The general linear model and Statistical Parametric Mapping I: Introduction to the GLM

Alexa Morcom

and Stefan Kiebel, Rik Henson, Andrew Holmes & J-B Poline

Overview

- Introduction
- Essential concepts
 - Modelling
 - Design matrix
 - Parameter estimates
 - Simple contrasts
- Summary

Some terminology

- SPM is based on a **mass univariate approach** that fits a model at each voxel
 - Is there an effect at location X? Investigate localisation of function or **functional specialisation**
 - How does region X interact with Y and Z? Investigate behaviour of networks or **functional integration**
- A General(ised) Linear Model
 - Effects are linear and additive
 - If errors are normal (Gaussian), General (SPM99)
 - If errors are not normal, Generalised (SPM2)

Classical statistics...

Parametric

- one sample *t*-test
- two sample *t*-test
 paired *t*-test
- ANOVA
- ANCOVA
- correlation
- linear regression
- multiple regression
- *F*-tests
 etc...
- all cases of the (univariate)
- General Linear Model
 - Or, with non-normal errors, the Generalised Linear Model

Classical statistics...

• Parametric

- one sample *t*-test
 two sample *t*-test
- nwo sample ries
 paired t-test
- ANOVA
- ANCOVA
- correlation
 linear regression
- multiple regression
- F-tests
- etc...
- all cases of the (**univariate**) General Linear Model
- Or, with non-normal errors, the Generalised Linear Model

- Are the effects surprisingly large?

- Design matrix: Confounds (aka effects of no interest)
- Quantify specific effects using contrasts of parameter
- Compare estimated effects the contrasts with
- Are the effects surprisingly large?

- Compare estimated effects the contrasts with appropriate error measures
- Are the effects surprisingly large?

Summary

- General(ised) linear model partitions data into
 Effects of interest & confounds/ effects of no interest
 - Error
- · Least squares estimation
 - Minimises difference between model & data
 - To do this, assumptions made about errors more later
- · Inference at every voxel
 - Test hypothesis using contrast more later
 - Inference can be Bayesian as well as classical
- Next: Applying the GLM to fMRI