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• Introduction
• Essential concepts

– Modelling
– Design matrix
– Parameter estimates 
– Simple contrasts

• Summary

Overview

Some terminology

• SPM is based on a mass univariate approach that 
fits a model at each voxel
– Is there an effect at location X? Investigate localisation of 

function or functional specialisation

– How does region X interact with Y and Z? Investigate 
behaviour of networks or functional integration

• A General(ised) Linear Model
– Effects are linear and additive

– If errors are normal (Gaussian), General (SPM99)

– If errors are not normal, Generalised (SPM2)

• Parametric
– one sample  t-test
– two sample t-test
– paired t-test
– ANOVA
– ANCOVA
– correlation
– linear regression
– multiple regression
– F-tests
– etc…

all cases of the (univariate) 
General Linear Model

Or, with non -normal errors, the 
Generalised Linear Model

Classical statistics...

• Parametric
– one sample  t-test
– two sample t-test
– paired t-test
– ANOVA
– ANCOVA
– correlation
– linear regression
– multiple regression
– F-tests
– etc…

all cases of the (univariate) 
General Linear Model

Or, with non -normal errors, the 
Generalised Linear Model

Classical statistics...

• Parametric
– one sample  t-test
– two sample t-test
– paired t-test
– ANOVA
– ANCOVA
– correlation
– linear regression
– multiple regression
– F-tests
– etc…

• Multivariate?

all cases of the (univariate) 
General Linear Model

Or, with non -normal errors, the 
Generalised Linear Model

Classical statistics...

→ PCA/ SVD, MLM
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• Parametric
– one sample  t-test
– two sample t-test
– paired t-test
– ANOVA
– ANCOVA
– correlation
– linear regression
– multiple regression
– F-tests
– etc…

• Multivariate?
• Non-parametric?

all cases of the (univariate) 
General Linear Model

Or, with non -normal errors, the 
Generalised Linear Model

→ SnPM

Classical statistics...

→ PCA/ SVD, MLM

1. Decompose data into effects and error
2. Form statistic using estimates of effects and error

Make inferences about effects of interestWhy?

How?

Use any available knowledgeModel?

data model

effects estimate

error estimate

statistic

Why modelling?

Variance Bias

No smoothing

No normalisation

Massive model

but ... not much 
sensitivity

Captures signal

Lots of smoothing

Lots of normalisation

Sparse model

but ... may miss
signal

High sensitivity

A very general 
model

default
SPM

Choose your model
“All models are wrong, 
but some are useful” 

George E.P.Box

Modelling with SPM

Preprocessing SPMs

Functional data

Templates

Smoothed
normalised 

data

Design matrix

Variance components

Contrasts

Thresholding

Parameter
estimatesGeneralised

linear
model

Modelling with SPM

Generalised
linear
model

Preprocessed 
data: single 

voxel 

Design matrix

Variance components

SPMs

Contrasts

Parameter
estimates

Passive word listening
versus rest

7 cycles of 
rest and listening

Each epoch 6 scans
with 7 sec TR

Question: Is there a change in the BOLD 
response between listening and rest?

Time series of BOLD 
responses in one voxel

Stimulus function

One session

fMRI example
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GLM essentials

• The model
– Design matrix: Effects of interest
– Design matrix: Confounds (aka effects of no interest)
– Residuals (error measures of the whole model)

• Estimate effects and error for data
– Parameter estimates (aka betas)
– Quantify specific effects using contrasts of parameter 

estimates 
• Statistic 

– Compare estimated effects – the contrasts – with 
appropriate error measures

– Are the effects surprisingly large?

GLM essentials

• The model
– Design matrix: Effects of interest
– Design matrix: Confounds (aka effects of no interest)
– Residuals (error measures of the whole model)

• Estimate effects and error for data
– Parameter estimates (aka betas)
– Quantify specific effects using contrasts of parameter 

estimates 
• Statistic 

– Compare estimated effects – the contrasts – with 
appropriate error measures

– Are the effects surprisingly large?

Intensity

T
im

e

Regression model

= β1 β2+ + er
ro

r

x1 x2 ε

ε∼Ν(0, σ2Ι)
(error is normal and
independently and 

identically distributed)

Question: Is there a change in the BOLD 
response between listening and rest?

