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Slice Timing issue

“Slice-timing Problem”:

» Slices acquired at different times, yet
model is the same for all slices

» different results (using canonical HRF)
for different reference slices

» (slightly less problematic if middle slice
IS selected as reference, and with short
TRS)

Solutions:

1. Temporal interpolation of data
“Slice timing correction”

2. More general basis set (e.g., with
temporal derivatives)

See Sladky et al, Neurolmage, 2012.
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Timing Issues:. Sampling

Typical TR for 48 slice EPI at 3mm
spacing is ~ 4s

Sampling at [0,4,8,12...] post-
stimulus may miss peak signal.

Higher effective sampling by:

1. Asynchrony
eg SOA=1.5TR

2. Random Jitter
eg SOA=(2+0.5)TR
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Optimal SOA?
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Short randomised SOA

Stimulus (“Neural”) HRF Predicted Data
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Null events

More efficient!



Block design SOA

Stimulus (“Neural”) HRF Predicted Data
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Even more efficient!



Design efficiency

(J HRF can be viewed as a
filter.

] We want to maximise the
signal passed by this filter.

[ Dominant frequency of
canonical HRF is ~0.03 Hz.

» The most efficient design is
a sinusoidal modulation of
neuronal activity with period
~32S
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Sinusoidal modulation, f=1/32

Stimulus (“Neural”) HRF Predicted Data
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Blocked: epoch = 20s
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tSPN
Blocked: epoch = 80s, high-pass filter = 1/120s

Stimulus (“Neural”) HRF Predicted Data

) =

0 0/ 0

| . . Time (s) | | \_/T.me(;_ |
0 32 64 96 128 160 0 5 10 15 20 25 30 0 64 128

l Fourier Transform l Fourier Transform l
§ |
=
‘ | Freq (Hz)
L, Feate 0 | | [ Freq (H2)
0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2 0.05 01 015 02



th -l‘

Randomised Design, SoA,,, = 4s, high pass filter = 1/120s

Stimulus (“Neural”) HRF Predicted Data
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Randomised design spreads power over frequencies



Design efficiency

Block designs:

[ Generally efficient but often not appropriate.

1 Optimal block length 16s with short SOA
(beware of high-pass filter).

Event-related designs:
] Efficiency depends on the contrast of interest

- With short SOAs ‘null events’ (jittered ITl) can optimise
efficiency across multiple contrasts.

J Non-linear effects start to become problematic at SOA<2s

http://imaging.mrc-cbu.cam.ac.uk/imaging/DesignEfficiency
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Inference at a single voxel

u

Null distribution of test statistic T

Null Hypothesis H,:
Zzero activation

Decision rule (threshold) u:
determines false positive
rate a

— Choose u to give acceptable
a under H,

a = p(t > ulH)



Multiple tests
"

: If we have 100,000 voxels,

0.=0.05 = 5,000 false positive voxels.

This is clearly undesirable; to correct
for this we can define a null hypothesis
for a collection of tests.

Noise

Signal




Multiple tests
u

If we have 100,000 voxels,
0.=0.05 = 5,000 false positive voxels.

This is clearly undesirable; to correct
for this we can define a null hypothesis
for a collection of tests.
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Percentage of Null Pixels that are False Positives



Family-Wise Null Hypothesis

Family-Wise Null Hypothesis:
Activation is zero everywhere

If we reject a voxel null hypothesis at any voxel,
we reject the family-wise Null hypothesis

A FP anywhere in the image gives a Family Wise Error (FWE)

Family-Wise Error rate (FWER) = ‘corrected’ p-value

Use of uncorrected p-value, « O 1

Use of corrected p value a=0.1
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Bonferroni correction

The Family-Wise Error rate (FWER), age, for a family of N
tests follows the inequality:

‘ ArwE < Na

where a IS the test-wise error rate.

Therefore, to ensure a particular FWER choose:

p AFWE
N

This correction does not require the tests to be independent but
becomes very stringent if dependence.



Spatial correlations

100 x 100 independent tests Spatially correlated tests (FWHM=10)

Discrete data Spatially extended data

Bonferroni is too conservative for spatially correlated data.




Topological inference

Peak level inference
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Topological inference

Cluster level inference

Topological feature:
Cluster extent

intensity

Ugs : Cluster-forming threshold
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Topological inference

Set level inference

Topological feature:
Number of clusters

Ugs : Cluster-forming threshold
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RFT and Euler Characteristic

FWER = p(FWE)
~ Elx,]
o< A(QV)|AIY? u exp(—u?/2)/(2m)3/?
/7 ~—— \

Search volume Roughness Threshold
(1/smoothness)




Random Field Theory

U The statistic image is assumed to be a good lattice
representation of an underlying continuous stationary
random field.

