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Slice Timing issue 

t1 = 0 s 

t16 = 2 s 

T=16, TR=2s 

t0 = 8 

t0 = 16 



Slice Timing issue 

“Slice-timing Problem”: 

‣ Slices acquired at different times, yet 

model is the same for all slices 

‣ different results (using canonical HRF) 

for different reference slices 

‣ (slightly less problematic if middle slice 

is selected as reference, and with short 

TRs) 

 

Solutions: 

1. Temporal interpolation of data 

    “Slice timing correction” 

2. More general basis set (e.g., with    

    temporal derivatives) 

Top slice Bottom slice 

Interpolated 

Derivative 

See Sladky et al, NeuroImage, 2012. 

TR=3s 



Timing issues: Sampling 

Scans 
TR=4s 

Stimulus (synchronous) SOA=8s Stimulus (asynchronous) Stimulus (random jitter) 

Typical TR for 48 slice EPI at 3mm 

spacing is ~ 4s 

Sampling at [0,4,8,12…] post- 

stimulus may miss peak signal. 

Higher effective sampling by: 

1. Asynchrony 

eg SOA=1.5TR  

2.  Random Jitter 

     eg SOA=(2±0.5)TR 

 



Optimal SOA? 

Not very efficient… 

Very inefficient… 

16s SOA 

4s SOA 



Short randomised SOA 

Stimulus (“Neural”) HRF Predicted Data 

More efficient! 

 = 

Null events 



Block design SOA 

Stimulus (“Neural”) HRF Predicted Data 

Even more efficient! 

 = 



Design efficiency 

HRF can be viewed as a 

filter. 

 

We want to maximise the 

signal passed by this filter. 

 

Dominant frequency of 

canonical HRF is ~0.03 Hz. 

 

 The most efficient design is 

a sinusoidal modulation of 

neuronal activity with period 

~32s 



Sinusoidal modulation, f=1/32 

Fourier Transform Fourier Transform 

= 

Stimulus (“Neural”) HRF Predicted Data 

 = 

 = 



 = 

 = 

Stimulus (“Neural”) HRF Predicted Data 

Fourier Transform Fourier Transform 

Blocked: epoch = 20s 



 = 

 = 

Predicted Data HRF Stimulus (“Neural”) 

Fourier Transform Fourier Transform 

Blocked: epoch = 80s, high-pass filter = 1/120s 



Randomised Design, SOAmin = 4s, high pass filter = 1/120s 

Fourier Transform Fourier Transform 

 = 

 = 

Stimulus (“Neural”) HRF Predicted Data 

Randomised design spreads power over frequencies 



Design efficiency 

Block designs: 

Generally efficient but often not appropriate. 

 Optimal block length 16s with short SOA 

(beware of high-pass filter). 

 

Event-related designs: 

 Efficiency depends on the contrast of interest 

With short SOAs ‘null events’ (jittered ITI) can optimise 

efficiency across multiple contrasts.  

 Non-linear effects start to become problematic at SOA<2s 

http://imaging.mrc-cbu.cam.ac.uk/imaging/DesignEfficiency 
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Pre- 
processings 

General 
Linear 
Model 

Statistical 
Inference 

𝑦 = 𝑋        𝛽 + 𝜀 

𝜎 2 =
𝜀 𝑇𝜀 

𝑟𝑎𝑛𝑘(𝑋)
 

Contrast c 

Random 

Field Theory 

𝑆𝑃𝑀{𝑇, 𝐹} 

𝛽 = 𝑋𝑇𝑋 −1𝑋𝑇𝑦 



Inference at a single voxel 

Null distribution of test statistic T 

𝛼 = 𝑝(𝑡 > 𝑢|𝐻0) 

u 

Decision rule (threshold) u: 

   determines false positive  

   rate α 

Null Hypothesis H0:  

   zero activation 

 Choose u to give acceptable 

 α under H0 



Multiple tests 

t 
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Signal 

If we have 100,000 voxels, 

α=0.05   5,000 false positive voxels. 

 

This is clearly undesirable; to correct 

for this we can define a null hypothesis 

for a collection of tests. 

