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Slice Timing issue 

t1 = 0 s 

t16 = 2 s 

T=16, TR=2s 

t0 = 8 

t0 = 16 



Slice Timing issue 

“Slice-timing Problem”: 

‣ Slices acquired at different times, yet 

model is the same for all slices 

‣ different results (using canonical HRF) 

for different reference slices 

‣ (slightly less problematic if middle slice 

is selected as reference, and with short 

TRs) 

 

Solutions: 

1. Temporal interpolation of data 

    “Slice timing correction” 

2. More general basis set (e.g., with    

    temporal derivatives) 

Top slice Bottom slice 

Interpolated 

Derivative 

See Sladky et al, NeuroImage, 2012. 

TR=3s 



Timing issues: Sampling 

Scans 
TR=4s 

Stimulus (synchronous) SOA=8s Stimulus (asynchronous) Stimulus (random jitter) 

Typical TR for 48 slice EPI at 3mm 

spacing is ~ 4s 

Sampling at [0,4,8,12…] post- 

stimulus may miss peak signal. 

Higher effective sampling by: 

1. Asynchrony 

eg SOA=1.5TR  

2.  Random Jitter 

     eg SOA=(2±0.5)TR 

 



Optimal SOA? 

Not very efficient… 

Very inefficient… 

16s SOA 

4s SOA 



Short randomised SOA 

Stimulus (“Neural”) HRF Predicted Data 

More efficient! 

 = 

Null events 



Block design SOA 

Stimulus (“Neural”) HRF Predicted Data 

Even more efficient! 

 = 



Design efficiency 

HRF can be viewed as a 

filter. 

 

We want to maximise the 

signal passed by this filter. 

 

Dominant frequency of 

canonical HRF is ~0.03 Hz. 

 

 The most efficient design is 

a sinusoidal modulation of 

neuronal activity with period 

~32s 



Sinusoidal modulation, f=1/32 

Fourier Transform Fourier Transform 

= 

Stimulus (“Neural”) HRF Predicted Data 

 = 

 = 



 = 

 = 

Stimulus (“Neural”) HRF Predicted Data 

Fourier Transform Fourier Transform 

Blocked: epoch = 20s 



 = 

 = 

Predicted Data HRF Stimulus (“Neural”) 

Fourier Transform Fourier Transform 

Blocked: epoch = 80s, high-pass filter = 1/120s 



Randomised Design, SOAmin = 4s, high pass filter = 1/120s 

Fourier Transform Fourier Transform 

 = 

 = 

Stimulus (“Neural”) HRF Predicted Data 

Randomised design spreads power over frequencies 



Design efficiency 

Block designs: 

Generally efficient but often not appropriate. 

 Optimal block length 16s with short SOA 

(beware of high-pass filter). 

 

Event-related designs: 

 Efficiency depends on the contrast of interest 

With short SOAs ‘null events’ (jittered ITI) can optimise 

efficiency across multiple contrasts.  

 Non-linear effects start to become problematic at SOA<2s 

http://imaging.mrc-cbu.cam.ac.uk/imaging/DesignEfficiency 
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Pre- 
processings 

General 
Linear 
Model 

Statistical 
Inference 

𝑦 = 𝑋        𝛽 + 𝜀 

𝜎 2 =
𝜀 𝑇𝜀 

𝑟𝑎𝑛𝑘(𝑋)
 

Contrast c 

Random 

Field Theory 

𝑆𝑃𝑀{𝑇, 𝐹} 

𝛽 = 𝑋𝑇𝑋 −1𝑋𝑇𝑦 



Inference at a single voxel 

Null distribution of test statistic T 

𝛼 = 𝑝(𝑡 > 𝑢|𝐻0) 

u 

Decision rule (threshold) u: 

   determines false positive  

   rate α 

Null Hypothesis H0:  

   zero activation 

 Choose u to give acceptable 

 α under H0 



Multiple tests 
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Signal 

If we have 100,000 voxels, 

α=0.05   5,000 false positive voxels. 

 

This is clearly undesirable; to correct 

for this we can define a null hypothesis 

for a collection of tests. 