Typically, FWHM > 3 voxels
(combination of intrinsic and extrinsic smoothing)

L Smoothness of the data is unknown and estimated:
very precise estimate by pooling over voxels = stationarity
assumptions (esp. relevant for cluster size results).

O A priori hypothesis about where an activation should be, !
reduce search volume = Small Volume Correction: gy v
« mask defined by (probabilistic) anatomical atlases
- mask defined by separate "functional localisers" VR O N
« mask defined by orthogonal contrasts )l
* (spherical) search volume around previously reported coordinates
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Conclusion

 There is a multiple testing problem and corrections have
to be applied on p-values (for the volume of interest only
(see Small Volume Correction)).

d Inference is made about topological features (peak height,
spatial extent, number of clusters).
Use results from the Random Field Theory.

 Control of FWER (probability of a false positive anywhere
In the Image): very specific, not so sensitive.

d Control of FDR (expected proportion of false positives
amongst those features declared positive (the discoveries)):
less specific, more sensitive.



th -l‘

Statistical Parametric Maps

fMRI, VBM,
M/EEG source reconstruction
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Image time-series
Spatial filter Design matrix Statistical Parametric Map
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GLM: repeat over subjects

fMRI data Design Matrix Contrast Images SPM({t}
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Fixed effects analysis (FFX)
LOOO0N0NNn

Modelling all
subjects at once

variance over
subjects at each
voxel




Fixed effects analysis (FFX)

y =X (1)13(1) e Modelling all
subjects at once

V] Simple model

V] Lots of degrees of
freedom

X| Large amount of
data

X Assumes common
variance over
subjects at each
voxel




Random effects
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Probability model underlying random effects analysis
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Fixed vs random effects

With Fixed Effects Analysis (FFX) we compare
the group effect to the within-subject variability. It is
not an inference about the population from which
the subjects were drawn.

With Random Effects Analysis (RFX) we compare
the group effect to the between-subject variability. It
IS an inference about the population from which the
subjects were drawn. If you had a new subject from
that population, you could be confident they would
also show the effect.



Fixed vs random effects

 Fixed isn’t “wrong”, just usually isn’t of interest.

J Summary:
> Fixed effects inference:
“I can see this effect in this cohort”

» Random effects inference:
“If | were to sample a new cohort from the same
population | would get the same result”



Hierarchical models

Example: Two level model

| Second level I

| First level I

Mixed-effects and fMRI studies. Friston et al., Neurolmage, 2005.



| First level I | Second level I

fMRI data Design Matrix  Contrast Images One-sample t-test @ second level
- |
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Generalisability, Random Effects & Population
Inference. Holmes & Friston, Neurolmage,1998.



Summary Statistics RFX Approach

Assumptions

JThe summary statistics approach is exact if for
each session/subject:

» Within-subjects variances the same

» First level design the same (e.g. number of trials)

J Other cases: summary statistics approach Is

robust against typical violations.

Mixed-effects and fMRI studies. Friston et al., Neurolmage, 2005.

Statistical Parametric Mapping: The Analysis of Functional Brain Images. Elsevier, 2007.
Simple group fMRI modeling and inference. Mumford & Nichols. Neurolmage, 20009.



ANOVA & non-sphericity

1 One effect per subject:
» Summary statistics approach

» One-sample t-test at the second level

J More than one effect per subject or

multiple groups:
» Non-sphericity modelling

» Covariance components and ReML



Summary

d Group Inference usually proceeds with RFX analysis, not
FFX. Group effects are compared to between rather than
within subject variability.

 Hierarchical models provide a gold-standard for RFX
analysis but are computationally intensive.

d Summary statistics approach is a robust method for RFX
group analysis.

J Can also use ‘ANOVA'’ or ‘ANOVA within subject’ at
second level for inference about multiple experimental
conditions or multiple groups.
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One-way ANOVA
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Color

2x2 factorial design

h

1 2
Al A2 Bl B2 A A A
- H

Main effect of Shape:
(A1+A2)-(B1+B2): 11 -1 -1

Shape

Main effect of Color:
(A1+B1) - (A2+B2): 1 -1 1 -1

Interaction Shape x Color:
(A1l-B1)-(A2-B2): 1-1-11
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Color

2x3 factorial design .

A

2
Al A2 A3 B1 B2 B3
A A

Shape

I

Main effect of Shape:
(A1+A2+A3) - (B1+B2+B3): 1 11 -1 -1 -1

Main effect of Color:

(A1+B1)-(A2+B2): 1 -1 0 1 -1 O
(A2+B2)-(A3+B3): 0 1 -1 0 1 -1
(A1+B1)-(A3+B3): 1 0-1 1 0 -1
Interaction Shape x Color:

(A1-B1)-(A2-B2): 1-1 0-1 10
(A2-B2)-(A3-B3): 0 1-1 0-11
(A1-B1)-(A3-B3): 1 0-1-1 0 1