Noise 



Multiple tests 
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11.3% 11.3% 12.5% 10.8% 11.5% 10.0% 10.7% 11.2% 10.2% 9.5% 

Use of ‘uncorrected’ p-value, α =0.1 

Percentage of Null Pixels that are False Positives 

If we have 100,000 voxels, 

α=0.05   5,000 false positive voxels. 

 

This is clearly undesirable; to correct 

for this we can define a null hypothesis 

for a collection of tests. 



Family-Wise Null Hypothesis 

FWE 

Use of ‘corrected’ p-value, α =0.1 

Use of ‘uncorrected’ p-value, α =0.1 

Family-Wise Null Hypothesis: 

Activation is zero everywhere 

If we reject a voxel null hypothesis at any voxel, 

we reject the family-wise Null hypothesis  

A FP anywhere in the image gives a Family Wise Error (FWE) 

Family-Wise Error rate (FWER) = ‘corrected’ p-value 



Bonferroni correction 

The Family-Wise Error rate (FWER), αFWE,  for  a family of N 

tests follows the inequality: 

 

 

 

where α is the test-wise error rate. 

𝛼𝐹𝑊𝐸 ≤ 𝑁𝛼 

𝛼 =
𝛼𝐹𝑊𝐸

𝑁
 

Therefore, to ensure a particular FWER choose: 

This correction does not require the tests to be independent but 

becomes very stringent if dependence. 



Spatial correlations 

100 x 100 independent tests Spatially correlated tests (FWHM=10) 

Bonferroni is too conservative for spatially correlated data. 

Discrete data Spatially extended data 



Topological inference 

Topological feature: 
Peak height 

space 

Peak level inference 



Topological inference 

Topological feature: 
Cluster extent 

space 

uclus 

uclus : cluster-forming threshold 

Cluster level inference 



Topological inference 

Topological feature: 
Number of clusters 

space 

uclus 

uclus : cluster-forming threshold 

c 

Set level inference 



RFT and Euler Characteristic 

𝐹𝑊𝐸𝑅 = 𝑝 𝐹𝑊𝐸  

     ≈  𝐸 𝜒𝑢  
     ∝ 𝜆 Ω Λ 1 2  𝑢 exp (−𝑢2/2)/(2𝜋)3/2 

Search volume 
Roughness 

(1/smoothness) 
Threshold 



Random Field Theory 

 The statistic image is assumed to be a good lattice  

representation of an underlying continuous stationary  

random field. 

Typically, FWHM > 3 voxels 

(combination of intrinsic and extrinsic smoothing) 

 

 Smoothness of the data is unknown and estimated: 

very precise estimate by pooling over voxels  stationarity  

assumptions (esp. relevant for cluster size results). 

 

 A priori hypothesis about where an activation should be,  

reduce search volume  Small Volume Correction: 

• mask defined  by (probabilistic) anatomical atlases 

• mask defined by separate "functional localisers" 

• mask defined by orthogonal contrasts 

• (spherical) search volume around previously reported coordinates 



Conclusion 

 There is a multiple testing problem and corrections have 

to be applied on p-values (for the volume of interest only 

(see Small Volume Correction)). 

 

 Inference is made about topological features (peak height, 

spatial extent, number of clusters). 

Use results from the Random Field Theory. 

 

 Control of FWER (probability of a false positive anywhere 

in the image): very specific, not so sensitive. 

 

 Control of FDR (expected proportion of false positives 

amongst those features declared positive (the discoveries)): 

less specific, more sensitive. 



Statistical Parametric Maps 
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Normalisation 

Statistical Parametric Map 

Image time-series 

Parameter estimates 

General Linear Model Realignment Smoothing 

Design matrix 

Anatomical 

reference 

Spatial filter 

Statistical 

Inference 
RFT 

p <0.05 



GLM: repeat over subjects 

fMRI data Design Matrix Contrast Images SPM{t} 
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Fixed effects analysis (FFX) 

Subject 1 

Subject 2 

Subject 3 

Subject N 

…
 

Modelling all 

subjects at once 
 

 Simple model 

 Lots of degrees of 

freedom 
 

 Large amount of 

data 

 Assumes common 

variance over 

subjects at each 

voxel 



Fixed effects analysis (FFX) 

= 
 1  1+ y
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     111   Xy Modelling all 

subjects at once 
 

 Simple model 

 Lots of degrees of 

freedom 
 

 Large amount of 

data 

 Assumes common 

variance over 

subjects at each 

voxel 



Probability model underlying random effects analysis 

Random effects 

𝜎𝑏
2  

𝜎𝑤
2   



With Fixed Effects Analysis (FFX) we compare 

the group effect to the within-subject variability. It is 

not an inference about the population from which 

the subjects were drawn.  