Noise 



Multiple tests 
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11.3% 11.3% 12.5% 10.8% 11.5% 10.0% 10.7% 11.2% 10.2% 9.5% 

Use of ‘uncorrected’ p-value, α =0.1 

Percentage of Null Pixels that are False Positives 

If we have 100,000 voxels, 

α=0.05   5,000 false positive voxels. 

 

This is clearly undesirable; to correct 

for this we can define a null hypothesis 

for a collection of tests. 



Family-Wise Null Hypothesis 

FWE 

Use of ‘corrected’ p-value, α =0.1 

Use of ‘uncorrected’ p-value, α =0.1 

Family-Wise Null Hypothesis: 

Activation is zero everywhere 

If we reject a voxel null hypothesis at any voxel, 

we reject the family-wise Null hypothesis  

A FP anywhere in the image gives a Family Wise Error (FWE) 

Family-Wise Error rate (FWER) = ‘corrected’ p-value 



Bonferroni correction 

The Family-Wise Error rate (FWER), αFWE,  for  a family of N 

tests follows the inequality: 

 

 

 

where α is the test-wise error rate. 

𝛼𝐹𝑊𝐸 ≤ 𝑁𝛼 

𝛼 =
𝛼𝐹𝑊𝐸

𝑁
 

Therefore, to ensure a particular FWER choose: 

This correction does not require the tests to be independent but 

becomes very stringent if dependence. 



Spatial correlations 

100 x 100 independent tests Spatially correlated tests (FWHM=10) 

Bonferroni is too conservative for spatially correlated data. 

Discrete data Spatially extended data 



Topological inference 

Topological feature: 
Peak height 

space 

Peak level inference 



Topological inference 

Topological feature: 
Cluster extent 

space 

uclus 

uclus : cluster-forming threshold 

Cluster level inference 



Topological inference 

Topological feature: 
Number of clusters 

space 

uclus 

uclus : cluster-forming threshold 

c 

Set level inference 



RFT and Euler Characteristic 

𝐹𝑊𝐸𝑅 = 𝑝 𝐹𝑊𝐸  

     ≈  𝐸 𝜒𝑢  
     ∝ 𝜆 Ω Λ 1 2  𝑢 exp (−𝑢2/2)/(2𝜋)3/2 

Search volume 
Roughness 

(1/smoothness) 
Threshold 



Random Field Theory 

 The statistic image is assumed to be a good lattice  

representation of an underlying continuous stationary  

random field. 

Typically, FWHM > 3 voxels 

(combination of intrinsic and extrinsic smoothing) 

 

 Smoothness of the data is unknown and estimated: 

very precise estimate by pooling over voxels  stationarity  

assumptions (esp. relevant for cluster size results). 

 

 A priori hypothesis about where an activation should be,  

reduce search volume  Small Volume Correction: 

• mask defined  by (probabilistic) anatomical atlases 

• mask defined by separate "functional localisers" 

• mask defined by orthogonal contrasts 

• (spherical) search volume around previously reported coordinates 



Conclusion 

 There is a multiple testing problem and corrections have 

to be applied on p-values (for the volume of interest only 

(see Small Volume Correction)). 

 

 Inference is made about topological features (peak height, 

spatial extent, number of clusters). 

Use results from the Random Field Theory. 

 

 Control of FWER (probability of a false positive anywhere 

in the image): very specific, not so sensitive. 

 

 Control of FDR (expected proportion of false positives 

amongst those features declared positive (the discoveries)): 

less specific, more sensitive. 



Statistical Parametric Maps 
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M/EEG source reconstruction 
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Normalisation 

Statistical Parametric Map 

Image time-series 

Parameter estimates 

General Linear Model Realignment Smoothing 

Design matrix 

Anatomical 

reference 

Spatial filter 

Statistical 

Inference 
RFT 

p <0.05 



GLM: repeat over subjects 

fMRI data Design Matrix Contrast Images SPM{t} 
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Fixed effects analysis (FFX) 

Subject 1 

Subject 2 

Subject 3 

Subject N 

…
 

Modelling all 

subjects at once 
 

 Simple model 

 Lots of degrees of 

freedom 
 

 Large amount of 

data 

 Assumes common 

variance over 

subjects at each 

voxel 



Fixed effects analysis (FFX) 