Hypothesis test: β1 = 0?
(using t-statistic)

General 
case Regression model

= + +1̂β 2β̂

Y + ε̂+= 11̂xβ 22
ˆ xβ

Model is specified by
1. Design matrix X
2. Assumptions about ε

General 
case

Matrix formulation

Yi = β 1 xi + β 2 + εi i = 1,2,3

Y1 x1 1 β 1 ε1
Y2 = x2 1 + ε2

Y3 x3 1 β 1 ε3

Y = X β + ε

Y1 = β 1 x1 + β2 × 1 + ε1

Y2 = β 1 x2 + β2 × 1 + ε2

Y3 = β 1 x3 + β2 × 1 + ε3

dummy variables

Matrix formulation

Yi = β 1 xi + β 2 + εi i = 1,2,3

Y1 x1 1 β 1 ε1
Y2 = x2 1 + ε2

Y3 x3 1 β 1 ε3

Y = X β + ε

Y1 = β 1 x1 + β2 × 1 + ε1

Y2 = β 1 x2 + β2 × 1 + ε2

Y3 = β 1 x3 + β2 × 1 + ε3

dummy variables

x

y

×
×

×

β2
^

β̂11

Linear regression

Parameter estimates β 1 & β2

Fitted values Y1 & Y2

Residuals ε1  & ε2

^ ^

^ ^

^ ^

Yi

Yi
^

Hats = 
estimates

^
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Y = β1 × X1 +β2 ×X2 + ε

(1,1,1)

(x1, x2, x3)X1

X2O

Y1 x1 1 β1 ε1
Y2 = x2 1 + ε2

Y3 x3 1 β2 ε3

DATA
(Y1, Y2, Y3)

Y

design space

Geometrical perspective GLM essentials

• The model
– Design matrix: Effects of interest
– Design matrix: Confounds (aka effects of no interest)
– Residuals (error measures of the whole model)

• Estimate effects and error for data
– Parameter estimates (aka betas)
– Quantify specific effects using contrasts of 

parameter estimates 
• Statistic 

– Compare estimated effects – the contrasts – with 
appropriate error measures

– Are the effects surprisingly large?

Parameter estimation 

εβ += XY

Estimate parameters

such that ∑
=

N

t
t

1

2ε̂ minimal

βε ˆˆ XY −=

residuals

Least squares
parameter estimate

YXXX TT 1)(ˆ −=β

Parameter 
estimates 

Ordinary least 
squares Parameter estimation 

εβ += XY

βε ˆˆ XY −=

residuals = r

YXXX TT 1)(ˆ −=β

Parameter 
estimates  

Error variance σ2 =  (sum of) squared residuals 
standardised for df

= rTr / df (sum of squares)
…where degrees of freedom df (assuming iid): 

= N - rank(X)
(=N-P if X full rank)

Ordinary least 
squares

Y = β1 × X1 +β2 ×X2 + ε

(1,1,1)

(x1, x2, x3)X1

X2O

Y1 x1 1 β1 ε1
Y2 = x2 1 + ε2

Y3 x3 1 β2 ε3
Y

design space

Estimation (geometrical)

(Y1,Y2,Y3)^ ^ ^
Ŷ

ε = (ε1,ε2,ε3 )T^ ^ ^^

DATA
(Y1, Y2, Y3)

RESIDUALS

GLM essentials

• The model
– Design matrix: Effects of interest
– Design matrix: Confounds (aka effects of no interest)
– Residuals (error measures of the whole model)

• Estimate effects and error for data
– Parameter estimates (aka betas)
– Quantify specific effects using contrasts of parameter 

estimates 
• Statistic 

– Compare estimated effects – the contrasts – with 
appropriate error measures

– Are the effects surprisingly large?
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Inference - contrasts

εβ += XY A contrast = a linear combination of 
parameters: c  ́x β à spm_con*img

boxcar parameter > 0 ?

Null hypothesis: 01 =β

t-test: one-dimensional 
contrast, difference in 
means/ difference from 
zero

Does boxcar parameter 
model anything?

Null hypothesis: variance 
of tested effects = error 
variance

F-test: tests multiple linear 
hypotheses – does subset of 
model account for 
significant variance

à spmT_000*.img
SPM{t} map

à ess_000*.img
SPM{F} map

t-statistic - example

εβ += XY

c = 1 0 0 0 0 0 0 0 0 0 0
)ˆ(ˆ

ˆ

β
β
T

T

cdtS
c

t =

X Standard error of contrast depends on the design, 
and is larger with greater residual error and 

‚greater‘ covariance/ autocorrelation

Degrees of freedom d.f. then = n-p, where n
observations, p parameters

Contrast of parameter 
estimates

Variance estimate

Tests for a directional 
difference in means

F-statistic - example

Null hypothesis H0:
That all these betas β3-9 are 
zero, i.e. that no linear 
combination of the effects 
accounts for significant 
variance
This is a non-directional test

H0: β 3-9 = (0 0 0 0 ...) test H0 :  c´ x β = 0 ?H0: True model is X0

This model ? Or this one ? 