 

With Random Effects Analysis (RFX) we compare 

the group effect to the between-subject variability. It 

is an inference about the population from which the 

subjects were drawn. If you had a new subject from 

that population, you could be confident they would 

also show the effect. 

Fixed vs random effects 



 Fixed isn’t “wrong”, just usually isn’t of interest. 

 

 Summary: 

 Fixed effects inference: 

“I can see this effect in this cohort” 
 

 Random effects inference: 

“If I were to sample a new cohort from the same 

population I would get the same result” 

Fixed vs random effects 



= 

Example: Two level model 
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First level 

Hierarchical models 

Mixed-effects and fMRI studies. Friston et al., NeuroImage, 2005. 



Summary Statistics RFX Approach 

Contrast Images fMRI data Design Matrix 
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First level 

Generalisability, Random Effects & Population 
Inference. Holmes & Friston, NeuroImage,1998. 

Second level 

One-sample t-test @ second level 
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Summary Statistics RFX Approach 

Assumptions 

The summary statistics approach is exact if for 

each session/subject: 

  Within-subjects variances the same 

  First level design the same (e.g. number of trials) 

 Other cases: summary statistics approach is 

robust against typical violations. 

Simple group fMRI modeling and inference. Mumford & Nichols. NeuroImage, 2009. 

Mixed-effects and fMRI studies. Friston et al., NeuroImage, 2005. 

Statistical Parametric Mapping: The Analysis of Functional Brain Images. Elsevier, 2007. 



ANOVA & non-sphericity 

 One effect per subject: 

 Summary statistics approach 

 One-sample t-test at the second level 
 

 More than one effect per subject or 

multiple groups: 

 Non-sphericity modelling 

 Covariance components and ReML 



Summary 

  Group Inference usually proceeds with RFX analysis, not 

FFX. Group effects are compared to between rather than 

within subject variability.  

  Hierarchical models provide a gold-standard for RFX 

analysis but are computationally intensive. 

  Summary statistics approach is a robust method for RFX 

group analysis. 

  Can also use ‘ANOVA’ or ‘ANOVA within subject’ at 

second level for inference about multiple experimental 

conditions or multiple groups. 



One-sample t-test Two-sample t-test Paired t-test One-way ANOVA 

One-way ANOVA 

within-subject 
Full Factorial Flexible Factorial Flexible Factorial 



2x2 factorial design 

A1 A2 B1 B2 A 

B 

1 2 

Color 

S
h
a
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Main effect of Shape: 

(A1+A2) – (B1+B2) :   1  1  -1  -1 

Main effect of Color: 

(A1+B1) – (A2+B2) :   1  -1  1  -1 

Interaction Shape x Color: 

(A1-B1) – (A2-B2) :     1  -1  -1  1 



2x3 factorial design 

Main effect of Shape: 

(A1+A2+A3) – (B1+B2+B3) :   1  1  1  -1  -1  -1 

Main effect of Color: 

(A1+B1) – (A2+B2) :   1  -1   0   1  -1   0 

(A2+B2) – (A3+B3) :   0   1  -1   0   1  -1 

(A1+B1) – (A3+B3) :   1   0  -1   1   0  -1 

Interaction Shape x Color: 

(A1-B1) – (A2-B2) :     1  -1   0  -1   1   0 

(A2-B2) – (A3-B3) :     0   1  -1   0  -1   1 

(A1-B1) – (A3-B3) :     1   0  -1  -1   0   1 

A 

B 

1 2 

Color 

S
h
a
p
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3 

A1 A2 A3 B1 B2 B3 