= 
 1  1+ y

)1(

1X

)1(

2X

)1(

3X

     111   Xy Modelling all 

subjects at once 
 

 Simple model 

 Lots of degrees of 

freedom 
 

 Large amount of 

data 

 Assumes common 

variance over 

subjects at each 

voxel 



Probability model underlying random effects analysis 

Random effects 

𝜎𝑏
2  

𝜎𝑤
2   



With Fixed Effects Analysis (FFX) we compare 

the group effect to the within-subject variability. It is 

not an inference about the population from which 

the subjects were drawn.  

 

With Random Effects Analysis (RFX) we compare 

the group effect to the between-subject variability. It 

is an inference about the population from which the 

subjects were drawn. If you had a new subject from 

that population, you could be confident they would 

also show the effect. 

Fixed vs random effects 



 Fixed isn’t “wrong”, just usually isn’t of interest. 

 

 Summary: 

 Fixed effects inference: 

“I can see this effect in this cohort” 
 

 Random effects inference: 

“If I were to sample a new cohort from the same 

population I would get the same result” 

Fixed vs random effects 
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Example: Two level model 
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Second level 

First level 

Hierarchical models 

Mixed-effects and fMRI studies. Friston et al., NeuroImage, 2005. 



Summary Statistics RFX Approach 

Contrast Images fMRI data Design Matrix 
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First level 

Generalisability, Random Effects & Population 
Inference. Holmes & Friston, NeuroImage,1998. 

Second level 

One-sample t-test @ second level 
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Summary Statistics RFX Approach 

Assumptions 

The summary statistics approach is exact if for 

each session/subject: 

  Within-subjects variances the same 

  First level design the same (e.g. number of trials) 

 Other cases: summary statistics approach is 

robust against typical violations. 

Simple group fMRI modeling and inference. Mumford & Nichols. NeuroImage, 2009. 

Mixed-effects and fMRI studies. Friston et al., NeuroImage, 2005. 

Statistical Parametric Mapping: The Analysis of Functional Brain Images. Elsevier, 2007. 



ANOVA & non-sphericity 

 One effect per subject: 

 Summary statistics approach 

 One-sample t-test at the second level 
 

 More than one effect per subject or 

multiple groups: 

 Non-sphericity modelling 

 Covariance components and ReML 



Summary 

  Group Inference usually proceeds with RFX analysis, not 

FFX. Group effects are compared to between rather than 

within subject variability.  

  Hierarchical models provide a gold-standard for RFX 

analysis but are computationally intensive. 

  Summary statistics approach is a robust method for RFX 

group analysis. 

  Can also use ‘ANOVA’ or ‘ANOVA within subject’ at 

second level for inference about multiple experimental 

conditions or multiple groups. 



One-sample t-test Two-sample t-test Paired t-test One-way ANOVA 

One-way ANOVA 

within-subject 
Full Factorial Flexible Factorial Flexible Factorial 



2x2 factorial design 

A1 A2 B1 B2 A 

B 

1 2 

Color 
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Main effect of Shape: 

(A1+A2) – (B1+B2) :   1  1  -1  -1 

Main effect of Color: 

(A1+B1) – (A2+B2) :   1  -1  1  -1 

Interaction Shape x Color: 

(A1-B1) – (A2-B2) :     1  -1  -1  1 



2x3 factorial design 

Main effect of Shape: 

(A1+A2+A3) – (B1+B2+B3) :   1  1  1  -1  -1  -1 

Main effect of Color: 

(A1+B1) – (A2+B2) :   1  -1   0   1  -1   0 

(A2+B2) – (A3+B3) :   0   1  -1   0   1  -1 

(A1+B1) – (A3+B3) :   1   0  -1   1   0  -1 

Interaction Shape x Color: 

(A1-B1) – (A2-B2) :     1  -1   0  -1   1   0 

(A2-B2) – (A3-B3) :     0   1  -1   0  -1   1 

(A1-B1) – (A3-B3) :     1   0  -1  -1   0   1 
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