The general linear model and Statistical Parametric Mapping II: GLM for fMRI

Alexa Morcom

and Stefan Kiebel, Rik Henson, Andrew Holmes & J-B Poline

Overview

- Introduction
- General linear model(s) for fMRI
 - Time series
 - Haemodynamic response
 - Low frequency noise
 - Two GLMs fitted in 2-stage procedure
- Summary

GLM review

- Design matrix the model
 - Effects of interest
 - Confounds (aka effects of no interest)
 - Residuals (error measures of the whole model)
- · Estimate effects and error for data
 - Specific effects are quantified as contrasts of parameter estimates (aka betas)
- Statistic
 - Compare estimated effects the contrasts with appropriate error measures
 - Are the effects surprisingly large?

fMRI analysis

- Data can be filtered to remove low-frequency (1/f) noise
- Effects of interest are convolved with haemodynamic (BOLD) response function (HRF), to capture sluggish nature of response
- Scans must be treated as a timeseries, not as independent observations
 - i.e. typically temporally autocorrelated (for TRs<8s)

fMRI analysis

- Data can be filtered to remove low-frequency (1/f) noise
- Effects of interest are convolved with haemodynamic (BOLD) response function (HRF), to capture sluggish nature of response
- Scans must be treated as a timeseries, not as independent observations
 - i.e. typically temporally autocorrelated (for TRs<8s)

fMRI analysis

- Data can be filtered to remove low-frequency (1/f) noise
- Effects of interest are convolved with haemodynamic (BOLD) response function (HRF), to capture sluggish nature of response
- Scans must be treated as a timeseries, not as independent observations
 - i.e. typically temporally autocorrelated (for TRs<8s)

<u>Temporal autocorr</u>elation

- Because scans are not independent measures, the number of degrees of freedom is less than the number of scans
- This means that under the null hypothesis the data are less free to vary than might be assumed
- A given statistic, e.g. T value, is therefore less surprising and so less significant than we think....

... the next talk

