheses:

(1) (1) 8 8 Null HypothesisH, : g, =06, =£,=0
8 3 (1) 8 Alternative Hypothesis H , : atleastone g, #0

 In testing uni-dimensional contrast with an F-test, for example
b1 — B,, the result will be the same as testing g, — g;. It will be
exactly the square of the t-test, testing for both positive and
negative effects.



Orthogonal regressors

Variability described by X; Variability described by X,

Testing for X, Testing for X,
Variability in Y




Correlated regressors

Shared variance

Variability described by X;
¢x Aq paquosap Alljiqenren

Variability in 'Y




Correlated regressors

Testing for X,

Variability described by X;
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Correlated regressors
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Correlated regressors
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Correlated regressors
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Correlated regressors

Testing for X,

Variability described by X;
¢x Aq paquosap Alljiqenep

Variability in 'Y




Correlated regressors

Testing for X; and/or X,

Variability described by X;
¢x Aq paquosap Aujiqelep

Variability in 'Y

Orthogonalization of Regressors in fMRI Models, Mumford et al, PlosOne, 2015



Design ort

hogonal

 For each pair of columns of the
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desicgn matriz

resign orthogonaliy

abz. walue of cosine of an
black - colinear [zoz=+1/-
uuhite: - arhogonal [zoz=0]
gray - not orthogonal or colinear

le hetimeen colurmng of design mat:

design matrix, the orthogonality
matrix depicts the magnitude of the
cosine of the angle between them,
with the range 0 to 1 mapped from
white to black.

If both vectors have zero mean then
the cosine of the angle between the
vectors is the same as the correlation
between the two variates.



Design efficiency

. L T
J The aim is to minimize the standard error of a t-contrast T C ,3

(i.e. the denominator of a t-statistic). - \/var (CT ,3)

var(c' B) =& (XTX) ¢

L This is equivalent to maximizing the efficiency e:

e(6”,¢,X) = (6"

Noise variance Design variance

C

 If we assume that the noise variance is independent of the specific

design:
e(c, X)=(c" (X" X) )™

 This is a relative measure: all we can really say is that one design is
more efficient than another (for a given contrast).



Design efficiency

OO

c—[10 e(c,X) =18.1
xx=(_t, 727 [0505]:e(cX)—190
—09 1 =[1 —-1]": e(c,X) =95.2

VAR ARRWAN AR

[L=L] [11]

 High correlation between regressors leads to
low sensitivity to each regressor alone.

 We can still estimate efficiently the difference
between them.
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