Do movement parameters (or other confounds) account for anything?

X1 (β3 −9)X0 X0

H0: β 3-9 = (0 0 0 0 ...)

0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

c’ =

SPM{F}

test H0 :  c´ x β = 0 ?H0: True model is X0

F-statistic - example

Do movement parameters (or other confounds) account for anything?

X1 (β3 −9)X0

This model ? Or this one ? 

X0

Summary so far

• The essential model contains 
– Effects of interest

• A better model?
– A better model (within reason) means smaller residual 

variance and more significant statistics
– Capturing the signal – later

– Add confounds/ effects of no interest
– Example of movement parameters in fMRI

– A further example (mainly relevant to PET)…

Example PET experiment
β1         β2          β3          β4         

ra
nk

(X
)=

3

12 scans, 3 conditions (1-way ANOVA)

y j = x1j b1 + x2j b2 + x3j b3 + x4j b4 + e j

where (dummy) variables:

x1j = [0,1] = condition A (first 4 scans)
x2j = [0,1] = condition B (second 4 scans)
x3j = [0,1] = condition C (third 4 scans)
x4j = [1] =    grand mean (session constant)



SPM 2001 - 4. Kurs zur funktionellen Bildgebung

Modellierung in SPM 99 6

Global effects

• May be variation in PET tracer dose 
from scan to scan

• Such “global” changes in image 
intensity (gCBF) confound local / 
regional (rCBF) changes of 
experiment 

• Adjust for global effects by:
- AnCova(Additive Model) - PET?
- Proportional Scaling         - fMRI?

• Can improve statistics when 
orthogonal to effects of interest…

• …but can also worsen when effects 
of interest correlated with global
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Global effects (AnCova)
β1         β2         β 3        β4         β5

ra
nk

(X
)=

4

12 scans, 3 conditions, 1 confounding covariate

y j = x1j b1 + x2j b2 + x3j b3 + x4j b4 + x5j b5 + e j

where (dummy) variables:

x1j = [0,1] = condition A (first 4 scans)
x2j = [0,1] = condition B (second 4 scans)
x3j = [0,1] = condition C (third 4 scans)
x4j = [1] =    grand mean (session constant)
x5j = global signal (mean over all voxels)

ra
nk

(X
)=

4

β1         β2         β 3        β4         β5

• Global effects not 
accounted for

• Maximum degrees 
of freedom (global 
uses one) 

Global effects (AnCova)

• Global effects 
independent of 
effects of interest

• Smaller residual 
variance

• Larger T statistic
• More significant

• Global effects 
correlated with 
effects of interest

• Smaller effect &/or 
larger residuals 

• Smaller T statistic
• Less significant

No Global Correlated globalOrthogonal global

β1         β2          β3          β4         

ra
nk

(X
)=

3

β1         β2         β 3        β4         β5

ra
nk

(X
)=

4

• Two types of scaling: Grand Mean scaling and Global scaling
- Grand Mean scaling is automatic, global scaling is optional
- Grand Mean scales by 100/mean over all voxels and ALL scans         

(i.e, single number per session) 
- Global scaling scales by 100/mean over all voxels for EACH scan 

(i.e, a different scaling factor every scan)
• Problem with global scaling is that TRUE global is not (normally) 

known… … only estimated by the mean over voxels
- So if there is a large signal change over many voxels, the global

estimate will be confounded by local changes
- This can produce artifactual deactivations in other regions after 

global scaling
• Since most sources of global variability in fMRI are low frequency 

(drift), high-pass filtering may be sufficient, and many people do 
not use global scaling 

Global effects (scaling)

Summary

• General(ised) linear model partitions data into
– Effects of interest & confounds/ effects of no interest
– Error

• Least squares estimation 
– Minimises difference between model & data
– To do this, assumptions made about errors – more later

• Inference at every voxel
– Test hypothesis using contrast – more later
– Inference can be Bayesian as well as classical

• Next: Applying the GLM to fMRI


